Propositional and Predicate Logic - V

Petr Gregor

KTIML MFF UK

ZS 2015/2016

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - V

ZS 2015/2016 1 / 21

イロト イヨト イヨト

Hilbert's calculus

- basic connectives: \neg , \rightarrow (others can be defined from them)
- *logical axioms* (schemes of axioms):

$$\begin{array}{ll} (i) & \varphi \to (\psi \to \varphi) \\ (ii) & (\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi)) \\ (iii) & (\neg \varphi \to \neg \psi) \to (\psi \to \varphi) \end{array}$$

where φ , ψ , χ are any propositions (of a given language).

a rule of inference:

$$\frac{\varphi, \ \varphi \to \psi}{\psi} \qquad \text{(modus ponens)}$$

A *proof* (in *Hilbert-style*) of a formula φ from a theory *T* is a finite sequence $\varphi_0, \ldots, \varphi_n = \varphi$ of formulas such that for every $i \le n$

- φ_i is a logical axiom or $\varphi_i \in T$ (an axiom of the theory), or
- φ_i can be inferred from the previous formulas applying a rule of inference.

Remark Choice of axioms and inference rules differs in various Hilbert-style proof systems.

Petr Gregor (KTIML MFF UK)

Example and soundness

A formula φ is *provable* from *T* if it has a proof from *T*, denoted by $T \vdash_H \varphi$. If $T = \emptyset$, we write $\vdash_H \varphi$. E.g. for $T = \{\neg \varphi\}$ we have $T \vdash_H \varphi \rightarrow \psi$ for every ψ .

- $\begin{array}{ll} 1) & \neg\varphi \\ 2) & \neg\varphi \rightarrow (\neg\psi \rightarrow \neg\varphi) \end{array}$
- $3) \qquad \neg \psi \to \neg \varphi$

4)
$$(\neg\psi\rightarrow\neg\varphi)\rightarrow(\varphi\rightarrow\psi)$$

5) $\varphi \to \psi$

an axiom of *T* a logical axiom (*i*) by modus ponens from 1), 2) a logical axiom (*iii*) by modus ponens from 3), 4)

Theorem For every theory *T* and formula φ , $T \vdash_H \varphi \Rightarrow T \models \varphi$. *Proof*

- If φ is an axiom (logical or from *T*), then $T \models \varphi$ (l. axioms are tautologies),
- if $T \models \varphi$ and $T \models \varphi \rightarrow \psi$, then $T \models \psi$, i.e. modus ponens is sound,
- thus every formula in a proof from *T* is valid in *T*.

Remark The completeness holds as well, i.e. $T \models \varphi \Rightarrow T \vdash_H \varphi$.

Resolution method - introduction

Main features of the resolution method (informally)

- is the underlying method of many systems, e.g. Prolog interpreters, SAT solvers, automated deduction / verification systems, ...
- assumes input formulas in CNF (in general, "expensive" transformation),
- works under set representation (clausal form) of formulas,
- has a single rule, so called a resolution rule,
- has no explicit axioms (or atomic tableaux), but certain axioms are incorporated *"inside"* via various formatting rules,
- is a *refutation* procedure, similarly as the tableau method; that is, it tries to show that a given formula (or theory) is unsatisfiable,
- has several refinements e.g. with specific conditions on when the resolution rule may be applied.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Set representation (clausal from) of CNF formulas

- A *literal* l is a prop. letter or its negation. \overline{l} is its *complementary* literal.
- A *clause* C is a finite set of literals (*"forming disjunction"*). The empty clause, denoted by □, is never satisfied (has no satisfied literal).
- A *formula* S is a (possibly infinite) set of clauses (*"forming conjunction"*). An empty formula Ø is always satisfied (is has no unsatisfied clause). Infinite formulas represent infinite theories (as conjunction of axioms).
- A (*partial*) assignment V is a consistent set of literals, i.e. not containing any pair of complementary literals. An assignment V is *total* if it contains a positive or negative literal for each propositional letter.
- \mathcal{V} satisfies *S*, denoted by $\mathcal{V} \models S$, if $C \cap \mathcal{V} \neq \emptyset$ for every $C \in S$.

$$\begin{array}{l} ((\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land (\neg r \lor \neg s) \land (\neg t \lor s) \land s) \text{ is represented by} \\ S = \{\{\neg p, q\}, \{\neg p, \neg q, r\}, \{\neg r, \neg s\}, \{\neg t, s\}, \{s\}\} \text{ and} \\ \mathcal{V} \models S \text{ for } \mathcal{V} = \{s, \neg r, \neg p\} \end{array}$$

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Resolution rule

Let C_1 , C_2 be clauses with $l \in C_1$, $\overline{l} \in C_2$ for some literal l. Then from C_1 and C_2 infer through the literal l the clause C, called a *resolvent*, where

 $C = (C_1 \setminus \{l\}) \cup (C_2 \setminus \{\overline{l}\}).$

Equivalently, if \sqcup means union of disjoint sets,

$$\frac{C_1'\sqcup\{l\},C_2'\sqcup\{\bar{l}\}}{C_1'\cup C_2'}$$

For example, from $\{p, q, r\}$ and $\{\neg p, \neg q\}$ we can infer $\{q, \neg q, r\}$ or $\{p, \neg p, r\}$.

Observation The resolution rule is sound; that is, for every assignment \mathcal{V} $\mathcal{V} \models C_1$ and $\mathcal{V} \models C_2 \Rightarrow \mathcal{V} \models C$.

Remark The resolution rule is a special case of the (so called) cut rule

$$\frac{\varphi \lor \psi, \ \neg \varphi \lor \chi}{\psi \lor \chi}$$

where φ , ψ , χ are arbitrary formulas.

Resolution proof

- A *resolution proof* (*deduction*) of a clause *C* from a formula *S* is a finite sequence $C_0, \ldots, C_n = C$ such that for every $i \le n$, we have $C_i \in S$ or C_i is a resolvent of some previous clauses,
- a clause *C* is (resolution) *provable* from *S*, denoted by $S \vdash_R C$, if it has a resolution proof from *S*,
- a (resolution) *refutation* of formula S is a resolution proof of \Box from S,
- *S* is (resolution) *refutable* if $S \vdash_R \Box$.

Theorem (soundness) If *S* is resolution refutable, then *S* is unsatisfiable.

Proof Let $S \vdash_R \Box$. If it was $\mathcal{V} \models S$ for some assignment \mathcal{V} , from the soundness of the resolution proof we would have $\mathcal{V} \models \Box$, which is impossible.

Resolution trees and closures

A *resolution tree* of a clause *C* from formula *S* is finite binary tree with nodes labeled by clauses so that

- (i) the root is labeled C,
- (ii) the leaves are labeled with clauses from S,
- (*iii*) every inner node is labeled with a resolvent of the clauses in his sons.

Observation C has a resolution tree from S if and only if $S \vdash_R C$.

A *resolution closure* $\mathcal{R}(S)$ of a formula S is the smallest set satisfying

- (*i*) $C \in \mathcal{R}(S)$ for every $C \in S$,
- (*ii*) if $C_1, C_2 \in \mathcal{R}(S)$ and *C* is a resolvent of C_1, C_2 , then $C \in \mathcal{R}(S)$.

Observation $C \in \mathcal{R}(S)$ *if and only if* $S \vdash_R C$.

Remark All notions on resolution proofs can therefore be equivalently introduced in terms of resolution trees or resolution closures.

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - V

Example

Formula $((p \lor r) \land (q \lor \neg r) \land (\neg q) \land (\neg p \lor t) \land (\neg s) \land (s \lor \neg t))$ is unsatisfiable since for $S = \{\{p, r\}, \{q, \neg r\}, \{\neg q\}, \{\neg p, t\}, \{\neg s\}, \{s, \neg t\}\}$ we have $S \vdash_R \Box$.

The resolution closure of S (the closure of S under resolution) is

$$\begin{split} \mathcal{R}(S) &= \{\{p,r\},\{q,\neg r\},\{\neg q\},\{\neg p,t\},\{\neg s\},\{s,\neg t\},\{p,q\},\{\neg r\},\{r,t\},\\ &\{q,t\},\{\neg t\},\{\neg p,s\},\{r,s\},\{t\},\{q\},\{q,s\},\Box,\{\neg p\},\{p\},\{r\},\{s\}\}. \end{split}$$

イロト イヨト イヨト イヨト

Reduction by substitution

Let S be a formula and l be a literal. Let us define

 $S^l = \{C \setminus \{\overline{l}\} \mid l \notin C \in S\}.$

Observation

- S^l is equivalent to a formula obtained from S by substituting the constant \top (true, 1) for all literals l and the constant \perp (false, 0) for all literals \overline{l} in S,
- Neither l nor \overline{l} occurs in (the clauses of) S^l .
- if $\{\overline{l}\} \in S$, then $\Box \in S^l$.

Lemma *S* is satisfiable if and only if S^l or $S^{\overline{l}}$ is satisfiable.

Proof (\Rightarrow) Let $\mathcal{V} \models S$ for some \mathcal{V} and assume (w.l.o.g.) that $\overline{l} \notin \mathcal{V}$.

- Then $\mathcal{V} \models S^l$ as for $l \notin C \in S$ we have $\mathcal{V} \setminus \{l, \overline{l}\} \models C$ and thus $\mathcal{V} \models C \setminus \{\overline{l}\}$.
- On the other hand (\Leftarrow), assume (w.l.o.g.) that $\mathcal{V} \models S^l$ for some \mathcal{V} .
- Since neither l nor \overline{l} occurs in S^l , we have $\mathcal{V}' \models S^l$ for $\mathcal{V}' = (\mathcal{V} \setminus \{\overline{l}\}) \cup \{l\}$.
- Then $\mathcal{V}' \models S$ since for $C \in S$ containing l we have $l \in \mathcal{V}'$ and for $C \in S$ not containing l we have $\mathcal{V}' \models (C \setminus \{\overline{l}\}) \in S^l$.

Tree of reductions

Step by step reductions of literals can be represented in a binary tree.

Corollary *S* is unsatisfiable if and only if every branch contains \Box .

Remarks Since *S* can be infinite over a countable language, this tree can be infinite. However, if *S* is unsatisfiable, by the compactness theorem there is a finite $S' \subseteq S$ that is unsatisfiable. Thus after reduction of all literals occurring in *S'*, there will be \Box in every branch after finitely many steps.

Completeness of resolution

Theorem If a finite *S* is unsatisfiable, it is resolution refutable, i.e. $S \vdash_R \Box$.

Proof By induction on the number of variables in *S* we show that $S \vdash_R \Box$.

- If unsatisfiable *S* has no variable, it is $S = \{\Box\}$ and thus $S \vdash_R \Box$,
- Let *l* be a literal occurring in *S*. By Lemma, S^l and $S^{\overline{l}}$ are unsatisfiable.
- Since S^l and $S^{\overline{l}}$ have less variables than S, by induction there exist resolution trees T^l and $T^{\overline{l}}$ for derivation of \Box from S^l resp. $S^{\overline{l}}$.
- If every leaf of T^l is in *S*, then T^l is a resolution tree of \Box from *S*, $S \vdash_R \Box$.
- Otherwise, by appending the literal *l* to every leaf of *T^l* that is not in *S*, (and to all predecessors) we obtain a resolution tree of {*l*} from *S*.
- Similarly, we get a resolution tree $\{l\}$ from *S* by appending *l* in the tree $T^{\overline{l}}$.
- By resolution of roots $\{\overline{l}\}$ and $\{l\}$ we get a resolution tree of \Box from *S*.

Corollary If *S* is unsatisfiable, it is resolution refutable, i.e. $S \vdash_R \Box$.

Proof Follows from the previous theorem by applying compactness.

Linear resolution - introduction

The resolution method can be significantly refined.

- A *linear proof* of a clause *C* from a formula *S* is a finite sequence of pairs (*C*₀, *B*₀),..., (*C_n*, *B_n*) such that *C*₀ ∈ *S* and for every *i* ≤ *n*
 - *i*) $B_i \in S$ or $B_i = C_j$ for some j < i, and
 - *ii*) C_{i+1} is a resolvent of C_i and B_i where $C_{n+1} = C$.
- C_0 is called a *starting* clause, C_i a *central* clause, B_i a *side* clause.
- *C* is *linearly provable* from *S*, $S \vdash_L C$, if it has a linear proof from *S*.
- A *linear refutation* of S is a linear proof of \Box from S.
- *S* is *linearly refutable* if $S \vdash_L \Box$.

Observation (soundness) If S is linearly refutable, it is unsatisfiable.

Proof Every linear proof can be transformed to a (general) resolution proof.

Remark The completeness is preserved as well (proof omitted here).

イロト イヨト イヨト イヨト

Example of linear resolution

a) a general form of linear resolution,

- *b*) for $S = \{\{p, q\}, \{p, \neg q\}, \{\neg p, q\}, \{\neg p, \neg q\}\}$ we have $S \vdash_L \Box$,
- c) a transformation of a linear proof to a (general) resolution proof.

LI-resolution

Linear resolution can be further refined for Horn formulas as follows.

- a Horn clause is a clause containing at most one positive literal,
- a *Horn formula* is a (possibly infinite) set of Horn clauses,
- a *fact* is a (Horn) clause $\{p\}$ where p is a positive literal,
- a *rule* is a (Horn) clause with exactly one positive literal and at least one negative literal. Rules and facts are *program clauses*,
- a *goal* is a nonempty (Horn) clause with only negative literals.

Observation If a Horn formula *S* is unsatisfiable and $\Box \notin S$, it contains some fact and some goal.

Proof If *S* does not contain any fact (goal), it is satisfied by the assignment of all propositional variables to 0 (resp. to 1). \blacksquare

A *linear input resolution* (*LI-resolution*) from a formula *S* is a linear resolution from *S* in which every side clause B_i is from the (input) formula *S*. We write $S \vdash_{LI} C$ to denote that *C* is provable by LI-resolution from *S*.

LI-resolution

Completeness of LI-resolution for Horn formulas

Theorem If T is satisfiable Horn formula but $T \cup \{G\}$ is unsatisfiable for some goal G, then \Box has a LI-resolution from $T \cup \{G\}$ with starting clause G.

Proof By the compactness theorem we may assume that T is finite.

- We proceed by induction on the number of variables in T.
- By Observation, T contains a fact {p} for some variable p.
- By Lemma, $T' = (T \cup \{G\})^p = T^p \cup \{G^p\}$ is unsatisfiable where $G^p = G \setminus \{\overline{p}\}.$
- If $G^p = \Box$, we have $G = \{\overline{p}\}$ and thus \Box is a resolvent of G and $\{p\} \in T$.
- Otherwise, since T^p is satisfiable (by the assignment satisfying T) and has less variables than T, by induction assumption, there is an LI-resolution of \Box from T' starting with G^p .
- By appending the literal \overline{p} to all leaves that are not in $T \cup \{G\}$ (and nodes below) we obtain an LI-resolution of $\{\overline{p}\}$ from $T \cup \{G\}$ that starts with G.
- By an additional resolution step with the fact $\{p\} \in T$ we resolve \Box .

・ロト ・回ト ・ヨト ・ヨト

Example of LI-resolution

$$\begin{split} T &= \{\{p, \neg r, \neg s\}, \{r, \neg q\}, \{q, \neg s\}, \{s\}\}, \qquad G &= \{\neg p, \neg q\} \\ T^s &= \{\{p, \neg r\}, \{r, \neg q\}, \{q\}\} \\ T^{sq} &= \{\{p, \neg r\}, \{r\}\} \\ T^{sqr} &= \{\{p\}\} \\ G^{sq} &= \{\neg p\} \\ \{p, \neg r\} \\ \{\neg q, \neg r\} \\ \{r, \neg q\} \\ \{r, \neg q\} \\ \{r, \neg q\} \\ \{r, \neg q\} \\ \{q\} \\ \{\neg s\} \\ \{s\} \\ G^{sqr} &= \{\neg p\} \\ \{p\} \\ \{r\} \\ \{\neg r\} \\ \{r\} \\ \{r$$

< E

<ロト <回ト < 回ト

Program in Prolog

A (propositional) *program* (in Prolog) is a Horn formula containing only program clauses, i.e. facts or rules.

a rule p:-q,r. $q \wedge r \to p$ $\{p, \neg q, \neg r\}$ $s \rightarrow p$ $\{p, \neg s\}$ p := s. $\{q, \neg s\}$ q := s. $s \rightarrow q$ $\{r\}$ a fact r. r $\{s\}$ a program S. sa query ?-p,q. $\{\neg p, \neg q\}$ a goal

We would like to know whether a given query follows from a given program.

Corollary For every program *P* and query $(p_1 \land ... \land p_n)$ it is equivalent that

(1)
$$P \models p_1 \land \ldots \land p_n$$
,

- (2) $P \cup \{\neg p_1, \ldots, \neg p_n\}$ is unsatisfiable,
- (3) \Box has LI-resolution from $P \cup \{G\}$ starting by goal $G = \{\neg p_1, \ldots, \neg p_n\}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

Resolution in Prolog

1) Interpreter stores clauses as sequences of literals (definite clauses). An *LD*-resolution (linear definite) is an *LI*-resolution in which in each step the resolvent of the present goal $(\neg p_1, ..., \neg p_{i-1}, \neg p_i, \neg p_{i+1}, ..., \neg p_n)$ and the side clause $(p_i, \neg q_1, ..., \neg q_m)$ is $(\neg p_1, ..., \neg p_{i-1}, \neg q_1, ..., \neg q_m, \neg p_{i+1}, ..., \neg p_n)$. Observation Every *LI*-proof can be transformed into an *LD*-proof of the same clause from the same formula with the same starting clause (goal).

2) The choice of literal from the present goal for resolution is determined by a given selection rule \mathcal{R} . Typically, "choose the first literal".

An *SLD-resolution* (*selection*) via \mathcal{R} is an *LD*-resolution in which each step (C_i, B_i) we resolve through the literal $\mathcal{R}(C_i)$.

Observation Every LD-proof can be transformed into an SLD-proof of the same clause from the same formula with the same starting clause (goal).

Corollary SLD-resolution is complete for queries over programs in Prolog.

SLD-tree

Which program clause will be used for resolution with the present goal?

An *SLD-tree* of a program *P* and a goal *G* via a selection rule \mathcal{R} is a tree with nodes labeled by goals so that the root has label *G* and if a node has label *G'*, his sons correspond to all possibilities of resolving *G'* with program clauses of *P* through literal $\mathcal{R}(G')$ and are labeled by the corresponding resolvents.

SLD-rezoluce

Concluding remarks

- Prolog interpreters search the SLD-tree, the order is not specified.
- Implementations that are based on DFS may not preserve completeness.

- A certain control over the search is provided by !, the cut operation.
- If we allow negation, we may have troubles with semantics of programs.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))