
Propositional and Predicate Logic - V

Petr Gregor

KTIML MFF UK

ZS 2015/2016

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 1 / 21

Formal proof systems Hilbert’s calculus

Hilbert’s calculus
basic connectives: ¬,→ (others can be defined from them)
logical axioms (schemes of axioms):

(i) ϕ→ (ψ → ϕ)

(ii) (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

(iii) (¬ϕ→ ¬ψ)→ (ψ → ϕ)

where ϕ, ψ, χ are any propositions (of a given language).
a rule of inference:

ϕ, ϕ→ ψ

ψ
(modus ponens)

A proof (in Hilbert-style) of a formula ϕ from a theory T is a finite sequence
ϕ0, . . . , ϕn = ϕ of formulas such that for every i ≤ n

ϕi is a logical axiom or ϕi ∈ T (an axiom of the theory), or
ϕi can be inferred from the previous formulas applying a rule of inference.

Remark Choice of axioms and inference rules differs in various Hilbert-style
proof systems.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 2 / 21

Formal proof systems Hilbert’s calculus

Example and soundness
A formula ϕ is provable from T if it has a proof from T , denoted by T `H ϕ.
If T = ∅, we write `H ϕ. E.g. for T = {¬ϕ} we have T `H ϕ→ ψ for every ψ.

1) ¬ϕ an axiom of T

2) ¬ϕ→ (¬ψ → ¬ϕ) a logical axiom (i)

3) ¬ψ → ¬ϕ by modus ponens from 1), 2)
4) (¬ψ → ¬ϕ)→ (ϕ→ ψ) a logical axiom (iii)

5) ϕ→ ψ by modus ponens from 3), 4)

Theorem For every theory T and formula ϕ, T `H ϕ ⇒ T |= ϕ.
Proof

If ϕ is an axiom (logical or from T), then T |= ϕ (l. axioms are tautologies),
if T |= ϕ and T |= ϕ→ ψ, then T |= ψ, i.e. modus ponens is sound,
thus every formula in a proof from T is valid in T .

Remark The completeness holds as well, i.e. T |= ϕ⇒ T `H ϕ.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 3 / 21

Resolution method Introduction

Resolution method - introduction
Main features of the resolution method (informally)

is the underlying method of many systems, e.g. Prolog interpreters, SAT
solvers, automated deduction / verification systems, . . .

assumes input formulas in CNF (in general, “expensive” transformation),

works under set representation (clausal form) of formulas,

has a single rule, so called a resolution rule,

has no explicit axioms (or atomic tableaux), but certain axioms are
incorporated “inside” via various formatting rules,

is a refutation procedure, similarly as the tableau method; that is, it tries
to show that a given formula (or theory) is unsatisfiable,

has several refinements e.g. with specific conditions on when the
resolution rule may be applied.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 4 / 21

Resolution method Introduction

Set representation (clausal from) of CNF formulas
A literal l is a prop. letter or its negation. l is its complementary literal.

A clause C is a finite set of literals (“forming disjunction”). The empty
clause, denoted by �, is never satisfied (has no satisfied literal).

A formula S is a (possibly infinite) set of clauses (“forming conjunction”).
An empty formula ∅ is always satisfied (is has no unsatisfied clause).
Infinite formulas represent infinite theories (as conjunction of axioms).

A (partial) assignment V is a consistent set of literals, i.e. not containing
any pair of complementary literals. An assignment V is total if it contains
a positive or negative literal for each propositional letter.

V satisfies S, denoted by V |= S, if C ∩ V 6= ∅ for every C ∈ S.

((¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ (¬r ∨ ¬s) ∧ (¬t ∨ s) ∧ s) is represented by

S = {{¬p,q}, {¬p,¬q, r}, {¬r,¬s}, {¬t , s}, {s}} and
V |= S for V = {s,¬r,¬p}

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 5 / 21

Resolution method Introduction

Resolution rule
Let C1, C2 be clauses with l ∈ C1, l ∈ C2 for some literal l. Then from C1 and
C2 infer through the literal l the clause C , called a resolvent, where

C = (C1 \ {l}) ∪ (C2 \ {l}).
Equivalently, if t means union of disjoint sets,

C ′1 t {l},C ′2 t {l}
C ′1 ∪ C ′2

For example, from {p,q, r} and {¬p,¬q} we can infer {q,¬q, r} or {p,¬p, r}.

Observation The resolution rule is sound; that is, for every assignment V
V |= C1 and V |= C2 ⇒ V |= C .

Remark The resolution rule is a special case of the (so called) cut rule
ϕ ∨ ψ, ¬ϕ ∨ χ

ψ ∨ χ
where ϕ, ψ, χ are arbitrary formulas.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 6 / 21

Resolution method Introduction

Resolution proof

A resolution proof (deduction) of a clause C from a formula S is a finite
sequence C0, . . . ,Cn = C such that for every i ≤ n, we have Ci ∈ S

or Ci is a resolvent of some previous clauses,

a clause C is (resolution) provable from S, denoted by S `R C , if it has
a resolution proof from S,

a (resolution) refutation of formula S is a resolution proof of � from S,

S is (resolution) refutable if S `R �.

Theorem (soundness) If S is resolution refutable, then S is unsatisfiable.

Proof Let S `R �. If it was V |= S for some assignment V, from the soundness
of the resolution proof we would have V |= �, which is impossible.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 7 / 21

Resolution method Introduction

Resolution trees and closures
A resolution tree of a clause C from formula S is finite binary tree with nodes
labeled by clauses so that

(i) the root is labeled C ,

(ii) the leaves are labeled with clauses from S,

(iii) every inner node is labeled with a resolvent of the clauses in his sons.

Observation C has a resolution tree from S if and only if S `R C .

A resolution closure R(S) of a formula S is the smallest set satisfying

(i) C ∈ R(S) for every C ∈ S,

(ii) if C1,C2 ∈ R(S) and C is a resolvent of C1, C2, then C ∈ R(S).

Observation C ∈ R(S) if and only if S `R C .

Remark All notions on resolution proofs can therefore be equivalently
introduced in terms of resolution trees or resolution closures.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 8 / 21

Resolution method Introduction

Example
Formula ((p ∨ r)∧ (q ∨¬r)∧ (¬q)∧ (¬p ∨ t)∧ (¬s)∧ (s ∨¬t)) is unsatisfiable
since for S = {{p, r}, {q,¬r}, {¬q}, {¬p, t}, {¬s}, {s,¬t}} we have S `R �.

{¬q}

{p}

{p, q}

{q,¬r}{p, r} {¬p, t}

{¬p}

{¬p, s} {¬s}

{s,¬t}

The resolution closure of S (the closure of S under resolution) is

R(S) = {{p, r}, {q,¬r}, {¬q}, {¬p, t}, {¬s}, {s,¬t}, {p,q}, {¬r}, {r, t},
{q, t}, {¬t}, {¬p, s}, {r, s}, {t}, {q}, {q, s},�, {¬p}, {p}, {r}, {s}}.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 9 / 21

Resolution method Completeness

Reduction by substitution
Let S be a formula and l be a literal. Let us define

Sl = {C \ {l} | l /∈ C ∈ S}.
Observation

Sl is equivalent to a formula obtained from S by substituting the constant
> (true, 1) for all literals l and the constant ⊥ (false, 0) for all literals l in S,
Neither l nor l occurs in (the clauses of) Sl .
if {l} ∈ S, then � ∈ Sl .

Lemma S is satisfiable if and only if Sl or Sl is satisfiable.

Proof (⇒) Let V |= S for some V and assume (w.l.o.g.) that l /∈ V.
Then V |= Sl as for l /∈ C ∈ S we have V \{l, l} |= C and thus V |= C \ {l}.
On the other hand (⇐), assume (w.l.o.g.) that V |= Sl for some V.
Since neither l nor l occurs in Sl , we have V ′ |= Sl for V ′ = (V \ {l})∪ {l}.
Then V ′ |= S since for C ∈ S containing l we have l ∈ V ′ and for C ∈ S
not containing l we have V ′ |= (C \ {l}) ∈ Sl .

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 10 / 21

Resolution method Completeness

Tree of reductions

Step by step reductions of literals can be represented in a binary tree.

Spq = ∅

Sp = {{¬q}}

Spq = { }

Sp = { , {¬q}}

S = {{p}, {¬q}, {¬p,¬q}}

Corollary S is unsatisfiable if and only if every branch contains �.

Remarks Since S can be infinite over a countable language, this tree can be
infinite. However, if S is unsatisfiable, by the compactness theorem there is a
finite S′ ⊆ S that is unsatisfiable. Thus after reduction of all literals occurring
in S′, there will be � in every branch after finitely many steps.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 11 / 21

Resolution method Completeness

Completeness of resolution
Theorem If a finite S is unsatisfiable, it is resolution refutable, i.e. S `R �.

Proof By induction on the number of variables in S we show that S `R �.
If unsatisfiable S has no variable, it is S = {�} and thus S `R �,

Let l be a literal occurring in S. By Lemma, Sl and Sl are unsatisfiable.

Since Sl and Sl have less variables than S, by induction there exist
resolution trees T l and T l for derivation of � from Sl resp. Sl .
If every leaf of T l is in S, then T l is a resolution tree of � from S, S `R �.
Otherwise, by appending the literal l to every leaf of T l that is not in S,
(and to all predecessors) we obtain a resolution tree of {l} from S.

Similarly, we get a resolution tree {l} from S by appending l in the tree T l .
By resolution of roots {l} and {l} we get a resolution tree of � from S.

Corollary If S is unsatisfiable, it is resolution refutable, i.e. S `R �.

Proof Follows from the previous theorem by applying compactness.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 12 / 21

Linear resolution Introduction

Linear resolution - introduction
The resolution method can be significantly refined.

A linear proof of a clause C from a formula S is a finite sequence
of pairs (C0,B0), . . . , (Cn,Bn) such that C0 ∈ S and for every i ≤ n

i) Bi ∈ S or Bi = Cj for some j < i, and

ii) Ci+1 is a resolvent of Ci and Bi where Cn+1 = C .

C0 is called a starting clause, Ci a central clause, Bi a side clause.

C is linearly provable from S, S `L C , if it has a linear proof from S.

A linear refutation of S is a linear proof of � from S.

S is linearly refutable if S `L �.

Observation (soundness) If S is linearly refutable, it is unsatisfiable.

Proof Every linear proof can be transformed to a (general) resolution proof.

Remark The completeness is preserved as well (proof omitted here).

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 13 / 21

Linear resolution Introduction

Example of linear resolution

B0C0 {p,¬q}{p, q}

{q} {¬p,¬q}

{¬p}

{¬p, q}{p}

{p}

C1

C2

Cn

Cn+1

B1

Bn

a) b)

{p,¬q}{p, q}

{q} {¬p,¬q}

{¬p}

{¬p, q}{p}

c)

{p,¬q}{p, q}

{p}

a) a general form of linear resolution,

b) for S = {{p,q}, {p,¬q}, {¬p,q}, {¬p,¬q}} we have S `L �,

c) a transformation of a linear proof to a (general) resolution proof.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 14 / 21

Resolution in Prolog LI-resolution

LI-resolution
Linear resolution can be further refined for Horn formulas as follows.

a Horn clause is a clause containing at most one positive literal,
a Horn formula is a (possibly infinite) set of Horn clauses,
a fact is a (Horn) clause {p} where p is a positive literal,
a rule is a (Horn) clause with exactly one positive literal and at least one
negative literal. Rules and facts are program clauses,
a goal is a nonempty (Horn) clause with only negative literals.

Observation If a Horn formula S is unsatisfiable and � /∈ S, it contains some
fact and some goal.

Proof If S does not contain any fact (goal), it is satisfied by the assignment of
all propositional variables to 0 (resp. to 1).

A linear input resolution (LI-resolution) from a formula S is a linear resolution
from S in which every side clause Bi is from the (input) formula S. We write
S `LI C to denote that C is provable by LI-resolution from S.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 15 / 21

Resolution in Prolog LI-resolution

Completeness of LI-resolution for Horn formulas
Theorem If T is satisfiable Horn formula but T ∪ {G} is unsatisfiable for
some goal G, then � has a LI-resolution from T ∪ {G} with starting clause G.

Proof By the compactness theorem we may assume that T is finite.
We proceed by induction on the number of variables in T .
By Observation, T contains a fact {p} for some variable p.
By Lemma, T ′ = (T ∪ {G})p = T p ∪ {Gp} is unsatisfiable where
Gp = G \ {p}.
If Gp = �, we have G = {p} and thus � is a resolvent of G and {p} ∈ T .
Otherwise, since T p is satisfiable (by the assignment satisfying T) and
has less variables than T , by induction assumption, there is an
LI-resolution of � from T ′ starting with Gp.
By appending the literal p to all leaves that are not in T ∪ {G} (and nodes
below) we obtain an LI-resolution of {p} from T ∪ {G} that starts with G.
By an additional resolution step with the fact {p} ∈ T we resolve �.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 16 / 21

Resolution in Prolog LI-resolution

Example of LI-resolution

T = {{p,¬r,¬s}, {r,¬q}, {q,¬s}, {s}},

{p,¬r,¬s}

{¬q,¬s} {q,¬s}

{¬s}

{r,¬q}{¬q,¬r,¬s}

{s}

T s = {{p,¬r}, {r,¬q}, {q}}

T sq = {{p,¬r}, {r}}

T sqr = {{p}}

G = {¬p,¬q}

Gs = {¬p,¬q}

Gsq = {¬p}

Gsqr = {¬p}

Gsqrp =

{p,¬r}

{¬q} {q}

{r,¬q}{¬q,¬r}{p,¬r}

{r}{¬r}{p}

T,G `LIT s, Gs `LIT sq, Gsq `LIT sqr, Gsqr `LI

G = {¬p,¬q}

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 17 / 21

Resolution in Prolog LI-resolution

Program in Prolog
A (propositional) program (in Prolog) is a Horn formula containing only
program clauses, i.e. facts or rules.

p :− q, r. {p,¬q,¬r}

{r}
{q,¬s}

{¬p,¬q}

p :− s.

r.

s.

?− p, q.

q ∧ r → p

s→ p

r

s

{p,¬s}

{s}
a query a goal

a program

a rule

a fact

q :− s. s→ q

We would like to know whether a given query follows from a given program.

Corollary For every program P and query (p1 ∧ . . . ∧ pn) it is equivalent that
(1) P |= p1 ∧ . . . ∧ pn,
(2) P ∪ {¬p1, . . . ,¬pn} is unsatisfiable,
(3) � has LI-resolution from P ∪ {G} starting by goal G = {¬p1, . . . ,¬pn}.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 18 / 21

Resolution in Prolog SLD-rezoluce

Resolution in Prolog
1) Interpreter stores clauses as sequences of literals (definite clauses).

An LD-resolution (linear definite) is an LI -resolution in which in each step the
resolvent of the present goal (¬p1, . . . ,¬pi−1,¬pi,¬pi+1, . . . ,¬pn) and the
side clause (pi,¬q1, ...,¬qm) is (¬p1, ...,¬pi−1,¬q1, ...,¬qm,¬pi+1, ...,¬pn).

Observation Every LI-proof can be transformed into an LD-proof of the
same clause from the same formula with the same starting clause (goal).

2) The choice of literal from the present goal for resolution is determined by a
given selection rule R. Typically, “choose the first literal”.

An SLD-resolution (selection) via R is an LD-resolution in which each step
(Ci,Bi) we resolve through the literal R(Ci).

Observation Every LD-proof can be transformed into an SLD-proof of the
same clause from the same formula with the same starting clause (goal).

Corollary SLD-resolution is complete for queries over programs in Prolog.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 19 / 21

Resolution in Prolog SLD-rezoluce

SLD-tree
Which program clause will be used for resolution with the present goal?

An SLD-tree of a program P and a goal G via a selection rule R is a tree with
nodes labeled by goals so that the root has label G and if a node has label G′,
his sons correspond to all possibilities of resolving G′ with program clauses
of P through literal R(G′) and are labeled by the corresponding resolvents.

p :− q, r.

(¬q,¬r)

(¬r) (¬t)

(¬p)
p :− s.

r.

s.

?− p.

(¬s,¬r)

(¬s)
q :− s.

q.

s :− t.

(1)

(2)

(3)

(4)

(5)

(6)

(7) (¬r)(¬t,¬r)

(1) (2)

(7)(6)

(6) (7)

(3) (4)

(5)

(5)

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 20 / 21

Resolution in Prolog SLD-rezoluce

Concluding remarks

Prolog interpreters search the SLD-tree, the order is not specified.

Implementations that are based on DFS may not preserve completeness.

q :− r.

¬r

¬q
r :− q.

?− q.

q.

(1)

(2)

(3)

¬q

(1)

(2)

(3)

(3)

A certain control over the search is provided by !, the cut operation.

If we allow negation, we may have troubles with semantics of programs.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 21 / 21

	Formal proof systems
	Hilbert's calculus

	Resolution method
	Introduction
	Completeness

	Linear resolution
	Introduction

	Resolution in Prolog
	LI-resolution
	SLD-rezoluce

