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Formal proof systems Hilbert’s calculus

Hilbert’s calculus
basic connectives: ¬,→ (others can be defined from them)
logical axioms (schemes of axioms):

(i) ϕ→ (ψ → ϕ)

(ii) (ϕ→ (ψ → χ))→ ((ϕ→ ψ)→ (ϕ→ χ))

(iii) (¬ϕ→ ¬ψ)→ (ψ → ϕ)

where ϕ, ψ, χ are any propositions (of a given language).
a rule of inference:

ϕ, ϕ→ ψ

ψ
(modus ponens)

A proof (in Hilbert-style) of a formula ϕ from a theory T is a finite sequence
ϕ0, . . . , ϕn = ϕ of formulas such that for every i ≤ n

ϕi is a logical axiom or ϕi ∈ T (an axiom of the theory), or
ϕi can be inferred from the previous formulas applying a rule of inference.

Remark Choice of axioms and inference rules differs in various Hilbert-style
proof systems.
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Formal proof systems Hilbert’s calculus

Example and soundness
A formula ϕ is provable from T if it has a proof from T , denoted by T `H ϕ.
If T = ∅, we write `H ϕ. E.g. for T = {¬ϕ} we have T `H ϕ→ ψ for every ψ.

1) ¬ϕ an axiom of T

2) ¬ϕ→ (¬ψ → ¬ϕ) a logical axiom (i)

3) ¬ψ → ¬ϕ by modus ponens from 1), 2)
4) (¬ψ → ¬ϕ)→ (ϕ→ ψ) a logical axiom (iii)

5) ϕ→ ψ by modus ponens from 3), 4)

Theorem For every theory T and formula ϕ, T `H ϕ ⇒ T |= ϕ.
Proof

If ϕ is an axiom (logical or from T ), then T |= ϕ (l. axioms are tautologies),
if T |= ϕ and T |= ϕ→ ψ, then T |= ψ, i.e. modus ponens is sound,
thus every formula in a proof from T is valid in T .

Remark The completeness holds as well, i.e. T |= ϕ⇒ T `H ϕ.
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Resolution method Introduction

Resolution method - introduction
Main features of the resolution method (informally)

is the underlying method of many systems, e.g. Prolog interpreters, SAT
solvers, automated deduction / verification systems, . . .

assumes input formulas in CNF (in general, “expensive” transformation),

works under set representation (clausal form) of formulas,

has a single rule, so called a resolution rule,

has no explicit axioms (or atomic tableaux), but certain axioms are
incorporated “inside” via various formatting rules,

is a refutation procedure, similarly as the tableau method; that is, it tries
to show that a given formula (or theory) is unsatisfiable,

has several refinements e.g. with specific conditions on when the
resolution rule may be applied.
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Resolution method Introduction

Set representation (clausal from) of CNF formulas
A literal l is a prop. letter or its negation. l is its complementary literal.

A clause C is a finite set of literals (“forming disjunction”). The empty
clause, denoted by �, is never satisfied (has no satisfied literal).

A formula S is a (possibly infinite) set of clauses (“forming conjunction”).
An empty formula ∅ is always satisfied (is has no unsatisfied clause).
Infinite formulas represent infinite theories (as conjunction of axioms).

A (partial) assignment V is a consistent set of literals, i.e. not containing
any pair of complementary literals. An assignment V is total if it contains
a positive or negative literal for each propositional letter.

V satisfies S, denoted by V |= S, if C ∩ V 6= ∅ for every C ∈ S.

((¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ (¬r ∨ ¬s) ∧ (¬t ∨ s) ∧ s) is represented by

S = {{¬p,q}, {¬p,¬q, r}, {¬r,¬s}, {¬t , s}, {s}} and
V |= S for V = {s,¬r,¬p}
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Resolution method Introduction

Resolution rule
Let C1, C2 be clauses with l ∈ C1, l ∈ C2 for some literal l. Then from C1 and
C2 infer through the literal l the clause C , called a resolvent, where

C = (C1 \ {l}) ∪ (C2 \ {l}).
Equivalently, if t means union of disjoint sets,

C ′1 t {l},C ′2 t {l}
C ′1 ∪ C ′2

For example, from {p,q, r} and {¬p,¬q} we can infer {q,¬q, r} or {p,¬p, r}.

Observation The resolution rule is sound; that is, for every assignment V
V |= C1 and V |= C2 ⇒ V |= C .

Remark The resolution rule is a special case of the (so called) cut rule
ϕ ∨ ψ, ¬ϕ ∨ χ

ψ ∨ χ
where ϕ, ψ, χ are arbitrary formulas.
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Resolution method Introduction

Resolution proof

A resolution proof (deduction) of a clause C from a formula S is a finite
sequence C0, . . . ,Cn = C such that for every i ≤ n, we have Ci ∈ S

or Ci is a resolvent of some previous clauses,

a clause C is (resolution) provable from S, denoted by S `R C , if it has
a resolution proof from S,

a (resolution) refutation of formula S is a resolution proof of � from S,

S is (resolution) refutable if S `R �.

Theorem (soundness) If S is resolution refutable, then S is unsatisfiable.

Proof Let S `R �. If it was V |= S for some assignment V, from the soundness
of the resolution proof we would have V |= �, which is impossible.
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Resolution method Introduction

Resolution trees and closures
A resolution tree of a clause C from formula S is finite binary tree with nodes
labeled by clauses so that

(i) the root is labeled C ,

(ii) the leaves are labeled with clauses from S,

(iii) every inner node is labeled with a resolvent of the clauses in his sons.

Observation C has a resolution tree from S if and only if S `R C .

A resolution closure R(S) of a formula S is the smallest set satisfying

(i) C ∈ R(S) for every C ∈ S,

(ii) if C1,C2 ∈ R(S) and C is a resolvent of C1, C2, then C ∈ R(S).

Observation C ∈ R(S) if and only if S `R C .

Remark All notions on resolution proofs can therefore be equivalently
introduced in terms of resolution trees or resolution closures.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 8 / 21



Resolution method Introduction

Example
Formula ((p ∨ r)∧ (q ∨¬r)∧ (¬q)∧ (¬p ∨ t)∧ (¬s)∧ (s ∨¬t)) is unsatisfiable
since for S = {{p, r}, {q,¬r}, {¬q}, {¬p, t}, {¬s}, {s,¬t}} we have S `R �.

{¬q}

{p}

{p, q}

{q,¬r}{p, r} {¬p, t}

{¬p}

{¬p, s} {¬s}

{s,¬t}

The resolution closure of S (the closure of S under resolution) is

R(S) = {{p, r}, {q,¬r}, {¬q}, {¬p, t}, {¬s}, {s,¬t}, {p,q}, {¬r}, {r, t},
{q, t}, {¬t}, {¬p, s}, {r, s}, {t}, {q}, {q, s},�, {¬p}, {p}, {r}, {s}}.
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Resolution method Completeness

Reduction by substitution
Let S be a formula and l be a literal. Let us define

Sl = {C \ {l} | l /∈ C ∈ S}.
Observation

Sl is equivalent to a formula obtained from S by substituting the constant
> (true, 1) for all literals l and the constant ⊥ (false, 0) for all literals l in S,
Neither l nor l occurs in (the clauses of) Sl .
if {l} ∈ S, then � ∈ Sl .

Lemma S is satisfiable if and only if Sl or Sl is satisfiable.

Proof (⇒) Let V |= S for some V and assume (w.l.o.g.) that l /∈ V.
Then V |= Sl as for l /∈ C ∈ S we have V \{l, l} |= C and thus V |= C \ {l}.
On the other hand (⇐), assume (w.l.o.g.) that V |= Sl for some V.
Since neither l nor l occurs in Sl , we have V ′ |= Sl for V ′ = (V \ {l})∪ {l}.
Then V ′ |= S since for C ∈ S containing l we have l ∈ V ′ and for C ∈ S
not containing l we have V ′ |= (C \ {l}) ∈ Sl .
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Resolution method Completeness

Tree of reductions

Step by step reductions of literals can be represented in a binary tree.

Spq = ∅

Sp = {{¬q}}

Spq = { }

Sp = { , {¬q}}

S = {{p}, {¬q}, {¬p,¬q}}

Corollary S is unsatisfiable if and only if every branch contains �.

Remarks Since S can be infinite over a countable language, this tree can be
infinite. However, if S is unsatisfiable, by the compactness theorem there is a
finite S′ ⊆ S that is unsatisfiable. Thus after reduction of all literals occurring
in S′, there will be � in every branch after finitely many steps.
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Resolution method Completeness

Completeness of resolution
Theorem If a finite S is unsatisfiable, it is resolution refutable, i.e. S `R �.

Proof By induction on the number of variables in S we show that S `R �.
If unsatisfiable S has no variable, it is S = {�} and thus S `R �,

Let l be a literal occurring in S. By Lemma, Sl and Sl are unsatisfiable.

Since Sl and Sl have less variables than S, by induction there exist
resolution trees T l and T l for derivation of � from Sl resp. Sl .
If every leaf of T l is in S, then T l is a resolution tree of � from S, S `R �.
Otherwise, by appending the literal l to every leaf of T l that is not in S,
(and to all predecessors) we obtain a resolution tree of {l} from S.

Similarly, we get a resolution tree {l} from S by appending l in the tree T l .
By resolution of roots {l} and {l} we get a resolution tree of � from S.

Corollary If S is unsatisfiable, it is resolution refutable, i.e. S `R �.

Proof Follows from the previous theorem by applying compactness.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 12 / 21



Linear resolution Introduction

Linear resolution - introduction
The resolution method can be significantly refined.

A linear proof of a clause C from a formula S is a finite sequence
of pairs (C0,B0), . . . , (Cn,Bn) such that C0 ∈ S and for every i ≤ n

i) Bi ∈ S or Bi = Cj for some j < i, and

ii) Ci+1 is a resolvent of Ci and Bi where Cn+1 = C .

C0 is called a starting clause, Ci a central clause, Bi a side clause.

C is linearly provable from S, S `L C , if it has a linear proof from S.

A linear refutation of S is a linear proof of � from S.

S is linearly refutable if S `L �.

Observation (soundness) If S is linearly refutable, it is unsatisfiable.

Proof Every linear proof can be transformed to a (general) resolution proof.

Remark The completeness is preserved as well (proof omitted here).
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Linear resolution Introduction

Example of linear resolution

B0C0 {p,¬q}{p, q}

{q} {¬p,¬q}

{¬p}

{¬p, q}{p}

{p}

C1

C2

Cn

Cn+1

B1

Bn

a) b)

{p,¬q}{p, q}

{q} {¬p,¬q}

{¬p}

{¬p, q}{p}

c)

{p,¬q}{p, q}

{p}

a) a general form of linear resolution,

b) for S = {{p,q}, {p,¬q}, {¬p,q}, {¬p,¬q}} we have S `L �,

c) a transformation of a linear proof to a (general) resolution proof.
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Resolution in Prolog LI-resolution

LI-resolution
Linear resolution can be further refined for Horn formulas as follows.

a Horn clause is a clause containing at most one positive literal,
a Horn formula is a (possibly infinite) set of Horn clauses,
a fact is a (Horn) clause {p} where p is a positive literal,
a rule is a (Horn) clause with exactly one positive literal and at least one
negative literal. Rules and facts are program clauses,
a goal is a nonempty (Horn) clause with only negative literals.

Observation If a Horn formula S is unsatisfiable and � /∈ S, it contains some
fact and some goal.

Proof If S does not contain any fact (goal), it is satisfied by the assignment of
all propositional variables to 0 (resp. to 1).

A linear input resolution (LI-resolution) from a formula S is a linear resolution
from S in which every side clause Bi is from the (input) formula S. We write
S `LI C to denote that C is provable by LI-resolution from S.
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Resolution in Prolog LI-resolution

Completeness of LI-resolution for Horn formulas
Theorem If T is satisfiable Horn formula but T ∪ {G} is unsatisfiable for
some goal G, then � has a LI-resolution from T ∪ {G} with starting clause G.

Proof By the compactness theorem we may assume that T is finite.
We proceed by induction on the number of variables in T .
By Observation, T contains a fact {p} for some variable p.
By Lemma, T ′ = (T ∪ {G})p = T p ∪ {Gp} is unsatisfiable where
Gp = G \ {p}.
If Gp = �, we have G = {p} and thus � is a resolvent of G and {p} ∈ T .
Otherwise, since T p is satisfiable (by the assignment satisfying T ) and
has less variables than T , by induction assumption, there is an
LI-resolution of � from T ′ starting with Gp.
By appending the literal p to all leaves that are not in T ∪ {G} (and nodes
below) we obtain an LI-resolution of {p} from T ∪ {G} that starts with G.
By an additional resolution step with the fact {p} ∈ T we resolve �.
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Resolution in Prolog LI-resolution

Example of LI-resolution

T = {{p,¬r,¬s}, {r,¬q}, {q,¬s}, {s}},

{p,¬r,¬s}

{¬q,¬s} {q,¬s}

{¬s}

{r,¬q}{¬q,¬r,¬s}

{s}

T s = {{p,¬r}, {r,¬q}, {q}}

T sq = {{p,¬r}, {r}}

T sqr = {{p}}

G = {¬p,¬q}

Gs = {¬p,¬q}

Gsq = {¬p}

Gsqr = {¬p}

Gsqrp =

{p,¬r}

{¬q} {q}

{r,¬q}{¬q,¬r}{p,¬r}

{r}{¬r}{p}

T,G `LIT s, Gs `LIT sq, Gsq `LIT sqr, Gsqr `LI

G = {¬p,¬q}

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V ZS 2015/2016 17 / 21



Resolution in Prolog LI-resolution

Program in Prolog
A (propositional) program (in Prolog) is a Horn formula containing only
program clauses, i.e. facts or rules.

p :− q, r. {p,¬q,¬r}

{r}
{q,¬s}

{¬p,¬q}

p :− s.

r.

s.

?− p, q.

q ∧ r → p

s→ p

r

s

{p,¬s}

{s}
a query a goal

a program

a rule

a fact

q :− s. s→ q

We would like to know whether a given query follows from a given program.

Corollary For every program P and query (p1 ∧ . . . ∧ pn) it is equivalent that
(1) P |= p1 ∧ . . . ∧ pn,
(2) P ∪ {¬p1, . . . ,¬pn} is unsatisfiable,
(3) � has LI-resolution from P ∪ {G} starting by goal G = {¬p1, . . . ,¬pn}.
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Resolution in Prolog SLD-rezoluce

Resolution in Prolog
1) Interpreter stores clauses as sequences of literals (definite clauses).

An LD-resolution (linear definite) is an LI -resolution in which in each step the
resolvent of the present goal (¬p1, . . . ,¬pi−1,¬pi,¬pi+1, . . . ,¬pn) and the
side clause (pi,¬q1, ...,¬qm) is (¬p1, ...,¬pi−1,¬q1, ...,¬qm,¬pi+1, ...,¬pn).

Observation Every LI-proof can be transformed into an LD-proof of the
same clause from the same formula with the same starting clause (goal).

2) The choice of literal from the present goal for resolution is determined by a
given selection rule R. Typically, “choose the first literal”.

An SLD-resolution (selection) via R is an LD-resolution in which each step
(Ci,Bi) we resolve through the literal R(Ci).

Observation Every LD-proof can be transformed into an SLD-proof of the
same clause from the same formula with the same starting clause (goal).

Corollary SLD-resolution is complete for queries over programs in Prolog.
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Resolution in Prolog SLD-rezoluce

SLD-tree
Which program clause will be used for resolution with the present goal?

An SLD-tree of a program P and a goal G via a selection rule R is a tree with
nodes labeled by goals so that the root has label G and if a node has label G′,
his sons correspond to all possibilities of resolving G′ with program clauses
of P through literal R(G′) and are labeled by the corresponding resolvents.

p :− q, r.

(¬q,¬r)

(¬r) (¬t)

(¬p)
p :− s.

r.

s.

?− p.

(¬s,¬r)

(¬s)
q :− s.

q.

s :− t.

(1)

(2)

(3)

(4)

(5)

(6)

(7) (¬r)(¬t,¬r)

(1) (2)

(7)(6)

(6) (7)

(3) (4)

(5)

(5)
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Resolution in Prolog SLD-rezoluce

Concluding remarks

Prolog interpreters search the SLD-tree, the order is not specified.

Implementations that are based on DFS may not preserve completeness.

q :− r.

¬r

¬q
r :− q.

?− q.

q.

(1)

(2)

(3)

¬q

(1)

(2)

(3)

(3)

A certain control over the search is provided by !, the cut operation.

If we allow negation, we may have troubles with semantics of programs.
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