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Predicate Logic Introduction

Predicate logic

Deals with statements about objects, their properties and relations.

“She is intelligent and her father knows the rector.” I(x) NK(f(x),1)
@ x is a variable, representing an object,

@ ris a constant symbol, representing a concrete object,

@ fis a function symbol, representing a function,

@ I, K are relation (predicate) symbols, representing relations

(the property of “being intelligent” and the relation “to know”).

“Everybody has a father.”
@ (Vx) is the universal quantifier (for every x),
@ (3Jy) is the existential quantifier (there exists y),
@ = is a (binary) relation symbol, representing the identity relation.

(V) 3Fy)(y = f(x))
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Language

A first-order language consists of

@ variables x,y,z,..., X, x1,... (countable many),
the set of all variables is denoted by Var,

@ function symbols f, g, h, ..., including constant symbols c, d, ...,
which are nullary function symbols,

@ relation (predicate) symbols P, Q, R, ..., eventually the symbol =
(equality) as a special relation symbol,

@ quantifiers (Vx), (3x) for every variable x € Var,

@ logical connectives —, A, V, =, +

@ parentheses (, )

Every function and relation symbol S has an associated arity ar(S) € N.

Remark Compared to propositional logic we have no (explicit) propositional
variables, but they can be introduced as nullary relation symbols.
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Signatures

@ Symbols of logic are variables, quantifiers, connectives and parentheses.

@ Non-logical symbols are function and relation symbols except the
equality symbol. The equality is (usually) considered separately.

@ A signature is a pair (R, F) of disjoint sets of relation and function
symbols with associated arities, whereas none of them is the equality
symbol. A signature lists all non-logical symbols.

@ A language is determined by a signature L = (R, F) and by specifying
whether it is a language with equality or not. A language must contain at
least one relation symbol (non-logical or the equality).

Remark The meaning of symbols in a language is not assigned, e.g. the
symbol + does not have to represent the standard addition.
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Examples of languages

We describe a language by a list of all non-logical symbols with eventual
clarification of arity and whether they are relation or function symbols.

The following examples of languages are all with equality.

) is the language of pure equality,

ci)icn is the language of countable many constants,
) is the language of orderings,

E) is the language of the graph theory,

,—, 0) is the language of the group theory,

,—,-, 0, 1) is the language of the field theory,
—,/\,V,0,1) is the language of Boolean algebras,
S.+,-,0, <) is the language of arithmetic,

I |
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I

where ¢;, 0, 1 are constant symbols, S, — are unary function symbols,
+, -, A, V are binary function symbols, E, < are binary relation symbols.
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Terms

Are expressions representing values of (composed) functions.

Terms of a language L are defined inductively by

(i) every variable or constant symbol in L is a term,

(ii) if f is a function symbol in L of arity n > 0 and &, ..., t,—; are terms,

then also the expression f(t, ..., t,—1) is a term,

(ii7) every term is formed by a finite number of steps (i), (ii).

@ A ground termis a term with no variables.
@ The set of all terms of a language L is denoted by Term;.
@ Aterm that is a part of another term ¢ is called a subterm of t.
@ The structure of terms can be represented by their formation trees.
@ For binary function symbols we often use infix notation, e.g.
we write (x + y) instead of +(x, y).
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Examples of terms

(S(0) +x) -y —(zAy)V L
~ . ~ I
5(0) + z y —(z Ay) L
PN |
5(0) z T Ay
| PN
a) 0 b) = Y

a) The formation tree of the term (S5(0) + x) - y of the language of arithmetic.

b) Propositional formulas only with connectives —, A, Vv, eventually with
constants T, L can be viewed as terms of the language of Boolean
algebras.
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Atomic formulas

Are the simplest formulas.

@ An atomic formula of a language L is an expression R(fy, ..., t,_1) where
R is an n-ary relation symbol in L and , ..., t,—; are terms of L.

@ The set of all atomic formulas of a language L is denoted by AFm;.

@ The structure of an atomic formula can be represented by a formation
tree from the formation subtrees of its terms.

@ For binary relation symbols we often use infix notation, e.g.
h = b instead of = (1, ) or 1 < 1, instead of <(#, &).
@ Examples of atomic formulas
K(f(x),r), x-y<(S0)+x)-y, —(xAyVvL=.L1.
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Formula

Formulas of a language L are defined inductively by
(i) every atomic formula is a formula,
(i7) if ¢, ¢ are formulas, then also the following expressions are formulas
(=@), (P AY) (e V), (e = ¥), (0 <),

(iii) if p is a formula and x is a variable, then also the expressions ((Vx)y)
and ((3x)p) are formulas.

(iv) every formula is formed by a finite number of steps (i), (ii), (iii).

@ The set of all formulas of a language L is denoted by Fm;.
@ A formula that is a part of another formula ¢ is called a subformula of .

@ The structure of formulas can be represented by their formation trees.
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Conventions

@ After introducing priorities for binary function symbols e.g. + , - we are
in infix notation allowed to omit parentheses that are around a subterm
formed by a symbol of higher priority, e.g. x - y + z instead of (x - y) + z.

@ After introducing priorities for connectives and quantifiers we are allowed
to omit parentheses that are around subformulas formed by connectives
of higher priority.

(1) —, & (2) A,V (3) -, (Vx), (Fx)

@ They can be always omitted around subformulas formed by -, (vx), (3x).

@ We may also omit parentheses in (Vx) and (3x) for every x € Var.

@ The outer parentheses may be omitted as well.

(=((vVx)R(x))) A (EY)P(y))) = (=((VX)R(x)) V (=(EFy)P(¥))))))
—VxR(x) A dyP(y) — —(VxR(x) vV =3yP(y))
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An example of a formula

(Vo) (z -y < (S(0) +)-y)
\

-y <(S0)+=z)y

Ty (500) + )y
PN e N
T Yy S(0) + =

PN
5(0)

x
|

0

Y

Petr Gregor (KTIML MFF UK)

The formation tree of the formula (Vx)(x -y < (S(0) + x) - )
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Occurrences of variables
Let ¢ be a formula and x be a variable.

@ An occurrence of x in ¢ is a leaf labeled by x in the formation tree of .

@ An occurrence of x in  is bound if it is in some subformula v that starts
with (Vx) or (3x). An occurrence of x in ¢ is freeif it is not bound.

@ A variable x is free in ¢ if it has at least one free occurrence in .
It is bound in ¢ if it has at least one bound occurrence in .

@ A variable x can be both free and bound in . For example in
(vx)(Iy)(x<y)Vx <z
@ We write p(x, ..., x,) to denote that x1, ..., x, are all free variables

in the formula . (¢ states something about these variables.)

Remark We will see that the truth value of a formula (in a given interpretation
of symbols) depends only on the assignment of free variables.
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Open and closed formulas

@ A formula is open if it is without quantifiers. For the set OFm;, of all open
formulas in a language L it holds that AFm; C OFm; C Fm;.

@ Aformula is closed (a sentence) if it has no free variable; that is, all
occurrences of variables are bound.

@ A formula can be both open and closed. In this case, all its terms
are ground terms.

x+y<0 open, p(x,y)
(VX)(Vy)(x+y <0) a sentence,
(Vx)(x+y<0) neither open nor a sentence, o(y)
1+0<0 open sentence

Remark We will see that in a fixed interpretation of symbols a sentence has
a fixed truth value; that is, it does not depend on the assignment of variables.
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Basic syntax of predicate logic Instances and variants

Instances
After substituting a term t for a free variable x in a formula », we would expect
that the new formula (newly) says about t “the same” as ¢ did about x.

o(x) (Fy)(x+y=1) “thereis anelementl — x”
fort =1wecanye(x/t) (3y)(1+y=1) ‘thereisanelementl —1"
for t = y we cannot Gy (y+y=1) " isdivisible by 2”

@ Aterm tis substitutable for a variable x in a formula ¢ if substituting ¢ for
all free occurrences of x in ¢ does not introduce a new bound occurrence
of a variable from t.

@ Then we denote the obtained formula ¢(x/t) and we call it an instance of
the formula ¢ after a substitution of a term t for a variable x.

@ tis not substitutable for x in ¢ if and only if x has a free occurrence in
some subformula that starts with (Vy) or (3y) for some variable y in ¢.

@ Ground terms are always substitutable.
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Variants

Quantified variables can be (under certain conditions) renamed so that we
obtain an equivalent formula.

Let (Qx)v be a subformula of » where Q means vV or 3 and y is a variable
such that the following conditions hold.

1) yis substitutable for x in ¢, and

2) y does not have a free occurrence in .

Then by replacing the subformula (Qx)v with (Qy)¥(x/y) we obtain a variant
of ¢ in subformula (Qx)«. After variation of one or more subformulas in ¢
we obtain a variant of ¢. For example,

Fx)(Vy)(x < y) is a formula ¢,

Fu)(Vv)(u < v) is a variant of ¢,

Gy)(vY) (¥ <) is not a variant of ¢, 1) does not hold,
(3x)(Vx)(x < x) is not a variant of ¢, 2) does not hold.
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Structures

@ S = (S, <) is an ordered set where < is reflexive, antisymmetric,
transitive binary relation on S,

@ G = (V,E)is an undirected graph without loops where V is the set of
vertices and E is irreflexive, symmetric binary relation on V' (adjacency),

® 2, = (Zp,+,—,0) is the additive group of integers modulo p,
@ Q=(Q,+,—,-,0,1) is the field of rational numbers,

@ P(X) = (P(X),—,N,U,0,X) is the set algebra over X,

e N =(N,S§, +,-,0, <) is the standard model of arithmetic,

@ finite automata and other models of computation,

@ relational databases, ...
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Basic semantics of predicate logic Structures

A structure for a language
Let L = (R, F) be a signature of a language and A be a nonempty set.
@ A realization (interpretation) of a relation symbol R € R on A is any
relation R4 C A*(®) A realization of = on A is the relation Id, (identity).

@ A realization (interpretation) of a function symbol f € F on A is any
function f4: A%() — A. Thus a realization of a constant symbol is
some element of A.

A structure for the language L (L-structure) is a triple A = (A, R4, F4), where
@ Ais nonempty set, called the domain of the structure A,

@ R* = (RY| R € R) is a collection of realizations of relation symbols,
e FA = (f4|f € F)is acollection of realizations of function symbols.

A structure for the language L is also called a model of the language L. The
class of all models of L is denoted by M(L). Examples for L = (<) are

(N, <), (Q,>), (X, E), (P(X),S).
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Value of terms

Let t be aterm of L = (R, F) and A = (A, R*, F4) be an L-structure.

@ A variable assignment over the domain A is a function e: Var — A.

@ The value t'[e] of the term ¢ in the structure .4 with respect to the
assignment e is defined by

A

[

x"le] = e(x) forevery x € Var,

(Flto. ... ta1)[e] = FA(e],. ... 11 | [e]) forevery f € F.

@ In particular, for a constant symbol ¢ we have ¢”[e] = ¢”.

@ If ris a ground term, its value in A is independent on the assignment e.

@ The value of t in A depends only on the assignment of variables in t.

For example, the value of the term x + 1 in the structure N' = (N, +, 1) with
respect to the assignment e with e(x) = 2 is (x + 1)V[e] = 3.
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Basic semantics of predicate logic Truth values

Values of atomic formulas

Let ¢ be an atomic formula of L = (R, F) in the form R(t, ..., ty—1),
A = (A, RA, F4) be an L-structure, and e be a variable assignment over A.

@ The value HZ(¢)e] of the formula ¢ in the structure A with respect to e is

1 (e, A [e]) € RA,
Ha(R(lo,- -, ta1))le] = { 0 othgrwise. 1

where = is Idy; that is, HZ\(ty = 1;)[e] = 1 if 15'[e] = 1{'[e], and
HZ(ty = 1)]e] = 0 otherwise.

@ If p is a sentence; that is, all its terms are ground, then its value in A
is independent on the assignment e.

@ The value of ¢ in A depends only on the assignment of variables in .

For example, the value of p informx +1 < 1in N = (N, +, 1, <) with
respect to the assignment e is H)\(y)[e] = 1 if and only if e(x) = 0.
Petr Gregor (KTIML MFF UK)
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Values of formulas

The value H”()[e] of the formula ¢ in the structure A with respect to e is

[e]
HA(~p)[e] = —1(H"(¢)[e])

HA(o N)[e] = A (H A (¢)[e], H (v)[e])
H' (¢ v )[e] = Vi(H(p)[e], H(v)]e])
HY(p — v)e] = =1 (H(¢)[e], H(v)]e])
H(p < v)[e] = <1 (H (¢)e], H(¢)[e])
H((vx)¢) €] = min(H" (o) [e(x/a)])
HY((3x)¢)[e] = max(H" () e(x/a)])

where —1, A1, V1, —1, <1 are the Boolean functions given by the tables and
e(x/a) for a € A denotes the assignment obtained from e by setting e(x) = a.

Observation H”(y)[e] depends only on the assignment of free variables in .
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Satsfabilty and valy
Satisfiability with respect to assignments

The structure A satisfies the formula ¢ with assignment e if H4(¢)[e] = 1.
Then we write A |= ¢[e], and A [~ ¢|e] otherwise. It holds that

A= —ple] & A ple]

A= (pAy)lel & A= ¢le] and A= ¢le]

AE (o v)e & AREgle or AE e

AE (=)l & AEgle implies A= yle]
A= (p < ¢)[e] &= A |= ¢le] ifand only if A = [e]
A E (Vx)ple] & A E ple(x/a)] foreveryac A
A= (3x)ple] & A |= ¢le(x/a)] forsomeac A

Observation Let term t be substitutable for x in ¢ and 1 be a variant of .

Then for every structure A and assignment e
1) A o(x/t)[e] ifandonly if A = ple(x/a)] where a = t4[e],
2) Ak ple] ifandonly if A yle].
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CERELIE (eI Satisfiability and validity

Validity in a structure
Let ¢ be a formula of a language L and A be an L-structure.
@ o is valid (true) in the structure A, denoted by A = ¢, if A = ¢[e] for
every e: Var — A. We say that A satisfies . Otherwise, we write A [~ .
@ ¢ is contradictory in A if A |= —y; thatis, A }~= ple] for every e: Var — A.
@ For every formulas ¢, v, variable x, and structure A
(1 AkEe = A
(2) A=pony & AEg@ and A=y
(3) AEpvy <« Ao A9y
4) AEe & AR (Vx)e
@ If v is a sentence, it is valid or contradictory in .4, and thus (1) holds also
in <. If moreover ¢ is a sentence, also (3) holds in =-.

@ By (4), A = pifand only if A =+ where ¢ is a universal closure of ¢, i.e.
aformula (Vx;) - - - (Vx,)p where x, ..., x, are all free variables in .
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