Propositional and Predicate Logic - VII

Petr Gregor

KTIML MFF UK

WS 2015/2016

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - VII

WS 2015/2016 1 / 11

Theory

Validity in a theory

- A theory of a language L is any set T of formulas of L (so called axioms).
- A model of a theory T is an L-structure A such that $A \models \varphi$ for every $\varphi \in T$. Then we write $\mathcal{A} \models T$ and we say that \mathcal{A} satisfies T.
- The *class of models* of a theory *T* is $M(T) = \{A \in M(L) \mid A \models T\}$.
- A formula φ is valid in T (true in T), denoted by $T \models \varphi$, if $\mathcal{A} \models \varphi$ for every model \mathcal{A} of T. Otherwise, we write $T \not\models \varphi$.
- φ is contradictory in T if $T \models \neg \varphi$, i.e. φ is contradictory in all models of T.
- φ is *independent in T* if it is neither valid nor contradictory in T.
- If $T = \emptyset$, we have M(T) = M(L) and we omit T, eventually we say *"in logic"*. Then $\models \varphi$ means that φ is (*logically*) *valid* (a *tautology*).
- A consequence of T is the set $\theta^L(T)$ of all sentences of L valid in T, i.e. $\theta^{L}(T) = \{ \varphi \in \operatorname{Fm}_{L} \mid T \models \varphi \text{ and } \varphi \text{ is a sentence} \}.$

・ロット (母) ・ ヨ) ・ ヨ)

Theory

Example of a theory

The *theory of orderings* T of the language $L = \langle \leq \rangle$ with equality has axioms

x < x(reflexivity) $x \leq y \land y \leq x \rightarrow x = y$ (antisymmetry) $x < y \land y < z \rightarrow x < z$ (transitivity)

Models of T are L-structures (S, \leq_s) , so called ordered sets, that satisfy the axioms of T, for example $\mathcal{A} = \langle \mathbb{N}, \leq \rangle$ or $\mathcal{B} = \langle \mathcal{P}(X), \subseteq \rangle$ for $X = \{0, 1, 2\}$.

- The formula $\varphi: x \leq y \lor y \leq x$ is valid in \mathcal{A} but not in \mathcal{B} since $\mathcal{B} \not\models \varphi[e]$ for the assignment $e(x) = \{0\}, e(y) = \{1\}$, thus φ is independent in T.
- The sentence $\psi : (\exists x)(\forall y)(y \leq x)$ is valid in \mathcal{B} and contradictory in \mathcal{A} , hence it is independent in T as well. We write $\mathcal{B} \models \psi$, $\mathcal{A} \models \neg \psi$.
- The formula $\chi: (x \leq y \land y \leq z \land z \leq x) \rightarrow (x = y \land y = z)$ is valid in *T*, denoted by $T \models \chi$, the same holds for its universal closure.

Theory

Properties of theories

A theory T of a language L is (semantically)

- *inconsistent* if $T \models \bot$, otherwise T is *consistent* (*satisfiable*),
- complete if it is consistent and every sentence of L is valid in T or contradictory in T,
- an *extension* of a theory T' of language L' if $L' \subset L$ and $\theta^{L'}(T') \subset \theta^{L}(T)$. we say that an extension T of a theory T' is simple if L = L'; and *conservative* if $\theta^{L'}(T') = \theta^{L}(T) \cap \operatorname{Fm}_{L'}$,
- equivalent with a theory T' if T is an extension of T' and vice-versa,

Structures \mathcal{A}, \mathcal{B} for a language L are *elementarily equivalent*, denoted by $\mathcal{A} \equiv \mathcal{B}$, if they satisfy the same sentences of L.

Observation Let T and T' be theories of a language L. T is (semantically)

- (1) consistent if and only if it has a model,
- (2) complete iff it has a single model, up to elementarily equivalence,
- (3) an extension of T' if and only if $M(T) \subseteq M(T')$,
- (4) equivalent with T' if and only if M(T) = M(T').

Unsatisfiability and validity

The problem of validity in a theory can be transformed to the problem of satisfiability of (another) theory.

Proposition For every theory T and sentence φ (of the same language)

 $T, \neg \varphi$ is unsatisfiable \Leftrightarrow $T \models \varphi$.

Proof By definitions, it is equivalent that

- (1) $T, \neg \varphi$ is unsatisfiable (i.e. it has no model),
- (2) $\neg \varphi$ is not valid in any model of *T*,
- (3) φ is valid in every model of T,

(4) $T \models \varphi$. \Box

Remark The assumption that φ is a sentence is necessary for $(2) \Rightarrow (3)$. For example, the theory $\{P(c), \neg P(x)\}$ is unsatisfiable, but $P(c) \not\models P(x)$, where *P* is a unary relation symbol and *c* is a constant symbol.

・ロン ・四 ・ ・ ヨ ・ ・ 日 ・

Substructures

Let $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ and $\mathcal{B} = \langle B, \mathcal{R}^B, \mathcal{F}^B \rangle$ be structures for $L = \langle \mathcal{R}, \mathcal{F} \rangle$.

We say that \mathcal{B} is an (induced) *substructure* of \mathcal{A} , denoted by $\mathcal{B} \subseteq \mathcal{A}$, if

$$\begin{array}{ll} (i) & B \subseteq A, \\ (ii) & R^B = R^A \cap B^{\operatorname{ar}(R)} \text{ for every } R \in \mathcal{R}, \\ (iii) & f^B = f^A \cap (B^{\operatorname{ar}(f)} \times B); \text{ that is, } f^B = f^A \upharpoonright B^{\operatorname{ar}(f)}, \text{ for every } f \in \mathcal{F}. \end{array}$$

A set $C \subseteq A$ is a domain of some substructure of A if and only if C is closed under all functions of A. Then the respective substructure, denoted by $A \upharpoonright C$, is said to be the *restriction* of the structure A to C.

• A set $C \subseteq A$ is *closed* under a function $f : A^n \to A$ if $f(x_0, \ldots, x_{n-1}) \in C$ for every $x_0, \ldots, x_{n-1} \in C$.

Example: $\underline{\mathbb{Z}} = \langle \mathbb{Z}, +, \cdot, 0 \rangle$ *is a substructure of* $\underline{\mathbb{Q}} = \langle \mathbb{Q}, +, \cdot, 0 \rangle$ *and* $\underline{\mathbb{Z}} = \underline{\mathbb{Q}} \upharpoonright \mathbb{Z}$. *Furthermore,* $\underline{\mathbb{N}} = \langle \mathbb{N}, +, \cdot, 0 \rangle$ *is their substructure and* $\underline{\mathbb{N}} = \mathbb{Q} \upharpoonright \mathbb{N} = \underline{\mathbb{Z}} \upharpoonright \mathbb{N}$.

(日)

Validity in a substructure

Let \mathcal{B} be a substructure of a structure \mathcal{A} for a (fixed) language L. **Proposition** For every open formula φ and assignment $e \colon \text{Var} \to B$, $\mathcal{A} \models \varphi[e]$ if and only if $\mathcal{B} \models \varphi[e]$.

Proof For atomic φ it follows from the definition of the truth value with respect to an assignment. Otherwise by induction on the structure of the formula.

Corollary For every open formula φ and structure A,

 $\mathcal{A}\models\varphi\quad \text{if and only if}\quad \mathcal{B}\models\varphi \text{ for every substructure }\mathcal{B}\subseteq\mathcal{A}.$

• A theory *T* is *open* if all axioms of *T* are open.

Corollary Every substructure of a model of an open theory *T* is a model of *T*.

For example, every substructure of a graph, i.e. a model of theory of graphs, is a graph, called a subgraph. Similarly subgroups, Boolean subalgebras, etc.

・ロト ・日本 ・ヨト ・ヨト

Generated substructure, expansion, reduct

Let $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ be a structure and $X \subseteq A$. Let *B* be the smallest subset of *A* containing *X* that is closed under all functions of the structure \mathcal{A} (including constants). Then the structure $\mathcal{A} \upharpoonright B$ is denoted by $\mathcal{A}\langle X \rangle$ and is called the substructure of \mathcal{A} generated by the set *X*.

Example: for $\underline{\mathbb{Q}} = \langle \mathbb{Q}, +, \cdot, 0 \rangle$, $\underline{\mathbb{Z}} = \langle \mathbb{Z}, +, \cdot, 0 \rangle$, $\underline{\mathbb{N}} = \langle \mathbb{N}, +, \cdot, 0 \rangle$ it is $\underline{\mathbb{Q}} \langle \{1\} \rangle = \underline{\mathbb{N}}$, $\underline{\mathbb{Q}} \langle \{-1\} \rangle = \underline{\mathbb{Z}}$, and $\underline{\mathbb{Q}} \langle \{2\} \rangle$ is the substructure on all even natural numbers.

Let \mathcal{A} be a structure for a language L and $L' \subseteq L$. By omitting realizations of symbols that are not in L' we obtain from \mathcal{A} a structure \mathcal{A}' called the *reduct* of \mathcal{A} to the language L'. Conversely, \mathcal{A} is an *expansion* of \mathcal{A}' into L.

For example, $\langle \mathbb{N}, + \rangle$ is a reduct of $\langle \mathbb{N}, +, \cdot, 0 \rangle$. On the other hand, the structure $\langle \mathbb{N}, +, c_i \rangle_{i \in \mathbb{N}}$ with $c_i = i$ for every $i \in \mathbb{N}$ is the expansion of $\langle \mathbb{N}, + \rangle$ by names of elements from \mathbb{N} .

・ロト ・回ト ・ヨト ・ヨト … ヨ

Theorem on constants

Theorem Let φ be a formula in a language *L* with free variables x_1, \ldots, x_n and let *T* be a theory in *L*. Let *L'* be the extension of *L* with new constant symbols c_1, \ldots, c_n and let *T'* denote the theory *T* in *L'*. Then

 $T \models \varphi$ if and only if $T' \models \varphi(x_1/c_1, \dots, x_n/c_n)$.

Proof (\Rightarrow) If \mathcal{A}' is a model of T', let \mathcal{A} be the reduct of \mathcal{A}' to L. Since $\mathcal{A} \models \varphi[e]$ for every assignment e, we have in particular

 $\mathcal{A} \models \varphi[e(x_1/c_1^{A'}, \dots, x_n/c_n^{A'})], \text{ i.e. } \mathcal{A}' \models \varphi(x_1/c_1, \dots, x_n/c_n).$

(\Leftarrow) If \mathcal{A} is a model of T and e an assignment, let \mathcal{A}' be the expansion of A into L' by setting $c_i^{\mathcal{A}'} = e(x_i)$ for every *i*. Since $\mathcal{A}' \models \varphi(x_1/c_1, \ldots, x_n/c_n)[e']$ for every assignment e', we have

$$\mathcal{A}' \models \varphi[e(x_1/c_1^{A'}, \dots, x_n/c_n^{A'})], \text{ i.e. } \mathcal{A} \models \varphi[e].$$

Boolean algebras

The theory of *Boolean algebras* has the language $L = \langle -, \wedge, \vee, 0, 1 \rangle$ with equality and the following axioms.

 $x \wedge (y \wedge z) = (x \wedge y) \wedge z$ (asociativity of \wedge) $x \lor (y \lor z) = (x \lor y) \lor z$ (asociativity of \lor) (commutativity of \wedge) $x \wedge y = y \wedge x$ (commutativity of \lor) $x \lor y = y \lor x$ $x \land (y \lor z) = (x \land y) \lor (x \land z)$ (distributivity of \land over \lor) $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ (distributivity of \lor over \land) $x \wedge (x \vee y) = x, \quad x \vee (x \wedge y) = x$ $x \lor (-x) = 1, \quad x \land (-x) = 0$ (complementation) $0 \neq 1$

The smallest model is $\underline{2} = \langle 2, -1, \wedge_1, \vee_1, 0, 1 \rangle$. Finite Boolean algebras are (up to isomorphism) exactly ${}^{n}2 = \langle {}^{n}2, -n, \wedge_{n}, \vee_{n}, 0_{n}, 1_{n} \rangle$ for $n \in \mathbb{N}^{+}$, where the operations (on binary n-tuples) are the coordinate-wise operations of 2.

(absorption)

(non-triviality)

イロト イヨト イヨト イヨト

Relations of propositional and predicate logic

- Propositional formulas over connectives ¬, ∧, ∨ (eventually with ⊤, ⊥) can be viewed as Boolean terms. Then the truth value of φ in a given assignment is the value of the term in the Boolean algebra 2.
- Lindenbaum-Tarski algebra over \mathbb{P} is Boolean algebra (also for \mathbb{P} infinite).
- If we represent atomic subformulas in an open formula φ (without equality) with propositional letters, we obtain a proposition that is valid if and only if φ is valid.
- Propositional logic can be introduced as a fragment of predicate logic using nullary relation symbols (*syntax*) and nullary relations (*semantics*) since A⁰ = {∅} = 1, so R^A ⊆ A⁰ is either R^A = ∅ = 0 or R^A = {∅} = 1.