Propositional and Predicate Logic - VIII

Petr Gregor

KTIML MFF UK

WS 2015/2016

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - VIII

WS 2015/2016 1 / 23

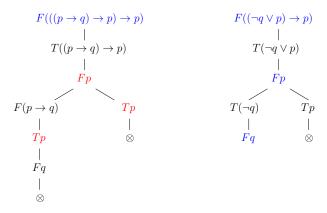
イロン イヨン イヨン

Introduction

Tableau method in propositional logic - a review

- A tableau is a binary tree that represents a search for a counterexample.
- Nodes are labeled by entries, i.e. formulas with a sign T / F that represents an assumption that the formula is true / false in some model.
- If this assumption is correct, then it is correct also for all the entries in some branch below that came from this entry.
- A branch is contradictory (it fails) if it contains $T\psi$, $F\psi$ for some ψ .
- A proof of formula φ is a contradictory tableau with root $F\varphi$, i.e. a tableau in which every branch is contradictory. If φ has a proof, it is valid.
- If a counterexample exists, there will be a branch in a finished tableau that provides us with this counterexample, but this branch can be infinite.
- We can construct a systematic tableau that is always finished.
- If φ is valid, the systematic tableau for φ is contradictory, i.e. it is a proof of φ ; and in this case, it is also finite.

Tableau method in propositional logic - examples



- *a*) A tableau proof of the formula $((p \rightarrow q) \rightarrow p) \rightarrow p$.
- *b*) A finished tableau for $(\neg q \lor p) \rightarrow p$. The left branch provides us with a counterexample v(p) = v(q) = 0.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Tableau method in predicate logic - what is different

- Formulas in entries will always be sentences (closed formulas), i.e. formulas without free variables.
- We add new atomic tableaux for quantifiers.
- In these tableaux we substitute ground terms for quantified variables following certain rules.
- We extend the language by new (auxiliary) constant symbols (countably many) to represent *"witnesses"* of entries $T(\exists x)\varphi(x)$ and $F(\forall x)\varphi(x)$.
- In a finished noncontradictory branch containing an entry $T(\forall x)\varphi(x)$ or $F(\exists x)\varphi(x)$ we have instances $T\varphi(x/t)$ resp. $F\varphi(x/t)$ for every ground term t (of the extended language).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Assumptions

1) The formula φ that we want to prove (or refute) is a sentence. If not, we can replace φ with its universal closure φ' , since for every theory *T*,

 $T \models \varphi$ if and only if $T \models \varphi'$.

 We prove from a theory in a closed form, i.e. every axiom is a sentence. By replacing every axiom ψ with its universal closure ψ' we obtain an equivalent theory since for every structure A (of the given language L),

 $\mathcal{A} \models \psi$ if and only if $\mathcal{A} \models \psi'$.

- 3) The language *L* is countable. Then every theory of *L* is countable. We denote by L_C the extension of *L* by new constant symbols c_0, c_1, \ldots (countably many). Then there are countably many ground terms of L_C . Let t_i denote the *i*-th ground term (in some fixed enumeration).
- 4) First, we assume that the language is without equality.

Tableaux in predicate logic - examples

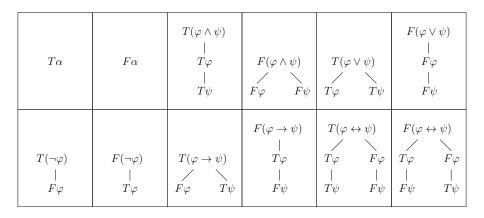
$$\begin{array}{cccc} F((\exists x) \neg P(x) \rightarrow \neg (\forall x) P(x)) & F(\neg (\forall x) P(x) \rightarrow (\exists x) \neg P(x)) \\ & & & & | \\ T(\exists x) \neg P(x) & T(\neg (\forall x) P(x)) \\ & & & | \\ F(\neg (\forall x) P(x)) & F(\exists x) \neg P(x) \\ & & & | \\ T(\forall x) P(x) & F(\forall x) P(x) \\ & & & | \\ T(\neg P(c)) & c & \text{new} & FP(d) & d & \text{new} \\ & & & | \\ FP(c) & F(\exists x) \neg P(x) \\ & & & | \\ T(\forall x) P(x) & F(\neg P(d)) \\ & & & | \\ & & & \otimes \\ \end{array}$$

Image: Second second

Image: A math a math

Atomic tableaux - previous

An *atomic tableau* is one of the following trees (labeled by entries), where α is any atomic sentence and φ , ψ are any sentences, all of language L_C .



<ロ> <同> <同> < 回> < 回> < 回> = 三

Atomic tableaux - new

Atomic tableaux are also the following trees (labeled by entries), where φ is any formula of the language L_c with a free variable x, t is any ground term of L_C and c is a new constant symbol from $L_C \setminus L$.

$ \stackrel{\sharp}{=} T(\forall x)\varphi(x) $	$ * F(\forall x)\varphi(x) $	$* T(\exists x)\varphi(x)$	$\stackrel{\sharp}{=} F(\exists x)\varphi(x)$
 $T\varphi(x/t)$	$F\varphi(x/c)$	 $T\varphi(x/c)$	 $F\varphi(x/t)$
for any ground term t of L_C	for a new constant c	for a new constant c	for any ground term t of L_C

Remark The constant symbol c represents a "witness" of the entry $T(\exists x)\varphi(x)$ or $F(\forall x)\varphi(x)$. Since we need that no prior demands are put on c, we specify (in the definition of a tableau) which constant symbols c may be used.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Tableau

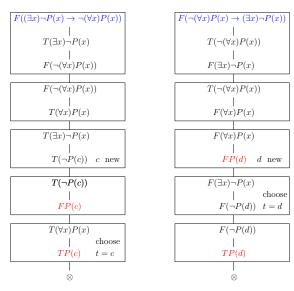
A *finite tableau* from a theory T is a binary tree labeled with entries described

- (*i*) every atomic tableau is a finite tableau from *T*, whereas in case (*) we may use any constant symbol $c \in L_C \setminus L$,
- (*ii*) if *P* is an entry on a branch *V* in a finite tableau from *T*, then by adjoining the atomic tableau for *P* at the end of branch *V* we obtain (again) a finite tableau from *T*, whereas in case (*) we may use only a constant symbol $c \in L_C \setminus L$ that does not appear on *V*,
- (*iii*) if *V* is a branch in a finite tableau from *T* and $\varphi \in T$, then by adjoining $T\varphi$ at the end of branch *V* we obtain (again) a finite tableau from *T*.

(iv) every finite tableau from T is formed by finitely many steps (i), (ii), (iii).

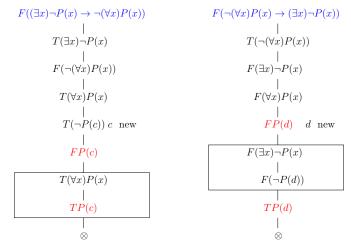
A *tableau* from *T* is a sequence $\tau_0, \tau_1, \ldots, \tau_n, \ldots$ of finite tableaux from *T* such that τ_{n+1} is formed from τ_n by (*ii*) or (*iii*), formally $\tau = \cup \tau_n$.

Construction of tableaux



イロト イヨト イヨト イヨト

Convention



We will not write the entry that is expanded again on the branch, except in cases when the entry is in the form of $T(\forall x)\varphi(x)$ or $F(\exists x)\varphi(x)$.

Proof

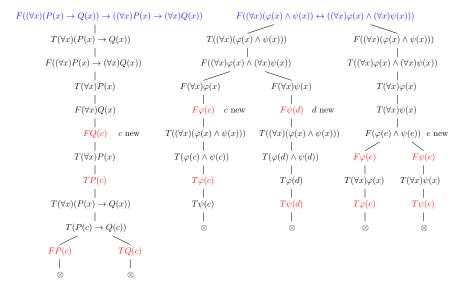
Tableau proof

- A branch V in a tableau τ is *contradictory* if it contains entries $T\varphi$ and $F\varphi$ for some sentence φ , otherwise V is *noncontradictory*.
- A tableau τ is contradictory if every branch in τ is contradictory.
- A *tableau proof* (*proof by tableau*) of a sentence φ from a theory T is a contradictory tableau from T with $F\varphi$ in the root.
- A sentence φ is (tableau) provable from T, denoted by $T \vdash \varphi$, if it has a tableau proof from T.
- A *refutation* of a sentence φ by *tableau* from a theory T is a contradictory tableau from T with the root entry $T\varphi$.
- A sentence φ is (tableau) refutable from T if it has a refutation by tableau from T, i.e. $T \vdash \neg \varphi$.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Proof

Examples



(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Finished tableau

A finished noncontradictory branch should provide us with a counterexample. An occurrence of an entry *P* in a node *v* of a tableau τ is *i*-th if *v* has exactly i-1 predecessors labeled by *P*; and is *reduced* on a branch *V* through *v* if

- *a*) *P* is neither in form of $T(\forall x)\varphi(x)$ nor $F(\exists x)\varphi(x)$ and *P* occurs on *V* as a root of an atomic tableau, i.e. it was already expanded on *V*, or
- *b) P* is in form of $T(\forall x)\varphi(x)$ or $F(\exists x)\varphi(x)$, *P* has an (i + 1)-th occurrence on *V*, and *V* contains an entry $T\varphi(x/t_i)$ resp. $F\varphi(x/t_i)$ where t_i is the *i*-th ground term (of the language L_C).
- Let V be a branch in a tableau τ from a theory T. We say that
 - V is *finished* if it is contradictory, or every occurrence of an entry on V is reduced on V and, moreover, V contains Tφ for every φ ∈ T,
 - τ is *finished* if every branch in τ is finished.

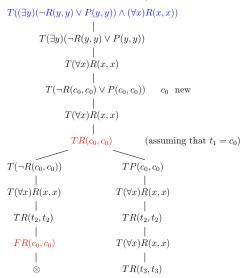
Systematic tableau - construction

Let *R* be an entry and $T = \{\varphi_0, \varphi_1, \dots\}$ be a (possibly infinite) theory.

- (1) We take the atomic tableau for *R* as τ_0 . In case (*) we choose any $c \in L_C \setminus L$, in case (\sharp) we take t_1 for *t*. Till possible, proceed as follows.
- (2) Let *v* be the leftmost node in the smallest level as possible in tableau τ_n containing an occurrence of an entry *P* that is not reduced on some noncontradictory branch through *v*. (If *v* does not exist, we take $\tau'_n = \tau_n$.)
- (3*a*) If *P* is neither $T(\forall x)\varphi(x)$ nor $F(\exists x)\varphi(x)$, let τ'_n be the tableau obtained from τ_n by adjoining the atomic tableau for *P* to every noncontradictory branch through ν . In case (*) we choose c_i for the smallest possible *i*.
- (3b) If *P* is $T(\forall x)\varphi(x)$ or $F(\exists x)\varphi(x)$ and it has *i*-th occurrence in v, let τ'_n be the tableau obtained from τ_n by adjoining atomic tableau for *P* to every noncontradictory branch through v, where we take the term t_i for *t*.
 - (4) Let τ_{n+1} be the tableau obtained from τ'_n by adjoining $T\varphi_n$ to every noncontradictory branch that does not contain $T\varphi_n$ yet. (If φ_n does not exist, we take $\tau_{n+1} = \tau'_n$.)

The systematic tableau for R from T is the result $\tau = \bigcup \tau_n$ of this construction,

Systematic tableau - an example



4 3 4 4 3

Systematic tableau - being finished

Proposition Every systematic tableau is finished. *Proof* Let $\tau = \bigcup \tau_n$ be a systematic tableau from $T = \{\varphi_0, \varphi_1, \dots\}$ with root *R* and let *P* be an entry in a node *v* of the tableau τ .

- There are only finitely many entries in τ in levels up to the level of v.
- If the occurrence of *P* in *ν* was unreduced on some noncontradictory branch in *τ*, it would be found in some step (2) and reduced by (3*a*), (3*b*).
- By step (4) every $\varphi_n \in T$ will be (no later than) in τ_{n+1} on every noncontradictory branch.
- Hence the systematic tableau au has all branches finished. $\ \Box$

Proposition If a systematic tableau τ is a proof (from a theory *T*), it is finite. *Proof* Suppose that τ is infinite. Then by König's lemma, τ contains an infinite branch. This branch is noncontradictory since in the construction only noncontradictory branches are prolonged. But this contradicts the assumption that τ is a contradictory tableau.

Equality

Axioms of equality for a language L with equality are

(*i*) x = x

(*ii*) $x_1 = y_1 \land \cdots \land x_n = y_n \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$

for each n-ary function symbol f of the language L.

(*iii*) $x_1 = y_1 \land \cdots \land x_n = y_n \rightarrow (R(x_1, \ldots, x_n) \rightarrow R(y_1, \ldots, y_n))$ for each *n*-ary relation symbol *R* of the language *L* including =.

A *tableau proof* from a theory T in a language L with equality is a tableau proof from T^* where T^* denotes the extension of T by adding axioms of equality for L (resp. their universal closures).

Remark In context of logic programming the equality often has other meaning than in mathematics (identity). For example in Prolog, $t_1 = t_2$ means that t_1 and t_2 are unifiable.

Congruence and guotient structure

Let \sim be an equivalence on $A, f: A^n \to A$, and $R \subseteq A^n$ for $n \in \mathbb{N}$. Then \sim is

• a congruence for the function f if for every $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$

 $x_1 \sim y_1 \land \cdots \land x_n \sim y_n \Rightarrow f(x_1, \ldots, x_n) \sim f(y_1, \ldots, y_n),$

• a congruence for the relation *R* if for every $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$ $x_1 \sim y_1 \wedge \cdots \wedge x_n \sim y_n \quad \Rightarrow \quad (R(x_1, \ldots, x_n) \Leftrightarrow R(y_1, \ldots, y_n)).$

Let an equivalence \sim on A be a congruence for every function and relation in a structure $\mathcal{A} = \langle A, \mathcal{F}^A, \mathcal{R}^A \rangle$ of language $L = \langle \mathcal{F}, \mathcal{R} \rangle$. Then the *quotient* (*structure*) of \mathcal{A} by \sim is the structure $\mathcal{A}/\sim = \langle A/\sim, \mathcal{F}^{A/\sim}, \mathcal{R}^{A/\sim} \rangle$ where

$$f^{A/\sim}([x_1]_{\sim},\ldots,[x_n]_{\sim}) = [f^A(x_1,\ldots,x_n)]_{\sim}$$
$$R^{A/\sim}([x_1]_{\sim},\ldots,[x_n]_{\sim}) \Leftrightarrow R^A(x_1,\ldots,x_n)$$

for each $f \in \mathcal{F}$, $R \in \mathcal{R}$, and $x_1, \ldots, x_n \in A$, i.e. the functions and relations are defined from \mathcal{A} using representatives.

Example: $\underline{\mathbb{Z}}_p$ is the quotient of $\underline{\mathbb{Z}} = \langle \mathbb{Z}, +, -, 0 \rangle$ by the congruence modulo p.

Role of axioms of equality

Let \mathcal{A} be a structure of a language L in which the equality is interpreted as a relation $=^{A}$ satisfying the axioms of equality for L, i.e. not necessarily the identity relation.

- 1) From axioms (*i*) and (*iii*) it follows that the relation $=^{A}$ is an equivalence.
- 2) Axioms (*ii*) and (*iii*) express that the relation $=^{A}$ is a congruence for every function and relation in A.
- 3) If $\mathcal{A} \models T^*$ then also $(\mathcal{A}/=^A) \models T^*$ where $\mathcal{A}/=^A$ is the quotient of \mathcal{A} by
 - $=^{A}$. Moreover, the equality is interpreted in $\mathcal{A}/=^{A}$ as the identity relation.

On the other hand, in every model in which the equality is interpreted as the identity relation, all axioms of equality evidently hold.

Soundness

We say that a model \mathcal{A} *agrees* with an entry *P*, if *P* is $T\varphi$ and $\mathcal{A} \models \varphi$ or if *P* is $F\varphi$ and $\mathcal{A} \models \neg \varphi$, i.e. $\mathcal{A} \not\models \varphi$. Moreover, \mathcal{A} *agrees* with a branch *V* if \mathcal{A} agrees with every entry on *V*.

Lemma Let A be a model of a theory T of a language L that agrees with the root entry R in a tableau $\tau = \bigcup \tau_n$ from T. Then A can be expanded to the language L_C so that it agrees with some branch V in τ .

Remark It suffices to expand A only by constants c^A such that $c \in L_C \setminus L$ occurs on V, other constants may be defined arbitrarily.

Proof By induction on *n* we find a branch V_n in τ_n and an expansion A_n of A by constants c^A for all $c \in L_C \setminus L$ on V_n s.t. A_n agrees with V_n and $V_{n-1} \subseteq V_n$.

Assume we have a branch V_n in τ_n and an expansion \mathcal{A}_n that agrees with V_n .

- If τ_{n+1} is formed from τ_n without extending the branch V_n , we take $V_{n+1} = V_n$ and $A_{n+1} = A_n$.
- If τ_{n+1} is formed from τ_n by appending $T\varphi$ to V_n for some $\varphi \in T$, let V_{n+1} be this branch and $\mathcal{A}_{n+1} = \mathcal{A}_n$. Since $\mathcal{A} \models \varphi, \mathcal{A}_{n+1}$ agrees with V_{n+1} .

Soundness

Soundness - proof (cont.)

- Otherwise τ_{n+1} is formed from τ_n by appending an atomic tableau to V_n for some entry P on V_n . By induction we know that \mathcal{A}_n agrees with P.
- (i) If P is formed by a logical connective, we take $A_{n+1} = A_n$ and verify that V_n can always be extended to a branch V_{n+1} agreeing with A_{n+1} .
- (*ii*) If P is in form $T(\forall x)\varphi(x)$, let V_{n+1} be the (unique) extension of V_n to a branch in τ_{n+1} , i.e. by the entry $T\varphi(x/t)$. Let \mathcal{A}_{n+1} be any expansion of by new constants from t. Since $\mathcal{A}_n \models (\forall x)\varphi(x)$, we have $\mathcal{A}_{n+1} \models \varphi(x/t)$. Analogously for *P* in form $F(\exists x)\varphi(x)$.
- (*iii*) If P is in form $T(\exists x)\varphi(x)$, let V_{n+1} be the (unique) extension of V_n to a branch in τ_{n+1} , i.e. by the entry $T\varphi(x/c)$. Since $\mathcal{A}_n \models (\exists x)\varphi(x)$, there is some $a \in A$ with $\mathcal{A}_n \models \varphi(x)[e(x/a)]$ for every assignment *e*. Let \mathcal{A}_{n+1} be the expansion of \mathcal{A}_n by a new constant $c^A = a$. Then $\mathcal{A}_{n+1} \models \varphi(x/c)$. Analogously for *P* in form $F(\forall x)\varphi(x)$.

The base step for n = 0 follows from similar analysis of atomic tableaux for the root entry R applying the assumption that A agrees with R.

Theorem on soundness

We will show that the tableau method in predicate logic is sound.

Theorem For every theory *T* and sentence φ , if φ is tableau provable from *T*, then φ is valid in *T*, i.e. $T \vdash \varphi \Rightarrow T \models \varphi$.

Proof

- Let φ be tableau provable from a theory *T*, i.e. there is a contradictory tableau τ from *T* with the root entry $F\varphi$.
- Suppose for a contradiction that φ is not valid in *T*, i.e. there exists a model A of the theory *T* in which φ is not true (a counterexample).
- Since A agrees with the root entry *F*φ, by the previous lemma, A can be expanded to the language *L_C* so that it agrees with some branch in *τ*.
- But this is impossible, since every branch of τ is contradictory, i.e. it contains a pair of entries $T\psi$, $F\psi$ for some sentence ψ .