Propositional and Predicate Logic - IX

Petr Gregor

KTIML MFF UK

WS 2015/2016

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - IX

WS 2015/2016 1 / 16

The canonical model

From a noncontradictory branch V of a finished tableau we build a model that agrees with V. We build it on available (syntactical) objects - ground terms.

Let *V* be a noncontradictory branch of a finished tableau from a theory *T* of a language $L = \langle \mathcal{F}, \mathcal{R} \rangle$. The *canonical model* from *V* is the L_C -structure $\mathcal{A} = \langle A, \mathcal{F}^A, \mathcal{R}^A \rangle$ where

(1) A is the set of all ground terms of the language L_C ,

(2) $f^A(t_{i_1},\ldots,t_{i_n}) = f(t_{i_1},\ldots,t_{i_n})$

for every *n*-ary function symbol $f \in \mathcal{F} \cup (L_C \setminus L)$ a $t_{i_1}, \ldots, t_{i_n} \in A$.

(3) $R^A(t_{i_1}, \ldots, t_{i_n}) \Leftrightarrow TR(t_{i_1}, \ldots, t_{i_n})$ is an entry on *V* for every *n*-ary relation symbol $R \in \mathcal{R}$ or equality and $t_{i_1}, \ldots, t_{i_n} \in A$.

Remark The expression $f(t_{i_1}, ..., t_{i_n})$ on the right side of (2) is a ground term of L_c , i.e. an element of A. Informally, to stress that it is a syntactical object

$$f^A(t_{i_1},\ldots,t_{i_n})="f(t_{i_1},\ldots,t_{i_n})"$$

The canonical model - an example

Let $T = \{(\forall x)R(f(x))\}$ be a theory of a language $L = \langle R, f, d \rangle$. The systematic tableau for $F \neg R(d)$ from *T* contains a single branch *V*, which is noncontradictory.

The canonical model $\mathcal{A} = \langle A, R^A, f^A, d^A, c_i^A \rangle_{i \in \mathbb{N}}$ from V is for language L_C and

 $\begin{aligned} A &= \{d, f(d), f(f(d)), \dots, c_0, f(c_0), f(f(c_0)), \dots, c_1, f(c_1), f(f(c_1)), \dots \}, \\ d^A &= d, \quad c_i^A = c_i \text{ for } i \in \mathbb{N}, \\ f^A(d) &= ``f(d)", \quad f^A(f(d)) = ``f(f(d))", \quad f^A(f(f(d))) = ``f(f(f(d)))", \ \dots \\ R^A &= \{d, f(d), f(f(d)), \dots, f(c_0), f(f(c_0)), \dots, f(c_1), f(f(c_1)), \dots \}. \end{aligned}$

The reduct of \mathcal{A} to the language *L* is $\mathcal{A}' = \langle A, R^A, f^A, d^A \rangle$.

The canonical model with equality

If *L* is with equality, T^* is the extension of *T* by the axioms of equality for *L*. If we require that the equality is interpreted as the identity, we have to take the quotient of the canonical model *A* by the congruence $=^A$.

By (3), for the relation $=^{A}$ in A from V it holds that for every $t_{i_{1}}, t_{i_{2}} \in A$,

 $t_{i_1} \stackrel{A}{=} t_{i_2} \Leftrightarrow T(t_{i_1} = t_{i_2})$ is an entry on *V*.

Since *V* is finished and contains the axioms of equality, the relation $=^{A}$ is a congruence for all functions and relations in A.

The *canonical model with equality* from V is the quotient $A/=^A$.

Observation For every formula φ ,

 $\mathcal{A} \models \varphi \; \Leftrightarrow \; (\mathcal{A}/=^{A}) \models \varphi,$

where = is interpreted in A by the relation =^{*A*}, while in $A/=^{A}$ by the identity. *Remark* A is a countably infinite model, but $A/=^{A}$ can be finite.

The canonical model with equality - an example

Let $T = \{(\forall x)R(f(x)), (\forall x)(x = f(f(x)))\}$ be of $L = \langle R, f, d \rangle$ with equality. The systematic tableau for $F \neg R(d)$ from T^* contains a noncontradictory V.

In the canonical model $\mathcal{A} = \langle A, R^A, =^A, f^A, d^A, c_i^A \rangle_{i \in \mathbb{N}}$ from V we have that

$$s = {}^{A} t \quad \Leftrightarrow \quad t = f(\cdots(f(s)\cdots) \text{ or } s = f(\cdots(f(t)\cdots)),$$

where f is applied 2i-times for some $i \in \mathbb{N}$.

The canonical model with equality from V is $\mathcal{B} = (\mathcal{A}/=^{A}) = \langle A/=^{A}, R^{B}, f^{B}, d^{B}, c_{i}^{B} \rangle_{i \in \mathbb{N}} \text{ where}$ $(A/=^{A}) = \{ [d]_{=^{A}}, [f(d)]_{=^{A}}, [c_{0}]_{=^{A}}, [f(c_{0})]_{=^{A}}, [c_{1}]_{=^{A}}, [f(c_{1})]_{=^{A}}, \dots \},$ $d^{B} = [d]_{=^{A}}, \quad c_{i}^{B} = [c_{i}]_{=^{A}} \text{ for } i \in \mathbb{N},$ $f^{B}([d]_{=^{A}}) = [f(d)]_{=^{A}}, \quad f^{B}([f(d)]_{=^{A}}) = [f(f(d))]_{=^{A}} = [d]_{=^{A}}, \dots$ $R^{B} = (A/=^{A}).$

The reduct of \mathcal{B} to the language *L* is $\mathcal{B}' = \langle A/=^A, R^B, f^B, d^B \rangle$.

Completeness

Lemma The canonical model A from a noncontr. finished V agrees with V. *Proof* By induction on the structure of a sentence in an entry on V.

- For atomic φ , if $T\varphi$ is on V, then $\mathcal{A} \models \varphi$ by (3). If $F\varphi$ is on V, then $T\varphi$ is not on V since V is noncontradictory, so $\mathcal{A} \models \neg \varphi$ by (3).
- If T(φ ∧ ψ) is on V, then Tφ and Tψ are on V since V is finished. By induction, A ⊨ φ and A ⊨ ψ, and thus A ⊨ φ ∧ ψ.
- If $F(\varphi \land \psi)$ is on *V*, then $F\varphi$ or $F\psi$ is on *V* since *V* is finished. By induction, $\mathcal{A} \models \neg \varphi$ or $\mathcal{A} \models \neg \psi$, and thus $\mathcal{A} \models \neg (\varphi \land \psi)$.
- For other connectives similarly as in previous two cases.
- If $T(\forall x)\varphi(x)$ is on *V*, then $T\varphi(x/t)$ is on *V* for every $t \in A$ since *V* is finished. By induction, $\mathcal{A} \models \varphi(x/t)$ for every $t \in A$, and thus $\mathcal{A} \models (\forall x)\varphi(x)$. Similarly for $F(\exists x)\varphi(x)$ on *V*.
- If $T(\exists x)\varphi(x)$ is on *V*, then $T\varphi(x/c)$ is on *V* for some $c \in A$ since *V* is finished. By induction, $\mathcal{A} \models \varphi(x/c)$, and thus $\mathcal{A} \models (\exists x)\varphi(x)$. Similarly for $F(\forall x)\varphi(x)$ on *V*. \Box

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ト … ヨ

Completeness

Theorem on completeness

We will show that the tableau method in predicate logic is complete.

Theorem For every theory *T* and sentence φ , if φ is valid in *T*, then φ is tableau provable from *T*, i.e. $T \models \varphi \Rightarrow T \vdash \varphi$.

Proof Let φ be valid in *T*. We will show that an arbitrary finished tableau (e.g. systematic) τ from a theory *T* with the root entry $F\varphi$ is contradictory.

- If not, then there is some noncontradictory branch V in τ .
- By the previous lemma, there is a structure \mathcal{A} for L_C that agrees with V, in particular with the root entry $F\varphi$, i.e. $\mathcal{A} \models \neg \varphi$.
- Let \mathcal{A}' be the reduct of \mathcal{A} to the language *L*. Then $\mathcal{A}' \models \neg \varphi$.
- Since V is finished, it contains $T\psi$ for every $\psi \in T$.
- Thus \mathcal{A}' is a model of T (as \mathcal{A}' agrees with $T\psi$ for every $\psi \in T$).
- But this contradicts the assumption that φ is valid in *T*.

Therefore the tableau τ is a proof of φ from *T*.

Properties of theories

We introduce syntactic variants of previous semantical definitions.

Let *T* be a theory of a language *L*. If a sentence φ is provable from *T*, we say that φ is a *theorem* of *T*. The set of theorems of *T* is denoted by

Thm^{*L*}(*T*) = { $\varphi \in \operatorname{Fm}_L \mid T \vdash \varphi$ }.

We say that a theory T is

- *inconsistent* if $T \vdash \bot$, otherwise T is *consistent*,
- *complete* if it is consistent and every sentence is provable or refutable from *T*, i.e. $T \vdash \varphi$ or $T \vdash \neg \varphi$.
- an *extension* of a theory T' of L' if $L' \subseteq L$ and $\operatorname{Thm}^{L'}(T') \subseteq \operatorname{Thm}^{L}(T)$, we say that an extension T of a theory T' is *simple* if L = L'; and *conservative* if $\operatorname{Thm}^{L'}(T') = \operatorname{Thm}^{L}(T) \cap \operatorname{Fm}_{L'}$,
- *equivalent* with a theory *T'* if *T* is an extension of *T'* and vice-versa.

・ロン ・回 と ・ ヨ と ・

Corollaries

From the soundness and completeness of the tableau method it follows that these syntactic definitions agree with their semantic variants.

Corollary For every theory *T* and sentences φ , ψ of a language *L*,

•
$$T \vdash \varphi$$
 if and only if $T \models \varphi$,

- Thm^L(T) = $\theta^{L}(T)$,
- T is inconsistent if and only if T is unsatisfiable, i.e. it has no model,
- *T* is complete if and only if *T* is semantically complete, i.e. it has a single model, up to elementarily equivalence,
- $T, \varphi \vdash \psi$ if and only if $T \vdash \varphi \rightarrow \psi$ (Deduction theorem).

Remark Deduction theorem can be proved directly by transformations of tableaux.

Existence of a countable model and compactness

Theorem Every consistent theory T of a countable language L without equality has a countably infinite model.

Proof Let τ be the systematic tableau from T with $F \perp$ in the root. Since τ is finished and contains a noncontradictory branch V as \perp is not provable from T, there exists a canonical model \mathcal{A} from V. Since \mathcal{A} agrees with V, its reduct to the language L is a desired countably infinite model of T.

Remark This is a weak version of so called Löwenheim-Skolem theorem. In a countable language with equality the canonical model with equality is countable (i.e. finite or countably infinite).

Theorem A theory T has a model iff every finite subset of T has a model. *Proof* The implication from left to right is obvious. If T has no model, then it is inconsistent, i.e. \perp is provable by a systematic tableau τ from T. Since τ is finite, \perp is provable from some finite $T' \subseteq T$, i.e. T' has no model.

・ロト ・回ト ・ヨト ・ヨト

Corollaries

Non-standard model of natural numbers

Let $\mathbb{N} = \langle \mathbb{N}, S, +, \cdot, 0, < \rangle$ be the standard model of natural numbers.

Let $Th(\mathbb{N})$ denote the set of all sentences that are valid in \mathbb{N} . For $n \in \mathbb{N}$ let n denote the term $S(S(\dots(S(0))\dots))$, so called the *n*-th numeral, where S is applied *n*-times.

Consider the following theory T where c is a new constant symbol. $T = \text{Th}(\mathbb{N}) \cup \{n < c \mid n \in \mathbb{N}\}$

Observation Every finite subset of T has a model.

Thus by the compactness theorem, T has a model A. It is a non-standard model of natural numbers. Every sentence from $Th(\mathbb{N})$ is valid in \mathcal{A} but it contains an element c^A that is greater then every $n \in \mathbb{N}$ (i.e. the value of the term n in \mathcal{A}).

(日)

Extensions of theories

We show that introducing new definitions has only an "auxiliary character".

Proposition Let *T* be a theory of *L* and *T'* be a theory of *L'* where $L \subseteq L'$.

- (i) T' is an extension of T if and only if the reduct A of every model A' of T' to the language L is a model of T,
- (ii) T' is a conservative extension of T if T' is an extension of T and every model A of T can be expanded to the language L' on a model A' of T'.

Proof

- (*i*)*a*) If *T*' is an extension of *T* and φ is any axiom of *T*, then *T*' $\models \varphi$. Thus $\mathcal{A}' \models \varphi$ and also $\mathcal{A} \models \varphi$, which implies that \mathcal{A} is a model of *T*.
- $\begin{array}{l} (i)b) \ \ \text{If \mathcal{A} is a model of T and $T \models \varphi$ where φ is of L, then $\mathcal{A} \models \varphi$ and also $\mathcal{A}' \models \varphi$. This implies that $T' \models \varphi$ and thus T' is an extension of T. } \end{array}$
 - (*ii*) If $T' \models \varphi$ where φ is of *L* and *A* is a model of *T*, then in its expansion *A'* that models T' we have $A' \models \varphi$. Thus also $A \models \varphi$, and hence $T \models \varphi$. Therefore *T'* is conservative.

Extensions by definition of a relation symbol

Let *T* be a theory of *L*, $\psi(x_1, \ldots, x_n)$ be a formula of *L* in free variables x_1, \ldots, x_n and *L'* denote the language *L* with a new *n*-ary relation symbol *R*. The *extension* of *T* by definition of *R* with the formula ψ is the theory *T'* of *L'*

obtained from T by adding the axiom

 $R(x_1,\ldots,x_n) \leftrightarrow \psi(x_1,\ldots,x_n)$

Observation Every model of T can be uniquely expanded to a model of T'. **Corollary** T' is a conservative extension of T.

Proposition For every formula φ' of L' there is φ of L s.t. $T' \models \varphi' \leftrightarrow \varphi$. *Proof* Replace each subformula $R(t_1, \ldots, t_n)$ in φ with $\psi'(x_1/t_1, \ldots, x_n/t_n)$, where ψ' is a suitable variant of ψ allowing all substitutions. \Box

For example, the symbol \leq can be defined in arithmetics by the axiom $x < y \iff (\exists z)(x + z = y)$

・ロト ・回ト ・ヨト ・ヨト … ヨ

Extensions by definition of a function symbol

Let *T* be a theory of a language *L* and $\psi(x_1, \ldots, x_n, y)$ be a formula of *L* in free variables x_1, \ldots, x_n, y such that

 $T \models (\exists y)\psi(x_1, \dots, x_n, y)$ (existence)

 $T \models \psi(x_1, \dots, x_n, y) \land \psi(x_1, \dots, x_n, z) \rightarrow y = z$ (uniqueness)

Let L' denote the language L with a new n-ary function symbol f.

The *extension* of *T* by definition of *f* with the formula ψ is the theory *T'* of *L'* obtained from *T* by adding the axiom

$$f(x_1,\ldots,x_n)=y \leftrightarrow \psi(x_1,\ldots,x_n,y)$$

Remark In particular, if ψ is $t(x_1, ..., x_n) = y$ where t is a term and $x_1, ..., x_n$ are the variables in t, both the conditions of existence and uniqueness hold. For example binary – can be defined using + and unary – by the axiom

$$x - y = z \iff x + (-y) = z$$

Extensions by definition of a function symbol (cont.)

Observation Every model of T can be uniquely expanded to a model of T'. **Corollary** T' is a conservative extension of T.

Proposition For every formula φ' of L' there is φ of L s.t. $T' \models \varphi' \leftrightarrow \varphi$.

Proof It suffices to consider φ' with a single occurrence of f. If φ' has more, we may proceed inductively. Let φ^* denote the formula obtained from φ' by replacing the term $f(t_1, \ldots, t_n)$ with a new variable z. Let φ be the formula

 $(\exists z)(\varphi^* \land \psi'(x_1/t_1,\ldots,x_n/t_n,y/z)),$

where ψ' is a suitable variant of ψ allowing all substitutions.

Let \mathcal{A} be a model of T', e be an assignment, and $a = f^A(t_1, \ldots, t_n)[e]$. By the two conditions, $\mathcal{A} \models \psi'(x_1/t_1, \ldots, x_n/t_n, y/z)[e]$ if and only if e(z) = a. Thus

 $\mathcal{A}\models \varphi[e] \Leftrightarrow \mathcal{A}\models \varphi^*[e(z/a)] \Leftrightarrow \mathcal{A}\models \varphi'[e]$

for every assignment *e*, i.e. $\mathcal{A} \models \varphi' \leftrightarrow \varphi$ and so $T' \models \varphi' \leftrightarrow \varphi$. \Box

Extensions by definitions

A theory T' of L' is called an *extension* of a theory T of L by definitions if it is obtained from T by successive definitions of relation and function symbols. **Corollary** Let T' be an extension of a theory T by definitions. Then

- every model of T can be uniquely expanded to a model of T',
- T' is a conservative extension of T,
- for every formula φ' of L' there is a formula φ of L such that $T' \models \varphi' \leftrightarrow \varphi$.

For example, in $T = \{(\exists y)(x + y = 0), (x + y = 0) \land (x + z = 0) \rightarrow y = z\}$ of $L = \langle +, 0, \leq \rangle$ with equality we can define \langle and unary - by the axioms

$$\begin{aligned} -x &= y \quad \leftrightarrow \quad x + y = 0 \\ x &< y \quad \leftrightarrow \quad x \leq y \quad \wedge \quad \neg (x = y) \end{aligned}$$

Then the formula -x < y is equivalent in this extension to a formula $(\exists z)((z < y \land \neg(z = y)) \land x + z = 0).$