
Propositional and Predicate Logic - X

Petr Gregor

KTIML MFF UK

WS 2015/2016

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 1 / 24

Skolemization Introduction

Equisatisfiability
We will see that the problem of satisfiability can be reduced to open theories.

Theories T , T ′ are equisatisfiable if T has a model⇔ T ′ has a model.

A formula ϕ is in the prenex (normal) form (PNF) if it is written as

(Q1x1) . . . (Qnxn)ϕ
′,

where Qi denotes ∀ or ∃, variables x1, . . . , xn are all distinct and ϕ′ is an
open formula, called the matrix. (Q1x1) . . . (Qnxn) is called the prefix.

In particular, if all quantifiers are ∀, then ϕ is a universal formula.

To find an open theory equisatisfiable with T we proceed as follows.

(1) We replace axioms of T by equivalent formulas in the prenex form.

(2) We transform them, using new function symbols, to equisatisfiable
universal formulas, so called Skolem variants.

(3) We take their matrices as axioms of a new theory.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 2 / 24

Skolemization Prenex normal form

Conversion rules for quantifiers
Let Q denote ∀ or ∃ and let Q denote the complementary quantifier.
For every formulas ϕ, ψ such that x is not free in the formula ψ,

|= ¬(Qx)ϕ ↔ (Qx)¬ϕ
|= ((Qx)ϕ ∧ ψ) ↔ (Qx)(ϕ ∧ ψ)
|= ((Qx)ϕ ∨ ψ) ↔ (Qx)(ϕ ∨ ψ)
|= ((Qx)ϕ→ ψ) ↔ (Qx)(ϕ→ ψ)

|= (ψ → (Qx)ϕ) ↔ (Qx)(ψ → ϕ)

The above equivalences can be verified semantically or proved by the tableau
method (by taking the universal closure if it is not a sentence).

Remark The assumption that x is not free in ψ is necessary in each rule
above (except the first one) for some quantifier Q. For example,

6|= ((∃x)P(x) ∧ P(x)) ↔ (∃x)(P(x) ∧ P(x))

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 3 / 24

Skolemization Prenex normal form

Conversion to the prenex normal form
Proposition Let ϕ′ be the formula obtained from ϕ by replacing some
occurrences of a subformula ψ with ψ′. If T |= ψ ↔ ψ′, then T |= ϕ↔ ϕ′.

Proof Easily by induction on the structure of the formula ϕ.

Proposition For every formula ϕ there is an equivalent formula ϕ′ in the
prenex normal form, i.e. |= ϕ↔ ϕ′.

Proof By induction on the structure of ϕ applying the conversion rules for
quantifiers, replacing subformulas with their variants if needed, and applying
the above proposition on equivalent transformations.

For example, ((∀z)P(x, z) ∧ P(y, z)) → ¬(∃x)P(x, y)

((∀u)P(x,u) ∧ P(y, z)) → (∀x)¬P(x, y)

(∀u)(P(x,u) ∧ P(y, z)) → (∀v)¬P(v, y)

(∃u)((P(x,u) ∧ P(y, z)) → (∀v)¬P(v, y))

(∃u)(∀v)((P(x,u) ∧ P(y, z)) → ¬P(v, y))

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 4 / 24

Skolemization Skolem variants

Skolem variants

Let ϕ be a sentence of a language L in the prenex normal form, let y1, . . . , yn

be the existentially quantified variables in ϕ (in this order), and for every i ≤ n

let x1, . . . , xni be the variables that are universally quantified in ϕ before yi.
Let L′ be an extension of L with new ni-ary function symbols fi for all i ≤ n.

Let ϕS denote the formula of L′ obtained from ϕ by removing all (∃yi)’s from
the prefix and by replacing each occurrence of yi with the term fi(x1, . . . , xni).
Then ϕS is called a Skolem variant of ϕ.

For example, for the formula ϕ

(∃y1)(∀x1)(∀x2)(∃y2)(∀x3)R(y1, x1, x2, y2, x3)

the following formula ϕS is a Skolem variant of ϕ

(∀x1)(∀x2)(∀x3)R(f1, x1, x2, f2(x1, x2), x3),

where f1 is a new constant symbol and f2 is a new binary function symbol.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 5 / 24

Skolemization Skolem variants

Properties of Skolem variants
Lemma Let ϕ be a sentence (∀x1) . . . (∀xn)(∃y)ψ of L and ϕ′ be a sentence
(∀x1) . . . (∀xn)ψ(y/f (x1, . . . , xn)) where f is a new function symbol. Then

(1) the reduct A of every model A′ of ϕ′ to the language L is a model of ϕ,

(2) every model A of ϕ can be expanded into a model A′ of ϕ′.

Remark Compared to extensions by definition of a function symbol, the
expansion in (2) does not need to be unique now.

Proof (1) Let A′ |= ϕ′ and A be the reduct of A′ to L. Since A |= ψ[e(y/a)]

for every assignment e where a = (f (x1, . . . , xn))
A′
[e], we have also A |= ϕ.

(2) Let A |= ϕ. There exists a function f A : An → A such that for every
assignment e it holds A |= ψ[e(y/a)] where a = f A(e(x1), . . . , e(xn)), and thus
the expansion A′ of A by the function f A is a model of ϕ′.

Corollary If ϕ′ is a Skolem variant of ϕ, then both statements (1) and (2)

hold for ϕ, ϕ′ as well. Hence ϕ, ϕ′ are equisatisfiable.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 6 / 24

Skolemization Skolem’s theorem

Skolem’s theorem
Theorem Every theory T has an open conservative extension T ∗.

Proof We may assume that T is in a closed form. Let L be its language.

By replacing each axiom of T with an equivalent formula in the prenex
normal form we obtain an equivalent theory T ◦.

By replacing each axiom of T ◦ with its Skolem variant we obtain a theory
T ′ in an extended language L′ ⊇ L.

Since the reduct of every model of T ′ to the language L is a model of T ,
the theory T ′ is an extension of T .

Furthermore, since every model of T can be expanded to a model of T ′,
it is a conservative extension.

Since every axiom of T ′ is a universal sentence, by replacing them
with their matrices we obtain an open theory T ∗ equivalent to T ′.

Corollary For every theory there is an equisatisfiable open theory.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 7 / 24

Herbrand’s theorem Introduction

Reduction of unsatisfiability to propositional logic

If an open theory is unsatisfiable, we can demonstrate it “via ground terms”.

For example, in the language L = 〈P,R, f , c〉 the theory

T = {P(x, y) ∨ R(x, y), ¬P(c, y), ¬R(x, f (x))}

is unsatisfiable, and this can be demonstrated by an unsatisfiable conjunction
of finitely many instances of (some) axioms of T in ground terms

(P(c, f (c)) ∨ R(c, f (c))) ∧ ¬P(c, f (c)) ∧ ¬R(c, f (c)),

which may be seen as an unsatisfiable propositional formula

(p ∨ r) ∧ ¬p ∧ ¬r.

An instance ϕ(x1/t1, . . . , xn/tn) of an open formula ϕ in free variables
x1, . . . , xn is a ground instance if all terms t1, . . . , tn are ground terms (i.e.
terms without variables).

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 8 / 24

Herbrand’s theorem Herbrand model

Herbrand model

Let L = 〈R,F〉 be a language with at least one constant symbol. (If needed,
we add a new constant symbol to L.)

The Herbrand universe for L is the set of all ground terms of L.
For example, for L = 〈P, f , c〉 with f binary function sym., c constant sym.

A = {c, f (c, c), f (f (c, c), c), f (c, f (c, c)), f (f (c, c), f (c, c)), . . . }

An L-structure A is a Herbrand structure if its domain A is the Herbrand
universe for L and for each n-ary function symbol f ∈ F , t1, . . . , tn ∈ A,

f A(t1, . . . , tn) = f (t1, . . . , tn)

(including n = 0, i.e. cA = c for every constant symbol c).
Remark Compared to a canonical model, the relations are not specified.
E.g. A = 〈A,PA, f A, cA〉 with PA = ∅, cA = c, f A(c, c) = f (c, c),

A Herbrand model of a theory T is a Herbrand structure that models T .

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 9 / 24

Herbrand’s theorem Theorem and corollaries

Herbrand’s theorem
Theorem Let T be an open theory of a language L without equality and with
at least one constant symbol. Then

(a) either T has a Herbrand model, or
(b) there are finitely many ground instances of axioms of T whose

conjunction is unsatisfiable, and thus T has no model.

Proof Let T ′ be the set of all ground instances of axioms of T . Consider a
finished (e.g. systematic) tableau τ from T ′ in the language L (without adding
new constant symbols) with the root entry F⊥.

If the tableau τ contains a noncontradictory branch V , the canonical
model from V is a Herbrand model of T .
Else, τ is contradictory, i.e. T ′ ` ⊥. Moreover, τ is finite, so ⊥ is provable
from finitely many formulas of T ′, i.e. their conjunction is unsatisfiable.

Remark If the language L is with equality, we extend T to T ∗ by axioms of
equality for L and if T ∗ has a Herbrand model A, we take its quotient by =A.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 10 / 24

Herbrand’s theorem Theorem and corollaries

Corollaries of Herbrand’s theorem

Let L be a language containing at least one constant symbol.

Corollary For every open ϕ(x1, . . . , xn) of L, the formula (∃x1) . . . (∃xn)ϕ is
valid if and only if there exist mn ground terms tij of L for some m such that

ϕ(x1/t11, . . . , xn/t1n) ∨ . . . ∨ ϕ(x1/tm1, . . . , xn/tmn)

is a (propositional) tautology.

Proof (∃x1) . . . (∃xn)ϕ is valid⇔ (∀x1) . . . (∀xn)¬ϕ is unsatisfiable⇔ ¬ϕ is
unsatisfiable. The rest follows from Herbrand’s theorem for {¬ϕ}.

Corollary An open theory T of L is satisfiable if and only if the theory T ′

of all ground instances of axioms of T is satisfiable.

Proof If T has a model A, every instance of each axiom of T is valid in A,
thus A is a model of T ′. If T is unsatisfiable, by H. theorem there are (finitely)
formulas of T ′ whose conjunction is unsatisfiable, thus T ′ is unsatisfiable.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 11 / 24

Resolution method in predicate logic Introduction

Resolution method in predicate logic - introduction

A refutation procedure - its aim is to show that a given formula (or theory)
is unsatisfiable.

It assumes open formulas in CNF (and in clausal form).

A literal is (now) an atomic formula or its negation.

A clause is a finite set of literals, � denotes the empty clause.

A formula (in clausal form) is a (possibly infinite) set of clauses.

Remark Every formula (theory) can be converted to an equisatisfiable
open formula (theory) in CNF, and then to a formula in clausal form.

The resolution rule is more general - it allows to resolve through literals
that are unifiable.

Resolution in predicate logic is based on resolution in propositional logic
and unification.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 12 / 24

Resolution method in predicate logic Introduction

Local scope of variables
Variables can be renamed locally within clauses.

Let ϕ be an (input) open formula in CNF.

ϕ is satisfiable if and only if its universal closure ϕ′ is satisfiable.

For every two formulas ψ, χ and a variable x

|= (∀x)(ψ ∧ χ) ↔ (∀x)ψ ∧ (∀x)χ

(also in the case that x is free both in ψ and χ).

Every clause in ϕ can thus be replaced by its universal closure.

We can then take any variants of clauses (to rename variables apart).

For example, by renaming variables in the second clause of (1) we obtain
an equisatisfiable formula (2).
(1) {{P(x),Q(x, y)}, {¬P(x),¬Q(y, x)}}
(2) {{P(x),Q(x, y)}, {¬P(v),¬Q(u, v)}}

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 13 / 24

Resolution method in predicate logic Introduction

Reduction to propositional level (grounding)
Herbrand’s theorem gives us the following (inefficient) method.

Let S be the (input) formula in clausal form.

We can assume that the language contains at least one constant symbol.

Let S′ be the set of all ground instances of all clauses from S.

By introducing propositional letters representing atomic sentences we
may view S′ as a (possibly infinite) propositional formula in clausal form.

We may verify that it is unsatisfiable by resolution on propositional level.

For example, for S = {{P(x, y),R(x, y)}, {¬P(c, y)}, {¬R(x, f (x))}} the set

S′ = {{P(c, c),R(c, c)}, {P(c, f (c)),R(c, f (c))}, {P(f (c), f (c)),R(f (c), f (c))} . . . ,
{¬P(c, c)}, {¬P(c, f (c))}, . . . , {¬R(c, f (c))}, {¬R(f (c), f (f (c)))}, . . . }

is unsatisfiable since on propositional level

S′ ⊇ {{P(c, f (c)),R(c, f (c))}, {¬P(c, f (c))}, {¬R(c, f (c))}} `R �.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 14 / 24

Resolution method in predicate logic Substitutions

Substitutions - examples

It is more efficient to use suitable substitutions. For example, in

a) {P(x),Q(x,a)}, {¬P(y),¬Q(b, y)} substituting x/b, y/a gives
{P(b),Q(b,a)}, {¬P(a),¬Q(b,a)}, which resolves to {P(b),¬P(a)}.
Or, substituting x/y and resolving through P(y) gives {Q(y,a),¬Q(b, y)}.

b) {P(x),Q(x,a),Q(b, y)}, {¬P(v),¬Q(u, v)} substituting x/b, y/a, u/b, v/a

gives {P(b),Q(b,a)}, {¬P(a),¬Q(b,a)}, resolving to {P(b),¬P(a)}.

c) {P(x),Q(x, z)}, {¬P(y),¬Q(f (y), y)} substituting x/f (z), y/z gives
{P(f (z)),Q(f (z), z)}, {¬P(z),¬Q(f (z), z)}, resolving to {P(f (z)),¬P(z)}.
Alternatively, substituting x/f (a), y/a, z/a gives {P(f (a)),Q(f (a),a)},
{¬P(a),¬Q(f (a),a)}, which resolves to {P(f (a)),¬P(a)}. But the
previous substitution is more general.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 15 / 24

Resolution method in predicate logic Substitutions

Substitutions
A substitution is a (finite) set σ = {x1/t1, . . . , xn/tn}, where xi ’s are
distinct variables, ti ’s are terms, and the term ti is not xi.

If all ti ’s are ground terms, then σ is a ground substitution.

If all ti ’s are distinct variables, then σ is a renaming of variables.

An expression is a literal or a term.

An instance of an expression E by substitution σ = {x1/t1, . . . , xn/tn} is
the expression Eσ obtained from E by simultaneous replacing all
occurrences of all xi ’s for ti ’s, respectively.

For a set S of expressions, let Sσ = {Eσ | E ∈ S}.

Remark Since we substitute for all variables simultaneously, a possible
occurrence of xi in tj does not lead to a chain of substitutions.

For example, for S = {P(x),R(y, z)} and σ = {x/f (y, z), y/x, z/c} we have

Sσ = {P(f (y, z)),R(x, c)}.
Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 16 / 24

Resolution method in predicate logic Substitutions

Composing substitutions

For substitutions σ = {x1/t1, . . . , xn/tn} and τ = {y1/s1, . . . , yn/sn} we define

στ = {xi/tiτ | xi ∈ X , tiτ is not xi} ∪ {yj/sj | yj ∈ Y \ X}

to be the composition of σ and τ , where X = {x1, . . . , xn}, Y = {y1, . . . , ym}.

For example, for σ = {x/f (y),w/v}, τ = {x/a, y/g(x), v/w,u/c} we have
στ = {x/f (g(x)), y/g(x), v/w,u/c}.

Proposition (without proof) For every expression E and substitutions σ, τ , %,
(i) (Eσ)τ = E(στ),
(ii) (στ)% = σ(τ%).

Remark Composition of substitutions is not commutative, for the above σ, τ ,

τσ = {x/a, y/g(f (y)),u/c,w/v} 6= στ.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 17 / 24

Resolution method in predicate logic Unification

Unification

Let S = {E1, . . . ,En} be a (finite) set of expressions.

A unification of S is a substitution σ such that E1σ = E2σ = · · · = Enσ,
i.e. Sσ is a singleton.

S is unifiable if it has a unification.

A unification σ of S is a most general unification (mgu) if for every
unification τ of S there is a substitution λ such that τ = σλ.

For example, S = {P(f (x), y),P(f (a),w)} is unifiable by a most general
unification σ = {x/a, y/w}. A unification τ = {x/a, y/b,w/b} is obtained as
σλ for λ = {w/b}. τ is not mgu, it cannot give us % = {x/a, y/c,w/c}.

Observation If σ, τ are two most general unifications of S, they differ
only in renaming of variables.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 18 / 24

Resolution method in predicate logic Unification

Unification algorithm
Let S be a (finite) nonempty set of expressions and p be the leftmost position
in which some expressions of S differ. Then the difference in S is the set D(S)

of subexpressions of all expressions from S starting at the position p.

For example, S = {P(x, y),P(f (x), z),P(z, f (x))} has D(S) = {x, f (x), z}.

Input Nonempty (finite) set of expressions S.
Output A most general unification σ of S or “S is not unifiable”.

(0) Let S0 := S, σ0 := ∅, k := 0. (initialization)

(1) If Sk is a singleton, output the substitution σ = σ0σ1 · · ·σk . (mgu of S)

(2) Find if D(Sk) contains a variable x and a term t with no occurrence of x.

(3) If not, output “S is not unifiable”.

(4) Otherwise, let σk+1 := {x/t}, Sk+1 := Skσk+1, k := k + 1 and go to (1).

Remark The occurrence check of x in t in step (2) can be “expensive”.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 19 / 24

Resolution method in predicate logic Unification

Unification algorithm - an example
S = {P(f (y, g(z)),h(b)), P(f (h(w), g(a)), t), P(f (h(b), g(z)), y)}

1) S0 = S is not a singleton and D(S0) = {y,h(w),h(b)} has a term h(w)

and a variable y not occurring in h(w). Then σ1 = {y/h(w)}, S1 = S0σ1, i.e.

S1 = {P(f (h(w), g(z)),h(b)), P(f (h(w), g(a)), t), P(f (h(b), g(z)),h(w))}.
2) D(S1) = {w,b}, σ2 = {w/b}, S2 = S1σ2, i.e.

S2 = {P(f (h(b), g(z)),h(b)), P(f (h(b), g(a)), t)}.

3) D(S2) = {z,a}, σ3 = {z/a}, S3 = S2σ3, i.e.

S3 = {P(f (h(b), g(a)),h(b)), P(f (h(b), g(a)), t)}.

4) D(S3) = {h(b), t}, σ4 = {t/h(b)}, S4 = S3σ4, i.e.

S4 = {P(f (h(b), g(a)),h(b))}.

5) S4 is a singleton and a most general unification of S is

σ = {y/h(w)}{w/b}{z/a}{t/h(b)} = {y/h(b),w/b, z/a, t/h(b)}.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 20 / 24

Resolution method in predicate logic Unification

Unification algorithm - correctness
Proposition The unification algorithm outputs a correct answer in finite time
for any input S, i.e. a most general unification σ of S or it detects that S is not
unifiable. (∗) Moreover, for every unification τ of S it holds that τ = στ .

Proof It eliminates one variable in each round, so it ends in finite time.

If it ends negatively after k rounds, D(Sk) is not unifiable, thus also S.

If it outputs σ = σ0σ1 · · ·σk , clearly σ is a unification of S.

If we show the property (∗) for σ, then σ is a most general unification of S.

(1) Let τ be a unification of S. We show that τ = σ0σ1 · · ·σiτ for all i ≤ k.

(2) For i = 0 it holds. Let σi+1 = {x/t} and assume that τ = σ0σ1 · · ·σiτ .

(3) It suffices to show that vσi+1τ = vτ for every variable v.

(4) If v 6= x, vσi+1 = v, so (3) holds. Otherwise v = x and vσi+1 = xσi+1 = t .

(5) Since τ unifies Si = Sσ0σ1 · · ·σi and both the variable x and the term t
are in D(Si), τ has to unify x and t , i.e. tτ = xτ , as required for (3).

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 21 / 24

Resolution method in predicate logic Resolution proof

The general resolution rule

Let C1, C2 be clauses with distinct variables such that

C1 = C ′1 t {A1, . . . ,An}, C2 = C ′2 t {¬B1, . . . ,¬Bm},

where S = {A1, . . . ,An,B1, . . . ,Bm} is unifiable and n,m ≥ 1. Then the clause

C = C ′1σ ∪ C ′2σ,

where σ is a most general unification of S, is the resolvent of C1 and C2.

For example, in clauses {P(x),Q(x, z)} and {¬P(y),¬Q(f (y), y)} we can
unify S = {Q(x, z),Q(f (y), y)} applying a most general unification
σ = {x/f (y), z/y}, and then resolve to a clause {P(f (y)),¬P(y)}.

Remark The condition on distinct variables can be satisfied by renaming
variables apart. This is sometimes necessary, e.g. from {{P(x)}, {¬P(f (x))}}
after renaming we can get �, but {P(x),P(f (x))} is not unifiable.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 22 / 24

Resolution method in predicate logic Resolution proof

Resolution proof

We have the same notions as in propositional logic, up to renaming variables.

Resolution proof (deduction) of a clause C from a formula S is a finite
sequence C0, . . . ,Cn = C such that for every i ≤ n, we have Ci = C ′iσ

for some C ′i ∈ S and a renaming of variables σ, or Ci is a resolvent of
some previous clauses.

A clause C is (resolution) provable from S, denoted by S `R C , if it has
a resolution proof from S.

A (resolution) refutation of a formula S is a resolution proof of � from S.

S is (resolution) refutable if S `R �.

Remark Elimination of several literals at once is sometimes necessary, e.g.
S = {{P(x),P(y)}, {¬P(x),¬P(y)}} is resolution refutable, but it has no
refutation that eliminates only a single literal in each resolution step.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 23 / 24

Resolution method in predicate logic Resolution proof

Resolution in predicate logic - an example

Consider T = {¬P(x, x), P(x, y)→ P(y, x), P(x, y) ∧ P(y, z)→ P(x, z)}.
Is T |= (∃x)¬P(x, f (x)) ? Equivalently, is the following T ′ unsatisfiable?

T ′ = {{¬P(x, x)}, {¬P(x, y),P(y, x)}, {¬P(x, y),¬P(y, z),P(x, z)}, {P(x, f (x))}}

{¬P (x, y),¬P (y, z), P (x, z)} {P (x′, f(x′))}

{¬P (f(x), z), P (x, z)}

{P (x′, f(x′))}{¬P (x, y), P (y, x)}

{P (f(x′), x′)}

{P (x, x)} {¬P (x′, x′)}

x′/x

z/x, x′/x

x/x′, y/f(x′)y/f(x), x′/x

T ′ `R

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 24 / 24

	Skolemization
	Introduction
	Prenex normal form
	Skolem variants
	Skolem's theorem

	Herbrand's theorem
	Introduction
	Herbrand model
	Theorem and corollaries

	Resolution method in predicate logic
	Introduction
	Substitutions
	Unification
	Resolution proof

