Propositional and Predicate Logic - X

Petr Gregor
KTIML MFF UK
WS 2015/2016

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - X

Equisatisfiability
We will see that the problem of satisfiability can be reduced to open theories.
@ Theories T, T’ are equisatisfiable if T has a model < T’ has a model.

@ Aformula ¢ is in the prenex (normal) form (PNF) if it is written as
(Qix1) ... (ann)’vo/-,
where Q; denotes V or 3, variables xi, . .., x, are all distinct and ¢’ is an
open formula, called the matrix. (Q1x1) ... (Qnxy) is called the prefix.

@ In particular, if all quantifiers are Vv, then ¢ is a universal formula.

To find an open theory equisatisfiable with T we proceed as follows.
(1) We replace axioms of T by equivalent formulas in the prenex form.

(2) We transform them, using new function symbols, to equisatisfiable
universal formulas, so called Skolem variants.

(3) We take their matrices as axioms of a new theory.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 2/24

Conversion rules for quantifiers

Let Q denote V or 3 and let Q denote the complementary quantifier.
For every formulas ¢, ¥ such that x is not free in the formula ,

= ~(Qx)p < (Qx)=yp
<~

<~

=
=
= (Qx)p =7
= (W= (Qre
The above equivalences can be verified semantically or proved by the tableau
method (by taking the universal closure if it is not a sentence).

<

<~

Remark The assumption that x is not free in 1) is necessary in each rule
above (except the first one) for some quantifier Q. For example,

7 ((Ex)P(x) A P(x)) < (3x)(P(x) A P(x))

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 3/24

Skolemization Prenex normal form

Conversion to the prenex normal form

Proposition Let ¢’ be the formula obtained from ¢ by replacing some
occurrences of a subformula) with'. If T =1 < ¢/, then T |= ¢ <> ¢'.

Proof Easily by induction on the structure of the formula . O

Proposition For every formula ¢ there is an equivalent formula ¢’ in the
prenex normal form, i.e. = ¢ + ¢'.

Proof By induction on the structure of ¢ applying the conversion rules for
quantifiers, replacing subformulas with their variants if needed, and applying
the above proposition on equivalent transformations. [

For example, ((V2)P(x,2) AN P(y,2)) — —(3x)P(x,y)
(Vu)P(x,u) NP(y,2)) — (Vx)=P(x,y)
(Vu)(P(x,u) N P(y,2)) — (Yv)=P(v,y)
(Fu)((P(x,u) A P(y,z)) — (Vv)=P(v,y))
(Fu)(Vv)((P(x, u) A P(y,z)) = —P(v,y))

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 4/24

Skolem variants

Let © be a sentence of a language L in the prenex normal form, let y1, ..., y,
be the existentially quantified variables in ¢ (in this order), and for every i < n
let xi, ..., x,, be the variables that are universally quantified in ¢ before y;.
Let L’ be an extension of L with new n;-ary function symbols f; for all i < n.

Let s denote the formula of L’ obtained from ¢ by removing all (3y;)’s from
the prefix and by replacing each occurrence of y; with the term fi(xi,. .., x,,).
Then g is called a Skolem variant of .

For example, for the formula ¢
(Fy1) (V1) (Vxz) (Fy2) (Vs) R(y1, X1, Xz, Yo, X3)
the following formula s is a Skolem variant of ¢
(V1) (Vx2) (VX3) R(fi, X1, Xz, fo (X1, X2), %3),
where f is a new constant symbol and f> is a new binary function symbol.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 5/24

Properties of Skolem variants

Lemma Let ¢ be a sentence (Vx;) ... (Vx,)(3y)w of L and ¢’ be a sentence
(Vxy) ... (Vxu)0(y/f(x1,...,x,)) where f is a new function symbol. Then

(1) the reduct A of every model A’ of ¢’ to the language L is a model of ¢,
(2) every model A of ¢ can be expanded into a model A’ of ¢'.

Remark Compared to extensions by definition of a function symbol, the
expansion in (2) does not need to be unique now.

Proof (1) Let A’ = ¢ and A be the reduct of A’ to L. Since A = v[e(y/a)
for every assignment e where a = (f(x1,. ..., x,))" [e], we have also A = .
(2) Let A = . There exists a function f4: A" — A such that for every
assignment e it holds A = 1[e(y/a)] where a = f4(e(x), ..., e(x,)), and thus
the expansion A’ of A by the function f4 is a model of ¢'. [J

Corollary If ¢’ is a Skolem variant of , then both statements (1) and (2)
hold for ¢, ¢’ as well. Hence ¢, ¢’ are equisatisfiable.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 6/24

Skolem’s theorem

Theorem Every theory T has an open conservative extension T*.
Proof We may assume that T is in a closed form. Let L be its language.
@ By replacing each axiom of T with an equivalent formula in the prenex
normal form we obtain an equivalent theory T°.

@ By replacing each axiom of T° with its Skolem variant we obtain a theory
T’ in an extended language L' O L.

@ Since the reduct of every model of T’ to the language L is a model of T,
the theory T’ is an extension of T.

@ Furthermore, since every model of T can be expanded to a model of T7,
it is a conservative extension.

@ Since every axiom of T’ is a universal sentence, by replacing them
with their matrices we obtain an open theory T* equivalentto 77. [

Corollary For every theory there is an equisatisfiable open theory.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 7/24

Reduction of unsatisfiability to propositional logic

If an open theory is unsatisfiable, we can demonstrate it “via ground terms”.
For example, in the language L = (P, R, f, c) the theory
T ={P(x,y)VR(x,y), =P(c,y), ~R(x,f(x))}

is unsatisfiable, and this can be demonstrated by an unsatisfiable conjunction
of finitely many instances of (some) axioms of T in ground terms

(P(c,f(c)) V R(c.f(c))) A =P(c,f(c)) A =R(c.f(c)),
which may be seen as an unsatisfiable propositional formula

(pvr) A=p A T

Aninstance p(x;/t, ..., x,/t,) of an open formula ¢ in free variables
X1,...,Xp s @ ground instance if all terms 11, ..., t, are ground terms (i.e.
terms without variables).

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 8/24

Herbrand model

Let L = (R, F) be a language with at least one constant symbol. (/f needed,
we add a new constant symbol to L.)

@ The Herbrand universe for L is the set of all ground terms of L.
For example, for L = (P, f, c) with f binary function sym., ¢ constant sym.

A= {c.fle,¢). f(f(c,¢),). f(e.f(e.). f(flc,). f(c,).}

@ An L-structure A is a Herbrand structure if its domain A is the Herbrand
universe for L and for each n-ary function symbol f € F, t;,...,t, € A,

A, ... t)=f(t,..., t)
(including n = 0, i.e. ¢ = ¢ for every constant symbol c).
Remark Compared to a canonical model, the relations are not specified.
E.g. A= (A PA fA ¢t with PA =0, ¢! = ¢, fA(c,c) = f(c,c0), ...
@ A Herbrand model of a theory T is a Herbrand structure that models T.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 9/24

Herbrand’s theorem

Theorem Let T be an open theory of a language L without equality and with
at least one constant symbol. Then
(a) either T has a Herbrand model, or

(b) there are finitely many ground instances of axioms of T whose
conjunction is unsatisfiable, and thus T has no model.

Proof Let T’ be the set of all ground instances of axioms of T. Consider a
finished (e.g. systematic) tableau from T’ in the language L (without adding
new constant symbols) with the root entry F1.

@ If the tableau 7 contains a noncontradictory branch V, the canonical
model from V is a Herbrand model of T.

@ Else, 7 is contradictory, i.e. T’ - L. Moreover, 7 is finite, so L is provable
from finitely many formulas of 7", i.e. their conjunction is unsatisfiable. [

Remark If the language L is with equality, we extend T to T* by axioms of
equality for L and if T* has a Herbrand model A, we take its quotient by =4.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 10/24

Corollaries of Herbrand’s theorem

Let L be a language containing at least one constant symbol.

Corollary For every open o(x1,...,x,) of L, the formula (3x,) ... (3x,)p is
valid if and only if there exist mn ground terms t;; of L for some m such that

is a (propositional) tautology.

Proof (3x1)...(3x,)pis valid < (Vx;) ... (Vx,)— is unsatisfiable < —p is
unsatisfiable. The rest follows from Herbrand’s theorem for {—¢}. O

Corollary An open theory T of L is satisfiable if and only if the theory T’
of all ground instances of axioms of T is satisfiable.

Proof If T has a model A, every instance of each axiom of T is valid in A,
thus A is a model of T". If T is unsatisfiable, by H. theorem there are (finitely)
formulas of T” whose conjunction is unsatisfiable, thus T’ is unsatisfiable. [

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 11/24

Resolution method in predicate logic - introduction

@ A refutation procedure - its aim is to show that a given formula (or theory)
is unsatisfiable.

@ It assumes open formulas in CNF (and in clausal form).
A literal is (now) an atomic formula or its negation.
A clause is a finite set of literals, (J denotes the empty clause.
A formula (in clausal form) is a (possibly infinite) set of clauses.

Remark Every formula (theory) can be converted to an equisatisfiable
open formula (theory) in CNF, and then to a formula in clausal form.

@ The resolution rule is more general - it allows to resolve through literals
that are unifiable.

@ Resolution in predicate logic is based on resolution in propositional logic
and unification.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 12/24

Local scope of variables

Variables can be renamed locally within clauses.
Let ¢ be an (input) open formula in CNF.
@ ¢ is satisfiable if and only if its universal closure ¢’ is satisfiable.
@ For every two formulas v, x and a variable x
F (W)@ AX) & (V)P A (VX)X
(also in the case that x is free both in ¢ and).

@ Every clause in ¢ can thus be replaced by its universal closure.

@ We can then take any variants of clauses (to rename variables apart).

For example, by renaming variables in the second clause of (1) we obtain
an equisatisfiable formula (2).
(1) {P(x), Q(x.)} {=P(x),~

(v, x)}}
(2) {{P(x)’ Q(xxy)} {ﬁp(v) —QU,

Q
Q(u, v)}}

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016

13/24

Reduction to propositional level (grounding)

Herbrand'’s theorem gives us the following (inefficient) method.
@ Let S be the (input) formula in clausal form.
@ We can assume that the language contains at least one constant symbol.
@ Let S’ be the set of all ground instances of all clauses from S.

@ By introducing propositional letters representing atomic sentences we
may view S’ as a (possibly infinite) propositional formula in clausal form.

@ We may verify that it is unsatisfiable by resolution on propositional level.

For example, for S = {{P(x,y),R(x,y)},{—-P(c,y)},{-R(x, f(x))}} the set

§" = {{P(c,c),R(c, o)}, {P(c, f(c)), R(c, f(e)}, {P(f(c), f(c), R(f(c). f(e))} -,
{=P(c,)}, {=P(c, f(c)},- .. {~R(c, f(e)}, {-R(f(e), f(f(c))}- - }

is unsatisfiable since on propositional level

8" 2 {{P(c.f(c), R(c. f(e)} {~P(c, f(e)}, {=R(c. f(¢)}} Fr O

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 14/24

Resolution method in predicate logic Substitutions

Substitutions - examples

It is more efficient to use suitable substitutions. For example, in

a) {P(x),Q(x,a)}, {=P(y),~Q(b.y)} substituting x/b, y/a gives
{P(b),Q(b,a)}, {—~P(a),-Q(b, a)}, which resolves to {P(b),—P(a)}.
Or, substituting x/y and resolving through P(y) gives {Q(y,a), = Q(b, y)}.

b) {P(x),Q(x,a),Q(b,y)}, {=P(v), ~Q(u, v)} substituting x/b, y/a, u/b, v/a
gives {P(b), Q(b,a)}, {—P(a),~Q(b,a)}, resolving to {P(b),-P(a)}.

¢) {P(x), Q(x,2)}, {=P(y),~Q(f (). y)} substituting x/f(z), y/z gives
{P(f(2), Q(f(2), 2)}, {~P(2),~Q(f(2), 2)}, resolving to { P(f(2)), ~P(2)}.
Alternatively, substituting x/f(a), y/a, z/a gives {P(f(a)), Q(f(a),a)},
{=P(a),—Q(f(a),a)}, which resolves to {P(f(a)), ~P(a)}. But the
previous substitution is more general.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 15/24

Substitutions

@ A substitutionis a (finite) set o = {x1/11,..., x,/t,}, where x;’s are
distinct variables, t;’s are terms, and the term ¢; is not x;.

@ If all ¢s are ground terms, then o is a ground substitution.
@ If all #’s are distinct variables, then o is a renaming of variables.
@ An expression is a literal or a term.

@ An instance of an expression E by substitution o = {x,/t1,...,X,/t,} is
the expression Eo obtained from E by simultaneous replacing all
occurrences of all x;’s for ¢;’s, respectively.

@ For a set S of expressions, let So = {Eo | E € S}.

Remark Since we substitute for all variables simultaneously, a possible

occurrence of x; in t; does not lead to a chain of substitutions.

For example, for S = {P(x),R(y,z)} and o = {x/f(y,2),y/x,z/c} we have
So = {P(f(y.2)), R(x, 0)}.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 16/24

Composing substitutions

For substitutions o = {x; /11, ..., x,/t,} and 7 = {y1/s1.....Vn/Sn} We define
or ={x;/tir | x; € X, risnot x;} U{y;/si |y € Y\ X}
to be the composition of o and 7, where X = {x1,...,x,}, Y ={3,..., Ym}-

For example, foro = {x/f(y),w/v}, 7 = {x/a,y/g(x),v/w, u/c} we have
ot = {x/f(g(x)),y/8(x),v/w,u/c}.

Proposition (without proof) For every expression E and substitutions o, T, o,
(i) (Eo)T = E(o7),
(ii) (o7)o = o(70).

Remark Composition of substitutions is not commutative, for the above o, T,

To ={x/a,y/g(f(y)), u/c, w/v} # oT.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 17/24

Unification

Let S={FE,..., E,} be a (finite) set of expressions.
@ A unification of S is a substitution ¢ such that Eyoc = E,o = --- = E,0,
i.e. So is a singleton.
@ Sis unifiable if it has a unification.

@ A unification o of S is a most general unification (mgu) if for every
unification = of S there is a substitution A\ such that - = o \.

For example, S = {P(f(x),y), P(f(a), w)} is unifiable by a most general
unification o = {x/a, y/w?}. A unification 7 = {x/a, y/b, w/b} is obtained as
oA for A = {w/b}. T is not mgu, it cannot give us o = {x/a,y/c,w/c}.

Observation If o, T are two most general unifications of S, they differ
only in renaming of variables.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 18/24

Unification algorithm

Let S be a (finite) nonempty set of expressions and p be the leftmost position
in which some expressions of S differ. Then the difference in S is the set D(S)
of subexpressions of all expressions from S starting at the position p.

For example, S = {P(x,y), P(f(x),z), P(z, f(x))} has D(S) = {x, f(x), z}.
Input Nonempty (finite) set of expressions S.

Output A most general unification o of S or “S is not unifiable’.

0) Let Sp:=S,009:=0, k:=0. (initialization)
1
2
3

If S is a singleton, output the substitution o = ggo; - - - 0. (mgu of S)

Find if D(S,) contains a variable x and a term ¢ with no occurrence of x.

(
(1)
(2)
(3) If not, output “S is not unifiable”.

(4) Otherwise, let oy := {x/t}, Sk11 := Skoky1, k:=k+1andgoto (1).

Remark The occurrence check of x in t in step (2) can be “expensive”.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 19/24

Resolution method in predicate logic Unification

Unification algorithm - an example

S={P(f(y,8(2)), h(D)), P(f(h(w),g(a)),t), P(f(h(D),&(2)),y)}
1) So = Sis not a singleton and D(Sy) = {y, h(w), h(b)} has a term h(w)
and a variable y not occurring in h(w). Then o1 = {y/h(w)}, S1 = S0, i.e.
S1 = {P(f(h(w),g(2)), h(D)), P(f(h(w), g(a)),1), P(f(h(b),g(2)), h(w))}.
2) D(S1) = {w, b}, o2 = {w/b}, S, = S102, i.e.
So = {P(f(h(b),8(2)), (b)), P(f(h(b),g(a)),1)}.
3) D(S:) = {z,a}, o5 = {z/a}, S3 = Sy03, i.e.
Ss = {P(f(h(D),g(a)), h(b)), P(f(h(b),g(a)),)}
4) D(S3) = {h(b),t}, oa = {t/h(b)}, S4 = Sz04, i.e.
S = {P(f(h(D),g(a)), (b))}
5) S is a singleton and a most general unification of S is

o ={y/Mw){w/b}{z/a}{t/h(b)} = {y/h(D), w/b,z/a, t/h(b)}.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 20/24

Unification algorithm - correctness

Proposition The unification algorithm outputs a correct answer in finite time
for any input S, i.e. a most general unification o of S or it detects that S is not
unifiable. (x) Moreover, for every unification T of S it holds that T = o.
Proof It eliminates one variable in each round, so it ends in finite time.

@ If it ends negatively after k rounds, D(S;) is not unifiable, thus also S.
If it outputs o = ggoy - - - ok, Clearly o is a unification of S.
If we show the property (x) for o, then o is a most general unification of S.
(1) Let 7 be a unification of S. We show that 7 = ooy --- o7 forall i < k.
(2) Fori=0itholds. Let ;11 = {x/t} and assume that 7 = ogo; - - - 047
(3) It suffices to show that vo; 7 = vr for every variable v.
(4) If v # x, vo;1 = v, s0 (3) holds. Otherwise v = x and vo; 1 = X041 = t.
(5)

Since 7 unifies S; = Sogyo; - - - o; and both the variable x and the term ¢
are in D(S;), 7 has to unify x and ¢, i.e. t7 = x7, as required for (3). O

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 21/24

The general resolution rule

Let Gy, G be clauses with distinct variables such that
C=CU{A,...,A)}, G =CU{~Bi,...,~By},
where S = {A,,..., Ay, Bi,..., By} is unifiable and n, m > 1. Then the clause
C = ClocUCCjo,
where ¢ is a most general unification of S, is the resolvent of C; and G,.
For example, in clauses {P(x), Q(x, z)} and {—P(y),-Q(f(y),y)} we can

unify S = {Q(x, z), Q(f(y),y)} applying a most general unification
o ={x/f(y),z/y}, and then resolve to a clause {P(f(y)),~P(y)}.

Remark The condition on distinct variables can be satisfied by renaming
variables apart. This is sometimes necessary, e.g. from {{P(x)},{—-P(f(x))}}
after renaming we can get O, but { P(x), P(f(x))} is not unifiable.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 22/24

Resolution method in predicate logic Resolution proof

Resolution proof

We have the same notions as in propositional logic, up to renaming variables.

@ Resolution proof (deduction) of a clause C from a formula S is a finite
sequence (y, ..., C, = Csuch that for every i < n, we have C; = Cjo
for some C; € S and a renaming of variables ¢, or C; is a resolvent of
some previous clauses.

@ A clause C is (resolution) provable from S, denoted by Sy C, if it has
a resolution proof from S.

@ A (resolution) refutation of a formula S is a resolution proof of (1 from S.

@ Sis (resolution) refutable if S g O.

Remark Elimination of several literals at once is sometimes necessary, e.g.

S={{P(x),P(y)},{—P(x),~P(y)}} is resolution refutable, but it has no
refutation that eliminates only a single literal in each resolution step.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 23/24

tion method in predicate logic Resolution proof

Resolution in predicate logic - an example

Consider T'= {—=P(x,x), P(x,y) — P(y,x), P(x,y) NP(y,z) — P(x,2)}.
Is T = (3x)-P(x, f(x)) ? Equivalently, is the following T” unsatisfiable?
T" = {{=P(x,x)},{~P(x,¥), P(y,X)}, {~P(x,y), ~P(y, 2), P(x, 2) }, { P(x, f(x)) }}

T'Fr0O / \

(P, 2)) (=P, 2}
/ a0 e
(~P(f(2).2). P (P(),)
i), N P A T
{=P(z,9),~P(y.2), Pz,) @D} {~Play) Py} (PG, f)

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - X WS 2015/2016 24/24

	Skolemization
	Introduction
	Prenex normal form
	Skolem variants
	Skolem's theorem

	Herbrand's theorem
	Introduction
	Herbrand model
	Theorem and corollaries

	Resolution method in predicate logic
	Introduction
	Substitutions
	Unification
	Resolution proof

