Propositional and Predicate Logic - XI

Petr Gregor

KTIML MFF UK

WS 2015/2016

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - XI

(4) (3) (4) (4) (4)

WS 2015/2016 1 / 8

The general resolution rule

Let C_1 , C_2 be clauses with distinct variables such that

 $C_1 = C'_1 \sqcup \{A_1, \ldots, A_n\}, \quad C_2 = C'_2 \sqcup \{\neg B_1, \ldots, \neg B_m\},$

where $S = \{A_1, \dots, A_n, B_1, \dots, B_m\}$ is unifiable and $n, m \ge 1$. Then the clause $C = C_1' \sigma \cup C_2' \sigma$,

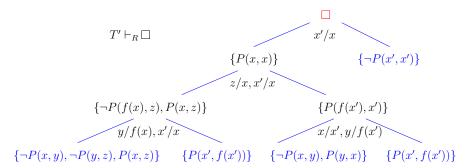
where σ is a most general unification of *S*, is the *resolvent* of *C*₁ and *C*₂.

For example, in clauses $\{P(x), Q(x, z)\}$ and $\{\neg P(y), \neg Q(f(y), y)\}$ we can unify $S = \{Q(x, z), Q(f(y), y)\}$ applying a most general unification $\sigma = \{x/f(y), z/y\}$, and then resolve to a clause $\{P(f(y)), \neg P(y)\}$.

Remark The condition on distinct variables can be satisfied by renaming variables apart. This is sometimes necessary, e.g. from $\{\{P(x)\}, \{\neg P(f(x))\}\}$ after renaming we can get \Box , but $\{P(x), P(f(x))\}$ is not unifiable.

Resolution in predicate logic - an example

Consider $T = \{\neg P(x, x), P(x, y) \rightarrow P(y, x), P(x, y) \land P(y, z) \rightarrow P(x, z)\}.$ Is $T \models (\exists x) \neg P(x, f(x))$? Equivalently, is the following T' unsatisfiable? $T' = \{\{\neg P(x, x)\}, \{\neg P(x, y), P(y, x)\}, \{\neg P(x, y), \neg P(y, z), P(x, z)\}, \{P(x, f(x))\}\}$



イロト イヨト イヨト

Soundness of resolution

First we show soundness of the general resolution rule.

Proposition Let *C* be a resolvent of clauses C_1 , C_2 . For every *L*-structure A,

$$\mathcal{A}\models C_1 \ \text{and} \ \mathcal{A}\models C_2 \ \Rightarrow \ \mathcal{A}\models C.$$

Proof Let $C_1 = C'_1 \sqcup \{A_1, \ldots, A_n\}$, $C_2 = C'_2 \sqcup \{\neg B_1, \ldots, \neg B_m\}$, σ be a most general unification for $S = \{A_1, \ldots, A_n, B_1, \ldots, B_m\}$, and $C = C'_1 \sigma \cup C'_2 \sigma$.

- Since C_1 , C_2 are open, it holds also $\mathcal{A} \models C_1 \sigma$ and $\mathcal{A} \models C_2 \sigma$.
- We have $C_1 \sigma = C'_1 \sigma \cup \{S\sigma\}$ and $C_2 \sigma = C'_2 \sigma \cup \{\neg(S\sigma)\}$.
- We show $\mathcal{A} \models C[e]$ for every *e*. If $\mathcal{A} \models S\sigma[e]$, then $\mathcal{A} \models C'_2\sigma[e]$, and thus $\mathcal{A} \models C[e]$. Otherwise $\mathcal{A} \not\models S\sigma[e]$, so $\mathcal{A} \models C'_1\sigma[e]$, and thus $\mathcal{A} \models C[e]$. \Box

Theorem (soundness) If *S* is resolution refutable, then *S* is unsatisfiable. *Proof* Let $S \vdash_R \Box$. Suppose $\mathcal{A} \models S$ for some structure \mathcal{A} . By soundness of the general resolution rule we have $\mathcal{A} \models \Box$, which is impossible.

Lifting lemma

A resolution proof on propositional level can be "lifted" to predicate level. **Lemma** Let $C_1^* = C_1\tau_1$, $C_2^* = C_2\tau_2$ be ground instances of clauses C_1 , C_2 with distinct variables and C^* be a resolvent of C_1^* a C_2^* . Then there exists a resolvent *C* of C_1 and C_2 such that $C^* = C\tau_1\tau_2$ is a ground instance of *C*. *Proof* Assume that C^* is a resolvent of C_1^* , C_2^* through a literal $P(t_1, \ldots, t_k)$.

- We have $C_1 = C'_1 \sqcup \{A_1, \ldots, A_n\}$ and $C_2 = C'_2 \sqcup \{\neg B_1, \ldots, \neg B_m\}$, where $\{A_1, \ldots, A_n\}\tau_1 = \{P(t_1, \ldots, t_k)\}$ and $\{\neg B_1, \ldots, \neg B_m\}\tau_2 = \{\neg P(t_1, \ldots, t_k)\}$
- Thus $(\tau_1\tau_2)$ unifies $S = \{A_1, \ldots, A_n, B_1, \ldots, B_m\}$ and if σ is mgu of S from the unification algorithm, then $C = C'_1 \sigma \cup C'_2 \sigma$ is a resolvent of C_1 , C_2 .
- Moreover, $(\tau_1 \tau_2) = \sigma(\tau_1 \tau_2)$ by the property (*) for σ , and hence

$$\begin{aligned} C\tau_{1}\tau_{2} &= (C_{1}'\sigma \cup C_{2}'\sigma)\tau_{1}\tau_{2} = C_{1}'\sigma\tau_{1}\tau_{2} \cup C_{2}'\sigma\tau_{1}\tau_{2} = C_{1}'\tau_{1} \cup C_{2}'\tau_{2} \\ &= (C_{1} \setminus \{A_{1}, \dots, A_{n}\})\tau_{1} \cup (C_{2} \setminus \{\neg B_{1}, \dots, \neg B_{m}\})\tau_{2} \\ &= (C_{1}^{*} \setminus \{P(t_{1}, \dots, t_{k})\}) \cup (C_{2}^{*} \setminus \{\neg P(t_{1}, \dots, t_{k})\}) = C^{*}. \end{aligned}$$

イロン イヨン イヨン

Completeness

Corollary Let *S'* be the set of all ground instances of clauses of formula *S*. If $S' \vdash_R C'$ (on prop. level) where *C'* is a ground clause, then $C' = C\sigma$ for some clause *C* and a ground substitution σ such that $S \vdash_R C$ (on pred. level). *Proof* By induction on the length of resolution proof using lifting lemma. \Box

Theorem (completeness) If *S* is unsatisfiable, then $S \vdash_R \Box$.

Proof If *S* is unsatisfiable, then by the (corollary of) Herbrand's theorem, also the set S' of all ground instances of clauses of *S* is unsatisfiable.

- By completeness of resolution in prop. logic, $S' \vdash_R \Box$ (on prop. level).
- By the above corollary, there is a clause *C* and a ground substitution *σ* such that □ = C*σ* and S ⊢_R C (on pred. level).
- The only clause that has \Box as a ground instance is the clause $C = \Box$.

・ロット (母) ・ ヨ) ・ ヨ)

Hilbert's calculus in predicate logic

- basic connectives and quantifier: \neg , \rightarrow , $(\forall x)$ (others are derived)
- allows to prove any formula (not just sentences)
- logical axioms (schemes of axioms):

 $\begin{array}{ll} (i) & \varphi \to (\psi \to \varphi) \\ (ii) & (\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi)) \\ (iii) & (\neg \varphi \to \neg \psi) \to (\psi \to \varphi) \\ (iv) & (\forall x) \varphi \to \varphi(x/t) & \text{if } t \text{ is substitutable for } x \text{ to } \varphi \\ (v) & (\forall x) (\varphi \to \psi) \to (\varphi \to (\forall x) \psi) & \text{if } x \text{ is not free in } \varphi \\ \text{where } \varphi, \psi, \chi \text{ are any formulas (of a given language), } t \text{ is any term,} \end{array}$

and x is any variable

- in a language with equality we include also the axioms of equality
- rules of inference

$$\frac{\varphi, \ \varphi \to \psi}{\psi} \quad \text{(modus ponens),}$$

$$rac{arphi}{(orall x)arphi}$$
 (generalization)

Hilbert-style proofs

A *proof* (in *Hilbert-style*) of a formula φ from a theory *T* is a finite sequence $\varphi_0, \ldots, \varphi_n = \varphi$ of formulas such that for every $i \leq n$

- φ_i is a logical axiom or $\varphi_i \in T$ (an axiom of the theory), or
- φ_i can be inferred from the previous formulas applying a rule of inference.

A formula φ is *provable* from *T* if it has a proof from *T*, denoted by $T \vdash_H \varphi$.

Theorem (soundness) For every theory *T* and formula φ , $T \vdash_H \varphi \Rightarrow T \models \varphi$. *Proof*

- If φ is an axiom (logical or from *T*), then $T \models \varphi$ (I. axioms are tautologies),
- if $T \models \varphi$ and $T \models \varphi \rightarrow \psi$, then $T \models \psi$, i.e. modus ponens is sound,
- if $T \models \varphi$, then $T \models (\forall x)\varphi$, i.e. generalization is sound,
- thus every formula in a proof from T is valid in T.

Remark The completeness holds as well, i.e. $T \models \varphi \Rightarrow T \vdash_H \varphi$.