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Model theory Algebraic theories

Basic algebraic theories
theory of groups in the language L = 〈+,−, 0〉 with equality has axioms

x + (y + z) = (x + y) + z (associativity of +)
0 + x = x = x + 0 (0 is neutral to +)
x + (−x) = 0 = (−x) + x (−x is inverse of x)

theory of Abelian groups has moreover ax. x + y = y + x (commutativity)

theory of rings in L = 〈+,−, ·, 0, 1〉 with equality has moreover axioms
1 · x = x = x · 1 (1 is neutral to ·)
x · (y · z) = (x · y) · z (associativity of ·)
x · (y + z) = x · y + x · z, (x + y) · z = x · z + y · z (distributivity)

theory of commutative rings has moreover ax. x · y = y · x (commutativity)

theory of fields in the same language has additional axioms
x 6= 0→ (∃y)(x · y = 1) (existence of inverses to ·)
0 6= 1 (nontriviality)
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Model theory Elementary equivalence

Theories of structures
What holds in particular structures?

The theory of a structure A is the set Th(A) of all sentences (of the same
language) that are valid in A.

Observation For every structure A and a theory T of a language L,

(i) Th(A) is a complete theory,

(ii) if A |= T , then Th(A) is a simple (complete) extension of T ,

(iii) if A |= T and T is complete, then Th(A) is equivalent with T ,
i.e. θL(T ) = Th(A).

E.g. Th(N) where N = 〈N, S,+, ·, 0,≤〉 is the arithmetics of natural numbers.

Remark Later, we will see that Th(N) is (algorithmically) undecidable
although it is complete.
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Model theory Elementary equivalence

Elementary equivalence

Structures A and B of a language L are elementarily equivalent, denoted
A ≡ B, if they satisfy the same sentences (of L), i.e. Th(A) = Th(B).

For example, 〈R,≤〉 ≡ 〈Q,≤〉 and 〈Q,≤〉 6≡ 〈Z,≤〉 since every element
has an immediate successor in 〈Z,≤〉 but not in 〈Q,≤〉.

T is complete iff it has a single model, up to elementary equivalence.

For example, the theory of dense linear orders without ends (DeLO).

How to describe models of a given theory (up to elementary equivalence)?

Observation For every models A, B of a theory T , A ≡ B if and only if
Th(A), Th(B) are equivalent (simple complete extensions of T ).

Remark If we can describe effectively (recursively) for a given theory T

all simple complete extensions of T , then T is (algorithmically) decidable.
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Model theory Elementary equivalence

Simple complete extensions - an example
The theory DeLO∗ of dense linear orders of L = 〈≤〉 with equality has axioms

x ≤ x (reflexivity)
x ≤ y ∧ y ≤ x → x = y (antisymmetry)
x ≤ y ∧ y ≤ z → x ≤ z (transitivity)
x ≤ y ∨ y ≤ x (dichotomy)
x < y → (∃z) (x < z ∧ z < y) (density)
(∃x)(∃y)(x 6= y) (nontriviality)

where ‘x < y ’ is a shortcut for ‘x ≤ y ∧ x 6= y ’.

Let ϕ, ψ be the sentences (∃x)(∀y)(x ≤ y), resp. (∃x)(∀y)(y ≤ x). We will see

DeLO = DeLO∗ ∪ {¬ϕ,¬ψ}, DeLO± = DeLO∗ ∪ {ϕ,ψ},
DeLO+ = DeLO∗ ∪ {¬ϕ,ψ}, DeLO− = DeLO∗ ∪ {ϕ,¬ψ}

are the all (nonequivalent) simple complete extensions of the theory DeLO∗.
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Model theory Elementary equivalence

Corollary of the theorem on countable models
We already know the following theorem, by a canonical model (with equality).

Theorem Let T be a consistent theory of a countable language L. If L is
without equality, then T has a countably infinite model. If L is with equality,
then T has a model that is countable (finite or countably infinite).

Corollary For every structure A of a countable language without equality
there exists a countably infinite structure B with A ≡ B.

Proof Th(A) is consistent since it has a model A. By the previous theorem,
it has a countably inf. model B. Since Th(A) is complete, we have A ≡ B.

Corollary For every infinite structure A of a countable language with equality
there exists a countably infinite structure B with A ≡ B.

Proof Similarly as above. Since the sentence “there is exactly n elements” is
false in A for all n and A ≡ B, it follows that B is infinite.
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Model theory Elementary equivalence

A countable algebraically closed field

We say that a field A is algebraically closed if every polynomial (of nonzero
degree) has a root in A; that is, for every n ≥ 1 we have

A |= (∀xn−1) . . . (∀x0)(∃y)(yn + xn−1 · yn−1 + · · ·+ x1 · y + x0 = 0)

where yk is a shortcut for the term y · y · · · · · y ( · applied (k − 1)-times).

For example, the field C = 〈C,+,−, ·, 0, 1〉 is algebraically closed, whereas
the fields R and Q are not (since the polynomial x2 + 1 has no root in them).

Corollary There exists a countable algebraically closed field.

Proof By the previous corollary, there is a countable structure elementarily
equivalent with the field C. Hence it is algebraically closed as well.
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Model theory Isomorphism

Isomorphisms of structures
Let A and B be structures of a language L = 〈F ,R〉.

A bijection h : A → B is an isomorphism of structures A and B if both

(i) h(f A(a1, . . . ,an)) = f B(h(a1), . . . ,h(an))

for every n-ary function symbol f ∈ F and every a1, . . . ,an ∈ A,

(ii) RA(a1, . . . ,an) ⇔ RB(h(a1), . . . ,h(an))

for every n-ary relation symbol R ∈ R and every a1, . . . ,an ∈ A.

A and B are isomorphic (via h), denoted A ' B (A 'h B), if there is
an isomorphism h of A and B. We also say that A is isomorphic with B.

An automorphism of a structure A is an isomorphism of A with A.

For example, the power set algebra P(X ) = 〈P(X ),−,∩,∪, ∅,X 〉 with X = n is
isomorphic to the Boolean algebra n2 = 〈n2,−n,∧n,∨n, 0n, 1n〉 via h : A 7→ χA

where χA is the characteristic function of the set A ⊆ X .
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Model theory Isomorphism

Isomorphisms and semantics
We will see that isomorphism preserves semantics.

Proposition Let A and B be structures of a language L = 〈F ,R〉. A bijection
h : A → B is an isomorphism of A and B if and only if both

(i) h(t A[e]) = t B[he] for every term t and e : Var→ A,
(ii) A |= ϕ[e] ⇔ B |= ϕ[he] for every formula ϕ and e : Var→ A.

Proof (⇒) By induction on the structure of the term t , resp. the formula ϕ.
(⇐) By applying (i) for each term f (x1, . . . , xn) or (ii) for each atomic formula
R(x1, . . . , xn) and assigning e(xi) = ai we verify that h is an isomorphism.

Corollary For every structures A and B of the same language,

A ' B ⇒ A ≡ B.
Remark The other implication (⇐) does not hold in general. For example,
〈Q,≤〉 ≡ 〈R,≤〉 but 〈Q,≤〉 6' 〈R,≤〉 since |Q| = ω and |R| = 2ω.
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Model theory Isomorphism

Finite models in language with equality
Proposition For every finite structures A, B of a language with equality,

A ≡ B ⇒ A ' B.
Proof It holds |A| = |B| since we can express “there are exactly n elements”.

Let A′ be expansion of A to L′ = L ∪ {ca}a∈A by names of elements of A.
We show that B has an expansion B′ to L′ such that A′ ≡ B′. Then
clearly h : a 7→ cB′

a is an isomorfism of A′ to B′, and thus also of A to B.
If suffices to find b ∈ B for every cA′

a = a ∈ A such that 〈A,a〉 ≡ 〈B,b〉.
Let Ω be set of all formulas ϕ(x) s.t. 〈A,a〉 |= ϕ(x/ca), i.e. A |= ϕ[e(x/a)]

Since A is finite, there are finitely many formulas ϕ0(x), . . . , ϕm(x) such
that for every ϕ ∈ Ω it holds A |= ϕ↔ ϕi for some i.
Since B ≡ A |= (∃x)

∧
i≤m ϕi, there exists b ∈ B s.t. B |=

∧
i≤m ϕi[e(x/b)].

Hence for every ϕ ∈ Ω it holds B |= ϕ[e(x/b)], i.e. 〈B,b〉 |= ϕ(x/ca).

Corollary If a complete theory T in a language with equality has a finite
model, then all models of T are isomorphic.
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Model theory Categoricity

Categoricity

An (isomorphism) spectrum of a theory T is given by the number I (κ,T )

of mutually nonisomorphic models of T for every cardinality κ.

A theory T is κ-categorical if it has exactly one (up to isomorphism)
model of cardinality κ, i.e. I (κ,T ) = 1.

Proposition The theory DeLO (i.e. “without ends”) is ω-categorical.

Proof Let A, B |= DeLO with A = {ai}i∈N, B = {bi}i∈N. By induction on n we
can find injective partial functions hn ⊆ hn+1 ⊂ A × B preserving the ordering
s.t. {ai}i<n ⊆ dom(hn) and {bi}i<n ⊆ rng(hn). Then A ' B via h = ∪hn.

Similarly we obtain that (e.g.) A = 〈Q,≤〉, A � (0, 1], A � [0, 1), A � [0, 1]

are (up to isomorphism) all countable models of DeLO∗. Then

I (κ,DeLO∗) =

{
0 for κ ∈ N,
4 for κ = ω.
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Model theory Categoricity

ω-categorical criterium of completeness

Theorem Let L be at most countable language.

(i) If a theory T in L without equality is ω-categorical, then it is complete.

(ii) If a theory T in L with equality is ω-categorical and without finite
models, then it is complete.

Proof Every model of T is elementarily equivalent with some countably
infinite model of T , but such model is unique up to isomorphism. Thus all
models of T are elementarily equivalent, i.e. T is complete.

For example, DeLO, DeLO+, DeLO−, DeLO± are complete and they are
the all (mutually nonequivalent) simple complete extensions of DeLO∗.

Remark A similar criterium holds also for cardinalities bigger than ω.
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Undecidability Introduction

Recursive and recursively enumerable sets
Which problems are algorithmically solvable?

The notion of “algorithm” can be rigorously formalized (e.g. by TM).

We may encode decision problems into sets of natural numbers
corresponding to the positive instances (with answer yes). For example,

SAT = {dϕe | ϕ is a satisfiable proposition in CNF}.

A set A ⊆ N is recursive if there is an algorithm that for every input
x ∈ N halts and correctly tells whether or not x ∈ A. We say that such
algorithm decides x ∈ A.
A set A ⊆ N is recursively enumerable (r. e.) if there is an algorithm that
for every input x ∈ N halts if and only if x ∈ A. We say that such algorithm
recognizes x ∈ A. Equivalently, A is recursively enumerable if there is an
algorithm that generates (i.e. enumerates) all elements of A.

Observation For every A ⊆ N it holds that A is recursive⇔ A, A are r. e.
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Undecidability Decidable theories

Decidable theories

Is the truth in a given theory algorithmically decidable?

We (always) assume that the language L is recursive. A theory T of L is
decidable if Thm(T ) is recursive; otherwise, T is undecidable.

Proposition For every theory T of L with recursively enumerable axioms,

(i) Thm(T ) is recursively enumerable,

(ii) if T is complete, then Thm(T ) is recursive, i.e. T is decidable.

Proof The construction of systematic tableau from T with a root Fϕ assumes
a given enumeration of axioms of T . Since T has recursively enumerable
axioms, the construction provides an algorithm that recognizes T ` ϕ.

If T is complete, then T 6` ϕ if and only if T ` ¬ϕ for every sentence ϕ.
Hence, the parallel construction of systematic tableaux from T with roots Fϕ

resp. Tϕ provides an algorithm that decides T ` ϕ.
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Undecidability Decidable theories

Recursively enumerable complete extensions
What happens if we are able to describe all simple complete extensions?

We say that the set of all (up to equivalence) simple complete extensions of
a theory T is recursively enumerable if there exists an algorithm α(i, j) that
generates i-th axiom of j-th extension (in some enumeration) or announces
that it (such an axiom or an extension) does not exist.

Proposition If a theory T has recursively enumerable axioms and the set of
all (up to equivalence) simple complete extensions of T is recursively
enumerable, then T is decidable.

Proof By the previous proposition there is an algorithm to recognize T ` ϕ.
On the other hand, if T 6` ϕ then T ′ ` ¬ϕ is some simple complete extension
T ′ of T . This can be recognized by parallel construction of systematic
tableaux with root Tϕ from all extensions. In the i-th step we construct
tableaux up to i levels for the first i extensions.
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Undecidability Decidable theories

Examples of decidable theories

The following theories are decidable although not complete.

the theory of pure equality; with no axioms, in L = 〈〉 with equality,

the theory of unary predicate; with no axioms, in L = 〈U 〉 with equality,
where U is a unary relation symbol,

the theory of dense linear orders DeLO∗,

the theory of algebraically closed fields in L = 〈+,−, ·, 0, 1〉 with equality,
with the axioms of fields, and moreover the axioms for all n ≥ 1,

(∀xn−1) . . . (∀x0)(∃y)(yn + xn−1 · yn−1 + · · ·+ x1 · y + x0 = 0),

where yk is a shortcut for the term y · y · · · · · y ( · applied (k − 1)-times).

the theory of Abelian groups,

the theory of Boolean algebras.
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Undecidability Recursive axiomatizability

Recursive axiomatizability

Can we “effectively” describe common mathematical structures?

A class K ⊆ M(L) is recursively axiomatizable if there exists a recursive
theory T of language L with M(T ) = K .

A theory T is recursively axiomatizable if M(T ) is recursively
axiomatizable, i.e. there is an equivalent recursive theory.

Proposition For every finite structure A of a finite language with equality
the theory Th(A) is recursively axiomatizable. Thus, Th(A) is decidable.

Proof Let A = {a1, . . . ,an}. Th(A) can be axiomatized by a single sentence
(thus recursively) that describes A. It is of the form “there are exactly n

elements a1, . . . ,an satisfying exactly those atomic formulas on function
values and relations that are valid in the structure A.”
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Undecidability Recursive axiomatizability

Examples of recursive axiomatizability

The following structures A have recursively axiomatizable Th(A).

〈Z,≤〉, by the theory of discrete linear orderings,

〈Q,≤〉, by the theory of dense linear orderings without ends (DeLO),

〈N, S, 0〉, by the theory of successor with zero,

〈N, S,+, 0〉, by so called Presburger arithmetic,

〈R,+,−, ·, 0, 1〉, by the theory of real closed fields,

〈C,+,−, ·, 0, 1〉, by the theory of algebraically closed fields with
characteristic 0.

Corollary For all the above structures A the theory Th(A) is decidable.

Remark However, N = 〈N, S,+, ·, 0,≤〉 is not recursively axiomatizable.
(This follows from the Gödel’s incompleteness theorem).
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