Propositional and Predicate Logic - XI

Petr Gregor

KTIML MFF UK

WS 2015/2016

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - XI

WS 2015/2016 1 / 18

Basic algebraic theories

- theory of *groups* in the language $L=\langle +,-,0\rangle$ with equality has axioms
 - x + (y + z) = (x + y) + z(associativity of +)0 + x = x = x + 0(0 is neutral to +)x + (-x) = 0 = (-x) + x(-x is inverse of x)
- theory of *Abelian groups* has moreover ax. x + y = y + x (commutativity)
- theory of *rings* in L = ⟨+, -, ·, 0, 1⟩ with equality has moreover axioms
 - $1 \cdot x = x = x \cdot 1$ (1 is neutral to ·)
 - $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ (associativity of ·)
 - $x \cdot (y+z) = x \cdot y + x \cdot z, (x+y) \cdot z = x \cdot z + y \cdot z$ (distributivity)
- theory of *commutative rings* has moreover ax. $x \cdot y = y \cdot x$ (commutativity)
- theory of *fields* in the same language has additional axioms
 - $\begin{array}{ll} x \neq 0 \to (\exists y) (x \cdot y = 1) & \mbox{(existence of inverses to \cdot)} \\ 0 \neq 1 & \mbox{(nontriviality)} \end{array}$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Theories of structures

What holds in particular structures?

The *theory of a structure* A is the set Th(A) of all sentences (of the same language) that are valid in A.

Observation For every structure A and a theory T of a language L,

- (i) Th(A) is a complete theory,
- (*ii*) if $A \models T$, then Th(A) is a simple (complete) extension of *T*,
- (*iii*) if $A \models T$ and T is complete, then Th(A) is equivalent with T, *i.e.* $\theta^L(T) = \text{Th}(A)$.

E.g. Th($\underline{\mathbb{N}}$) where $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ is the arithmetics of natural numbers.

Remark Later, we will see that $Th(\underline{\mathbb{N}})$ is (algorithmically) undecidable although it is complete.

Petr Gregor (KTIML MFF UK)

Elementary equivalence

- Structures A and B of a language L are *elementarily equivalent*, denoted A ≡ B, if they satisfy the same sentences (of L), i.e. Th(A) = Th(B).
 For example, ⟨ℝ, ≤⟩ ≡ ⟨ℚ, ≤⟩ and ⟨ℚ, ≤⟩ ≢ ⟨ℤ, ≤⟩ since every element has an immediate successor in ⟨ℤ, <⟩ but not in ⟨ℚ, <⟩.
- *T* is complete iff it has a single model, up to elementary equivalence. For example, the theory of dense linear orders without ends (DeLO).

How to describe models of a given theory (up to elementary equivalence)? *Observation* For every models A, B of a theory T, $A \equiv B$ if and only if Th(A), Th(B) are equivalent (simple complete extensions of T).

Remark If we can describe effectively (recursively) for a given theory *T* all simple complete extensions of *T*, then *T* is (algorithmically) decidable.

Simple complete extensions - an example

The theory *DeLO*^{*} of dense linear orders of $L = \langle \leq \rangle$ with equality has axioms

$x \leq x$	(reflexivity)
$x \leq y \land y \leq x \rightarrow x = y$	(antisymmetry)
$x \leq y ~\wedge~ y \leq z ~ ightarrow~ x \leq z$	(transitivity)
$x \leq y \lor y \leq x$	(dichotomy)
$x < y \rightarrow (\exists z) \ (x < z \land z < y)$	(density)
$(\exists x)(\exists y)(x \neq y)$	(nontriviality)

where 'x < y' is a shortcut for ' $x \le y \land x \ne y$ '.

Let φ , ψ be the sentences $(\exists x)(\forall y)(x \leq y)$, resp. $(\exists x)(\forall y)(y \leq x)$. We will see

$$\begin{split} DeLO &= DeLO^* \cup \{\neg \varphi, \neg \psi\}, \qquad DeLO^{\pm} = DeLO^* \cup \{\varphi, \psi\}, \\ DeLO^+ &= DeLO^* \cup \{\neg \varphi, \psi\}, \qquad DeLO^- = DeLO^* \cup \{\varphi, \neg \psi\} \end{split}$$

are the all (nonequivalent) simple complete extensions of the theory DeLO*.

Corollary of the theorem on countable models

We already know the following theorem, by a canonical model (with equality). **Theorem** Let *T* be a consistent theory of a countable language *L*. If *L* is without equality, then *T* has a countably infinite model. If *L* is with equality, then *T* has a model that is countable (finite or countably infinite).

Corollary For every structure A of a countable language without equality there exists a countably infinite structure B with $A \equiv B$.

Proof $\operatorname{Th}(\mathcal{A})$ is consistent since it has a model \mathcal{A} . By the previous theorem, it has a countably inf. model \mathcal{B} . Since $\operatorname{Th}(\mathcal{A})$ is complete, we have $\mathcal{A} \equiv \mathcal{B}$.

Corollary For every infinite structure A of a countable language with equality there exists a countably infinite structure B with $A \equiv B$.

Proof Similarly as above. Since the sentence *"there is exactly n elements"* is false in A for all *n* and $A \equiv B$, it follows that *B* is infinite.

A countable algebraically closed field

We say that a field A is *algebraically closed* if every polynomial (of nonzero degree) has a root in A; that is, for every $n \ge 1$ we have

 $\mathcal{A} \models (\forall x_{n-1}) \dots (\forall x_0) (\exists y) (y^n + x_{n-1} \cdot y^{n-1} + \dots + x_1 \cdot y + x_0 = 0)$

where y^k is a shortcut for the term $y \cdot y \cdot \cdots \cdot y$ (\cdot applied (k - 1)-times).

For example, the field $\underline{\mathbb{C}} = \langle \mathbb{C}, +, -, \cdot, 0, 1 \rangle$ is algebraically closed, whereas the fields $\underline{\mathbb{R}}$ and \mathbb{Q} are not (since the polynomial $x^2 + 1$ has no root in them).

Corollary There exists a countable algebraically closed field.

Proof By the previous corollary, there is a countable structure elementarily equivalent with the field $\underline{\mathbb{C}}$. Hence it is algebraically closed as well. \Box

Isomorphisms of structures

Let \mathcal{A} and \mathcal{B} be structures of a language $L = \langle \mathcal{F}, \mathcal{R} \rangle$.

- A bijection $h: A \rightarrow B$ is an *isomorphism* of structures \mathcal{A} and \mathcal{B} if both
 - (*i*) $h(f^A(a_1,...,a_n)) = f^B(h(a_1),...,h(a_n))$

for every *n*-ary function symbol $f \in \mathcal{F}$ and every $a_1, \ldots, a_n \in A$, (*ii*) $R^A(a_1, \ldots, a_n) \Leftrightarrow R^B(h(a_1), \ldots, h(a_n))$

for every *n*-ary relation symbol $R \in \mathcal{R}$ and every $a_1, \ldots, a_n \in A$.

- A and B are *isomorphic* (via h), denoted A ≃ B (A ≃_h B), if there is an isomorphism h of A and B. We also say that A is *isomorphic with* B.
- An *automorphism* of a structure A is an isomorphism of A with A.

For example, the power set algebra $\underline{\mathcal{P}}(X) = \langle \mathcal{P}(X), -, \cap, \cup, \emptyset, X \rangle$ with X = n is isomorphic to the Boolean algebra $\underline{n2} = \langle n2, -n, \wedge_n, \vee_n, \mathbf{0}_n, \mathbf{1}_n \rangle$ via $h : A \mapsto \chi_A$ where χ_A is the characteristic function of the set $A \subseteq X$.

Isomorphisms and semantics

We will see that isomorphism preserves semantics.

Proposition Let A and B be structures of a language $L = \langle F, R \rangle$. A bijection $h: A \to B$ is an isomorphism of A and B if and only if both

 $\begin{array}{ll} (i) & h(t^{A}[e]) = t^{B}[he] & \text{ for every term } t \text{ and } e \colon \mathrm{Var} \to A, \\ (ii) & \mathcal{A} \models \varphi[e] \Leftrightarrow & \mathcal{B} \models \varphi[he] & \text{ for every formula } \varphi \text{ and } e \colon \mathrm{Var} \to A. \end{array}$

Proof (\Rightarrow) By induction on the structure of the term *t*, resp. the formula φ . (\Leftarrow) By applying (*i*) for each term $f(x_1, \ldots, x_n)$ or (*ii*) for each atomic formula $R(x_1, \ldots, x_n)$ and assigning $e(x_i) = a_i$ we verify that *h* is an isomorphism. \Box

Corollary For every structures A and B of the same language,

 $\mathcal{A} \simeq \mathcal{B} \Rightarrow \mathcal{A} \equiv \mathcal{B}.$

Remark The other implication (\Leftarrow) does not hold in general. For example, $\langle \mathbb{Q}, \leq \rangle \equiv \langle \mathbb{R}, \leq \rangle$ but $\langle \mathbb{Q}, \leq \rangle \not\simeq \langle \mathbb{R}, \leq \rangle$ since $|\mathbb{Q}| = \omega$ and $|\mathbb{R}| = 2^{\omega}$.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Finite models in language with equality

Proposition For every finite structures A, B of a language with equality,

 $\mathcal{A} \equiv \mathcal{B} \ \Rightarrow \ \mathcal{A} \simeq \mathcal{B}.$

Proof It holds |A| = |B| since we can express *"there are exactly n elements"*.

- Let \mathcal{A}' be expansion of \mathcal{A} to $L' = L \cup \{c_a\}_{a \in A}$ by names of elements of A.
- We show that \mathcal{B} has an expansion \mathcal{B}' to L' such that $\mathcal{A}' \equiv \mathcal{B}'$. Then clearly $h: a \mapsto c_a^{\mathcal{B}'}$ is an isomorfism of \mathcal{A}' to \mathcal{B}' , and thus also of \mathcal{A} to \mathcal{B} .
- If suffices to find $b \in B$ for every $c_a^{A'} = a \in A$ such that $\langle \mathcal{A}, a \rangle \equiv \langle \mathcal{B}, b \rangle$.
- Let Ω be set of all formulas $\varphi(x)$ s.t. $\langle \mathcal{A}, a \rangle \models \varphi(x/c_a)$, i.e. $\mathcal{A} \models \varphi[e(x/a)]$
- Since A is finite, there are finitely many formulas φ₀(x),...,φ_m(x) such that for every φ ∈ Ω it holds A ⊨ φ ↔ φ_i for some *i*.
- Since $\mathcal{B} \equiv \mathcal{A} \models (\exists x) \bigwedge_{i \leq m} \varphi_i$, there exists $b \in B$ s.t. $\mathcal{B} \models \bigwedge_{i \leq m} \varphi_i[e(x/b)]$.
- Hence for every $\varphi \in \Omega$ it holds $\mathcal{B} \models \varphi[e(x/b)]$, i.e. $\langle \mathcal{B}, b \rangle \models \varphi(x/c_a)$. \Box

Corollary If a complete theory *T* in a language with equality has a finite model, then all models of *T* are isomorphic.

Categoricity

- An (isomorphism) *spectrum* of a theory *T* is given by the number $I(\kappa, T)$ of mutually nonisomorphic models of *T* for every cardinality κ .
- A theory T is κ-categorical if it has exactly one (up to isomorphism) model of cardinality κ, i.e. I(κ, T) = 1.

Proposition The theory DeLO (i.e. "without ends") is ω -categorical.

Proof Let $\mathcal{A}, \mathcal{B} \models DeLO$ with $A = \{a_i\}_{i \in \mathbb{N}}, B = \{b_i\}_{i \in \mathbb{N}}$. By induction on n we can find injective partial functions $h_n \subseteq h_{n+1} \subset A \times B$ preserving the ordering s.t. $\{a_i\}_{i < n} \subseteq \operatorname{dom}(h_n)$ and $\{b_i\}_{i < n} \subseteq \operatorname{rng}(h_n)$. Then $\mathcal{A} \simeq \mathcal{B}$ via $h = \cup h_n$.

Similarly we obtain that (e.g.) $\mathcal{A} = \langle \mathbb{Q}, \leq \rangle$, $\mathcal{A} \upharpoonright (0,1]$, $\mathcal{A} \upharpoonright [0,1)$, $\mathcal{A} \upharpoonright [0,1]$ are (up to isomorphism) all countable models of $DeLO^*$. Then

$$I(\kappa, \textit{DeLO}^*) = \begin{cases} 0 & \text{for } \kappa \in \mathbb{N}, \\ 4 & \text{for } \kappa = \omega. \end{cases}$$

Categoricity

$\omega\text{-}categorical criterium of completeness}$

Theorem Let *L* be at most countable language.

- (*i*) If a theory T in L without equality is ω -categorical, then it is complete.
- (*ii*) If a theory T in L with equality is ω -categorical and without finite models, then it is complete.

Proof Every model of T is elementarily equivalent with some countably infinite model of T, but such model is unique up to isomorphism. Thus all models of T are elementarily equivalent, i.e. T is complete.

For example, DeLO, $DeLO^+$, $DeLO^-$, $DeLO^\pm$ are complete and they are the all (mutually nonequivalent) simple complete extensions of $DeLO^*$.

Remark A similar criterium holds also for cardinalities bigger than ω .

Recursive and recursively enumerable sets

Which problems are algorithmically solvable?

- The notion of "algorithm" can be rigorously formalized (e.g. by TM).
- We may encode decision problems into sets of natural numbers corresponding to the positive instances (with answer yes). For example,
 SAT = { [φ] | φ is a satisfiable proposition in CNF}.
- A set A ⊆ N is *recursive* if there is an algorithm that for every input x ∈ N halts and correctly tells whether or not x ∈ A. We say that such algorithm decides x ∈ A.
- A set A ⊆ N is recursively enumerable (r. e.) if there is an algorithm that for every input x ∈ N halts if and only if x ∈ A. We say that such algorithm recognizes x ∈ A. Equivalently, A is recursively enumerable if there is an algorithm that generates (i.e. enumerates) all elements of A.

Observation For every $A \subseteq \mathbb{N}$ it holds that A is recursive $\Leftrightarrow A$, \overline{A} are r. e.

Decidable theories

Is the truth in a given theory algorithmically decidable?

We (always) assume that the language *L* is recursive. A theory *T* of *L* is *decidable* if Thm(T) is recursive; otherwise, *T* is *undecidable*.

Proposition For every theory T of L with recursively enumerable axioms,

- (i) Thm(T) is recursively enumerable,
- (*ii*) if T is complete, then Thm(T) is recursive, i.e. T is decidable.

Proof The construction of systematic tableau from *T* with a root $F\varphi$ assumes a given enumeration of axioms of *T*. Since *T* has recursively enumerable axioms, the construction provides an algorithm that recognizes $T \vdash \varphi$. If *T* is complete, then $T \not\vdash \varphi$ if and only if $T \vdash \neg \varphi$ for every sentence φ . Hence, the parallel construction of systematic tableaux from *T* with roots $F\varphi$

resp. $T\varphi$ provides an algorithm that decides $T \vdash \varphi$. \Box

Recursively enumerable complete extensions

What happens if we are able to describe all simple complete extensions?

We say that the set of all (up to equivalence) simple complete extensions of a theory *T* is *recursively enumerable* if there exists an algorithm $\alpha(i, j)$ that generates *i*-th axiom of *j*-th extension (in some enumeration) or announces that it (such an axiom or an extension) does not exist.

Proposition If a theory *T* has recursively enumerable axioms and the set of all (up to equivalence) simple complete extensions of *T* is recursively enumerable, then *T* is decidable.

Proof By the previous proposition there is an algorithm to recognize $T \vdash \varphi$. On the other hand, if $T \not\vdash \varphi$ then $T' \vdash \neg \varphi$ is some simple complete extension T' of T. This can be recognized by parallel construction of systematic tableaux with root $T\varphi$ from all extensions. In the *i*-th step we construct tableaux up to *i* levels for the first *i* extensions. \Box

Examples of decidable theories

The following theories are decidable although not complete.

- the theory of pure equality; with no axioms, in $L = \langle \rangle$ with equality,
- the theory of unary predicate; with no axioms, in $L = \langle U \rangle$ with equality, where U is a unary relation symbol,
- the theory of dense linear orders DeLO*,
- the theory of algebraically closed fields in $L = \langle +, -, \cdot, 0, 1 \rangle$ with equality, with the axioms of fields, and moreover the axioms for all $n \ge 1$,

 $(\forall x_{n-1})\ldots(\forall x_0)(\exists y)(y^n+x_{n-1}\cdot y^{n-1}+\cdots+x_1\cdot y+x_0=0),$

where y^k is a shortcut for the term $y \cdot y \cdot \cdots \cdot y$ (\cdot applied (k-1)-times).

- the theory of Abelian groups,
- the theory of Boolean algebras.

Recursive axiomatizability

Can we "effectively" describe common mathematical structures?

- A class K ⊆ M(L) is *recursively axiomatizable* if there exists a recursive theory T of language L with M(T) = K.
- A theory *T* is recursively axiomatizable if M(T) is recursively axiomatizable, i.e. there is an equivalent recursive theory.

Proposition For every finite structure A of a finite language with equality the theory Th(A) is recursively axiomatizable. Thus, Th(A) is decidable.

Proof Let $A = \{a_1, ..., a_n\}$. Th(A) can be axiomatized by a single sentence (thus recursively) that describes A. It is of the form *"there are exactly n elements a*₁,..., *a_n satisfying exactly those atomic formulas on function values and relations that are valid in the structure A."*

Examples of recursive axiomatizability

The following structures \mathcal{A} have recursively axiomatizable $Th(\mathcal{A})$.

- $\langle \mathbb{Z}, \leq \rangle$, by the theory of discrete linear orderings,
- $\langle \mathbb{Q}, \leq \rangle$, by the theory of dense linear orderings without ends (*DeLO*),
- $\langle \mathbb{N}, S, \mathbf{0} \rangle$, by the theory of successor with zero,
- $\langle \mathbb{N}, S, +, 0 \rangle$, by so called Presburger arithmetic,
- $\langle \mathbb{R}, +, -, \cdot, 0, 1 \rangle$, by the theory of real closed fields,
- $\langle \mathbb{C},+,-,\cdot,0,1\rangle$, by the theory of algebraically closed fields with characteristic 0.

Corollary For all the above structures A the theory Th(A) is decidable.

Remark However, $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ is not recursively axiomatizable. (This follows from the Gödel's incompleteness theorem).