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Undecidability Theories of arithmetic

Robinson arithmetic
How to effectively and “almost” completely axiomatize N = 〈N, S,+, ·, 0,≤〉?

The language of arithmetic is L = 〈S,+, ·, 0,≤〉 with equality.

Robinson arithmetic Q has axioms (finitely many)

S(x) 6= 0 x · 0 = 0

S(x) = S(y)→ x = y x · S(y) = x · y + x

x + 0 = x x 6= 0→ (∃y)(x = S(y))

x + S(y) = S(x + y) x ≤ y ↔ (∃z)(z + x = y)

Remark Q is quite weak; for example, it does not prove commutativity
or associativity of +, ·, or transitivity of ≤. However, it suffices to prove, for
example, existential sentences on numerals that are true in N.

For example, for ϕ(x, y) in the form (∃z)(x + z = y) it is

Q ` ϕ(1, 2), where 1 = S(0) and 2 = S(S(0)).
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Undecidability Theories of arithmetic

Peano arithmetic

Peano arithmetic PA has axioms of

(a) Robinson arithmetic Q,

(b) scheme of induction; that is, for every formula ϕ(x, y) of L the axiom

(ϕ(0, y) ∧ (∀x)(ϕ(x, y)→ ϕ(S(x), y)))→ (∀x)ϕ(x, y).

Remark PA is quite successful approximation of Th(N), it proves all
“elementary” properties that are true in N (e.g. commutativity of +). But it is
still incomplete, there are sentences that are true in N but independent in PA.

Remark In the second-order language we can completely axiomatize N
(up to isomorphism) by taking directly the following (second-order) axiom of
induction instead of scheme of induction

(∀X ) ((X (0) ∧ (∀x)(X (x)→ X (S(x))))→ (∀x) X (x)).
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Undecidability Undecidability of predicate logic

Hilbert’s 10th problem

Let p(x1, . . . , xn) be a polynomial with integer coefficients. Does the
Diophantine equation p(x1, . . . , xn) = 0 have a solution in integers?

Hilbert (1900) “Find an algorithm that determines in finitely many steps
whether a given Diophantine equation in an arbitrary number of variables
and with integer coefficient has an integer solution.”

Remark Equivalently, one may ask for an algorithm to determine whether
there is a solution in natural numbers.

Theorem (DPRM, 1970) The problem of existence of integer solution to
a given Diophantine equation with integer coefficients is alg. undecidable.

Corollary There is no algorithm to determine for given polynomials
p(x1, . . . , xn), q(x1, . . . , xn) with natural coefficients whether

N |= (∃x1) . . . (∃xn)(p(x1, . . . , xn) = q(x1, . . . , xn)).
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Undecidability Undecidability of predicate logic

Undecidability of predicate logic

Is there an algorithm to decide whether a given sentence is (logically) true?

We know that Robinson arithmetic Q has finitely many axioms, model N,
and proves existential sentences on numerals that are true in N.

More precisely, for every existential formula ϕ(x1, . . . , xn) in arithmetic,

Q ` ϕ(x1/a1, . . . , xn/an) ⇔ N |= ϕ[e(x1/a1, . . . , xn/an)]

for every a1, . . . ,an ∈ N where ai denotes the ai-th numeral.

In particular, for ϕ in form (∃x1) . . . (∃xn)(p(x1, . . . , xn) = q(x1, . . . , xn)),
where p, q are polynomials with natural coefficients (numerals) we have

N |= ϕ ⇔ Q ` ϕ ⇔ ` ψ → ϕ ⇔ |= ψ → ϕ,

where ψ is the conjunction of (closures) of all axioms of Q.

Thus, if there was an algorithm deciding on logical truth of sentences,
there would be also an algorithm to decide N |= ϕ, which is impossible.
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Incompleteness Introduction

Gödel’s incompleteness theorems

Theorem (1st) For every consistent recursively axiomatized extension T of
Robinson arithmetic there is a sentence true in N and unprovable in T .

Remarks

“Recursively axiomatized” means that T is “effectively given”.

“Extension of R. arithmetic” means that T is “sufficiently strong”.

If, moreover, N |= T , the theory T is incomplete.

The sentence constructed in the proof says “I am not provable in T ”.

The proof is based on two principles:

(a) arithmetization of syntax,

(b) self-reference.
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Incompleteness Arithmetization

Arithmetization - provability predicate
Finite objects of syntax (symbols of language, terms, formulas, finite
tableaux, proofs) can be (effectively) encoded by natural numbers.

Let dϕe denote the code of formula ϕ and let ϕ denote the numeral
(a term of arithmetic) representing dϕe.

If T has recursive axiomatization, the relation PrfT ⊆ N2 is recursive.

PrfT (x, y) ⇔ a (tableau) y is a proof of (a sentence) x in T.

If, moreover, T extends Robinson arithmetic Q, the relation PrfT can be
represented by some formula PrfT (x, y) such that for every x, y ∈ N

Q ` PrfT (x, y), if PrfT (x, y),

Q ` ¬PrfT (x, y), otherwise.

PrfT (x, y) expresses that “y is a proof of x in T ”.

(∃y)PrfT (x, y) expresses that “x is provable in T ”.

If T ` ϕ, then N |= (∃y)PrfT (ϕ, y) and moreover T ` (∃y)PrfT (ϕ, y).
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Incompleteness Self-reference

Self-reference principle
This sentence has 24 letters.

In formal systems self-reference is not always available straightforwardly.

The following sentence has 32 letters “The following sentence has 32
letters”.

Such direct reference is available, if we can “talk” about sequences of
symbols. But the above sentence is not self-referencial.

The following sentence written once more and then once again between
quotation marks has 116 letters “The following sentence written once
more and then once again between quotation marks has 116 letters”.

With use of direct reference we can have self-reference. Instead of
“it has x letters” we can have other property.

main(){char *c="main(){char *c=%c%s%c; printf(c,34,

c,34);}"; printf(c,34,c,34);}
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Incompleteness Self-reference

Fixed-point theorem
Theorem Let T be consistent extension of Robinson arithmetic. For every
formula ϕ(x) in language of theory T there is a sentence ψ s.t. T ` ψ ↔ ϕ(ψ).

Remark ψ is self-referencial, it says “This formula satisfies condition ϕ”.

Proof (idea) Consider the doubling function d such that for every formula χ(x)

d(dχ(x)e) = dχ(χ(x))e

It can be shown that d is expressible in T . Assume (for simplicity) that
it is expressible by some term, denoted also by d.

Then for every formula χ(x) in language of theory T it holds that

T ` d(χ(x)) = χ(χ(x)) (1)

We take ϕ(d(ϕ(d(x)))) for ψ. If suffices to verify that T ` d(ϕ(d(x))) = ψ.

This follows from (1) for χ(x) being ϕ(d(x)), since in this case

T ` d(ϕ(d(x))) = ϕ(d(ϕ(d(x))))
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Incompleteness Undefinability of truth

Undefinability of truth

We say that a formula τ(x) defines truth in theory T of arithmetical language
if for every sentence ϕ it holds that T ` ϕ↔ τ(ϕ).

Theorem Let T be consistent extension of Robinson arithmetic. Then T

has no definition of truth.

Proof By the fixed-point theorem for ¬τ(x) there is a sentence ϕ such that

T ` ϕ↔ ¬τ(ϕ).

Supposing that τ(x) defines truth in T , we would have

T ` ϕ↔ ¬ϕ,

which is impossible in a consistent theory T .

Remark This is based on the liar paradox, the sentence ϕ would express
“This sentence is not true in T ”.
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Incompleteness First incompleteness theorem

Proof of the first incompleteness theorem
Theorem (Gödel) For every consistent recursively axiomatized extension T

of Robinson arithmetic there is a sentence true in N and unprovable in T .

Proof Let ϕ(x) be ¬(∃y)PrfT (x, y), it says “x is not provable in T ”.

By the fixed-point theorem for ϕ(x) there is a sentence ψT such that

T ` ψT ↔ ¬(∃y)PrfT (ψT , y). (2)

ψT says “I am not provable in T ”. More precisely, ψT is equivalent to a
sentence expressing that ψT is not provable T (where the equivalence
holds both in N and in T ).

First, we show ψT is not provable in T . If T ` ψT , i.e. ψT is contradictory
in N, then N |= (∃y)PrfT (ψT , y) and moreover T ` (∃y)PrfT (ψT , y). Thus
from (2) it follows T ` ¬ψT , which is impossible since T is consistent.

It remains to show ψT is true in N. If not, i.e. N |= ¬ψT , then
N |= (∃y)PrfT (ψT , y). Hence T ` ψT , which we already disproved.
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Incompleteness First incompleteness theorem

Corollaries and a strengthened version

Corollary If, moreover, N |= T , then the theory T is incomplete.

Proof Suppose T is complete. Then T ` ¬ψT and thus N |= ¬ψT , which
contradicts N |= ψT .

Corollary Th(N) is not recursively axiomatizable.

Proof Th(N) is consistent extension of Robinson arithmetic and has a model
N. Suppose Th(N) is recursively axiomatizable. Then by previous corollary,
Th(N) is incomplete, but Th(N) is clearly complete.

Gödel’s first incompleteness theorem can be strengthened as follows.

Theorem (Rosser) Every consistent recursively axiomatized extension T of
Robinson arithmetic has an independent sentence. Thus T is incomplete.

Remark Hence the assumption in the first corollary that N |= T is superfluous.
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Incompleteness Second incompleteness theorem

Gödel’s second incompleteness theorem
Let ConT denote the sentence ¬(∃y)PrfT (0 = 1, y). We have that
N |= ConT ⇔ T 6` 0 = 1. Thus ConT expresses that “T is consistent”.

Theorem (Gödel) For every consistent recursively axiomatized extension T

of Peano arithmetic it holds that ConT is unprovable in T .

Proof (idea) Let ψT be the Gödel’s sentence “This is not provable in T ”.
In the first part of the proof of the 1st theorem we showed that

“If T is consistent, then ψT is not provable in T .” (3)
In other words, we showed it holds ConT → ψT .

If T is an extension of Peano arithmetic, the proof of (3) can be
formalized within the theory T itself. Hence T ` ConT → ψT .

Since T is consistent by the assumption, from (3) we have T 6` ψT .

Therefore from the previous two bullets, it follows that T 6` ConT .

Remark Hence a such theory T cannot prove its own consistency.
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Incompleteness Second incompleteness theorem

Corollaries of the second theorem

Corollary Peano arithmetic has a model A s.t. A |= (∃y)PrfPA(0 = 1, y).

Remark A has to be nonstandard model of PA, the witness must be
some nonstandard element (other than a value of a numeral).

Corollary There is a consistent recursively axiomatized extension T of
Peano arithmetic such that T ` ¬ConT .

Proof Let T = PA ∪ {¬ConPA}. Then T is consistent since PA 6` ConPA.
Moreover, T ` ¬ConPA, i.e. T proves inconsistency of PA ⊆ T , and thus
also T ` ¬ConT .

Remark N cannot be a model of T .

Corollary If the set theory ZFC is consistent, then ConZFC is unprovable
in ZFC .
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