Propositional and Predicate Logic - Exam Test

January 10, 2014

1. (Pigeonhole principle). Let $n \geq 2$ be a fixed integer. Assume that we have n pigeons and $n-1$ holes. We want to prove (by resolution) that it is impossible (at the same time) that
(i) every pigeon sits in some hole,
(ii) every hole hosts at most one pigeon.

Let $\mathbb{P}=\left\{p_{j}^{i} \mid 1 \leq i \leq n, 1 \leq j \leq n-1\right\}$ be the set of propositional letters where p_{j}^{i} represents that "the i-th pigeon sits in the j-th hole".
(a) Write propositions φ_{i} and ψ_{j} over \mathbb{P} expressing that "the i-th pigeon sits in some hole", resp. "the j-th hole hosts at most one pigeon" where $1 \leq i \leq n, 1 \leq j \leq n-1$. Find a theory T_{n} based on propositions φ_{i} and φ_{j} expressing (i) and (ii). (2pts)
(b) Now, let $n=3$ and $T^{\prime}=T_{3} \cup\left\{p_{1}^{1}\right\}$, i.e. we additionally assume that "the first pigeon sits in the first hole". Transform T^{\prime} into the set representation (i.e. clausal form). (2pts)
(c) Show that $T^{\prime} \vdash_{R} \square$. Write down your resolution refutation as a resolution tree. Underline the resolved literals at each step. (4pts)
(d) Let $T^{*}=T^{\prime} \backslash\left\{\psi_{2}\right\}$ be a theory over \mathbb{P}. Is T^{\prime} a conservative extension of T^{*} ? Give an explanation. (2pts)
2. Let $T=\{(\forall x)(\exists y)(\forall z)(\neg P(x) \vee Q(y, z)),(\exists y)(\forall x) \neg Q(x, y),(\exists x) P(x)\}$ be a theory of a language $L=\langle P, Q\rangle$ without equality where P, Q is unary resp. binary relation symbol.
(a) Applying skolemization find a theory T^{\prime} (in a suitably extended language) that is equisatisfiable with T and that has only universal sentences as axioms. (2pts)
(b) Prove by tableau method that T^{\prime} is unsatisfiable. (4pts)
(c) Let $T^{\prime \prime}$ be the set of matrices of axioms of T^{\prime}, so $T^{\prime \prime}$ is an open theory. Find a conjunction of ground instances of axioms of $T^{\prime \prime}$ that is unsatisfiable. Hint: use the tableau from (b). (2pts)
(d) Is T complete? What are its (mutually nonequivalent) simple complete extensions? Give an explanation. (2pts)
3. Let $T=\{\varphi\}$ be a theory of a language $L=\langle U\rangle$ with equality where U is a unary relation symbol and the axiom φ expresses that " $U(x)$ holds exactly for 42 elements."
(a) Are all infinitely countable models of T elementarily equivalent? Give an explanation. (2pts)
(b) Find two nonequivalent simple complete extensions of T or show that such extensions do not exist. (2pts)
(c) Is T equivalent to an open theory? Give an explanation. (2pts)
(d) Let $T^{\prime}=\{\psi\}$ be a theory of a language $L^{\prime}=\langle \rangle$ with equality where ψ expresses that "There exists at least 42 elements." Is T a conservative extension of T^{\prime} ? Give an explanation. (2pts)

