Predicate and Propositional Logic - Seminar 3

Oct 20, 2015

1. Applying the implication graph determine whether the following proposition in 2-CNF is satisfiable or not; and if yes, find a satisfying assignment.

$$(p_0 \lor p_2) \land (p_0 \lor \neg p_3) \land (p_1 \lor \neg p_3) \land (p_1 \lor \neg p_4) \land (p_2 \lor \neg p_4) \land (p_0 \lor \neg p_5) \land (p_1 \lor \neg p_5) \land (p_2 \lor \neg p_5) \land (\neg p_1 \lor \neg p_6) \land (p_4 \lor p_6) \land (p_5 \lor p_6) \land p_1$$

2. Applying unit propagation determine whether the following Horn formula is satisfiable; and if yes, find a satisfying assignment.

$$(\neg p_1 \lor \neg p_3 \lor p_2) \land (\neg p_1 \lor p_2) \land p_1 \land (\neg p_1 \lor \neg p_2 \lor p_3) \land (\neg p_2 \lor \neg p_4 \lor p_1) \land (p_4 \lor \neg p_3 \lor \neg p_2) \land (\neg p_4 \lor p_5)$$

- 3. Consider a theory $T = \{\neg q \rightarrow (\neg p \lor q), \neg p \rightarrow q, r \rightarrow q\}$. Which of the following propositions are valid, contradictory, independent, satisfiable, equivalent in T?
 - (a) p, q, r, s
 - (b) $p \lor q, p \lor r, p \lor s, q \lor s$
 - (c) $p \wedge q, q \wedge s, p \rightarrow q, s \rightarrow q$
- 4. Consider an infinite theory $T = \{p_i \to (p_{i+1} \lor q_{i+1}), q_i \to (p_{i+1} \lor q_{i+1}) \mid i \in \mathbb{N}\}$ over $\operatorname{var}(T)$.
 - (a) Which propositions in the form $p_i \rightarrow p_j$ are logical consequences of T?
 - (b) Which propositions in the form $p_i \to (p_j \lor q_j)$ are logical consequences of T?
 - (c) Determine all models of the theory T.
- 5. Prove or disprove (or find the correct relation) that for every theory T and propositions φ , ψ over \mathbb{P} it holds
 - (a) $T \models \varphi$, if and only if $T \not\models \neg \varphi$
 - (b) $T \models \varphi$ and $T \models \psi$, if and only if $T \models \varphi \land \psi$
 - (c) $T \models \varphi$ or $T \models \psi$, if and only if $T \models \varphi \lor \psi$
 - (d) $T \models \varphi \rightarrow \psi$ and $T \models \psi \rightarrow \chi$, if and only if $T \models \varphi \rightarrow \chi$
- 6. Prove or disprove (or find the correct relation). For every theories T and S over \mathbb{P}
 - (a) $S \subseteq T \Rightarrow \theta^{\mathbb{P}}(T) \subseteq \theta^{\mathbb{P}}(S)$
 - (b) $\theta^{\mathbb{P}}(S \cup T) = \theta^{\mathbb{P}}(S) \cup \theta^{\mathbb{P}}(T)$
 - (c) $\theta^{\mathbb{P}}(S \cap T) = \theta^{\mathbb{P}}(S) \cap \theta^{\mathbb{P}}(T)$
- 7. Let $|\mathbb{P}| = n$ and $\varphi \in VF_{\mathbb{P}}$ with $|M(\varphi)| = m$.
 - (a) What is the number of nonequivalent propositions ψ such that $\varphi \models \psi$ or $\psi \models \varphi$?
 - (b) What is the number of nonequivalent theories over \mathbb{P} in which φ is valid? What is the number of nonequivalent *complete* theories over \mathbb{P} in which φ is valid?
 - (c) What is the number of nonequivalent theories T over \mathbb{P} such that $T \cup \{\varphi\}$ is satisfiable?
 - (d) Let, moreover, $\{\varphi, \psi\}$ be an unsatisfiable theory with $|M(\psi)| = p$. What is the number of nonequivalent propositions χ such that $\varphi \lor \psi \models \chi$? What is the number of nonequivalent theories in which $\varphi \lor \psi$ is valid?