Predicate and Propositional Logic - Seminar 4

Oct 27, 2015

- 1. (previous homework) Let $|\mathbb{P}| = n$ and $\varphi \in VF_{\mathbb{P}}$ with $|M(\varphi)| = m$.
 - (a) What is the number of nonequivalent propositions ψ such that $\varphi \models \psi$ or $\psi \models \varphi$?
 - (b) What is the number of nonequivalent theories over \mathbb{P} in which φ is valid? What is the number of nonequivalent *complete* theories over \mathbb{P} in which φ is valid?
 - (c) What is the number of nonequivalent theories T over \mathbb{P} such that $T \cup \{\varphi\}$ is satisfiable?
 - (d) Let, moreover, $\{\varphi, \psi\}$ be an unsatisfiable theory with $|M(\psi)| = p$. What is the number of nonequivalent propositions χ such that $\varphi \lor \psi \models \chi$? What is the number of nonequivalent theories in which $\varphi \lor \psi$ is valid?
- 2. Prove or disprove (or find the correct relation). For every theories T and S over \mathbb{P}
 - (a) $S \subseteq T \Rightarrow \theta^{\mathbb{P}}(T) \subseteq \theta^{\mathbb{P}}(S)$
 - (b) $\theta^{\mathbb{P}}(S \cup T) = \theta^{\mathbb{P}}(S) \cup \theta^{\mathbb{P}}(T)$
 - (c) $\theta^{\mathbb{P}}(S \cap T) = \theta^{\mathbb{P}}(S) \cap \theta^{\mathbb{P}}(T)$
- 3. Find tableau proofs of the following tautologies.
 - (a) $(p \to (q \to q))$ (b) $p \leftrightarrow \neg \neg p$ (c) $\neg (p \lor q) \leftrightarrow (\neg p \land \neg q)$ (d) $(p \to q) \leftrightarrow (\neg q \to \neg p)$ (e) $(p \to (q \to r)) \to ((p \to q) \to (p \to r))$

Are the constructed tableaux systematic?

- 4. Applying tableau method prove the following propositions or find counterexamples
 - (a) $\{\neg q, p \lor q\} \models p$,
 - (b) $\{q \to p, r \to q, (r \to p) \to s\} \models s$,
 - (c) $\{p \to r, p \lor q, \neg s \to \neg q\} \models r \to s.$
- 5. Applying tableau method determine all models of the following theories.
 - (a) $\{(\neg p \lor q) \to (\neg q \land r)\}$
 - (b) $\{\neg q \rightarrow (\neg p \lor q), \neg p \rightarrow q, r \rightarrow q\}$
 - (c) $\{q \to p, r \to q, (r \to p) \to s\}$
- 6. Propose suitable atomic tableaux for Peirce arrow \downarrow (NOR) and for Sheffer stroke \uparrow (NAND).
- 7. Prove directly (by tableau tranformations) the deduction theorem, i.e. for every theory T and propositions φ , ψ ,

$$T \vdash \varphi \rightarrow \psi$$
 if and only if $T, \varphi \vdash \psi$.

- 8. Show that every atomic tableau τ is *sound*, i.e. if an assignment v agrees with the root entry of τ , then it agrees with some branch in τ .
- 9. In the proof of the lemma on completeness during the lecture we verified that if an assignment v agrees with every entry on a finished branch V up to the depth i of formation trees, then it agrees also with every entry in the form $T(\varphi \wedge \psi)$ or $F(\varphi \wedge \psi)$ on V where $\varphi \wedge \psi$ has depth i + 1. Show that the same holds also for entries for other logical connectives.