Predicate and Propositional Logic - Seminar 6

Nov 10, 2015

1. (*previous homework*) Assume that we have available MgO, H₂, O₂, C and we can perform the following chemical reactions.

(1)
$$MgO + H_2 \rightarrow Mg + H_2O$$

(2) $C + O_2 \rightarrow CO_2$
(3) $CO_2 + H_2O \rightarrow H_2CO_3$

- (a) Represent the state of affairs as a proposition in a suitable language and transform it into a set representation.
- (b) Prove by (linear input) resolution that we can produce H_2CO_3 .
- 2. Find the tree of reductions of a formula $S = \{\{p, r\}, \{q, \neg r\}, \{\neg q\}, \{\neg p, t\}, \{\neg s\}, \{s, \neg t\}\}$.
- 3. Show that in Hilbert's calculus the following is provable for every formulas φ , ψ , χ .
 - (a) $\vdash_H \varphi \to \varphi$
 - (b) $T \vdash_H \varphi \to \chi$ where $T = \{\varphi \to \psi, \psi \to \chi\}$
 - (c) $T \vdash_H \psi \to \chi$ where $T = \{\varphi, \psi \to (\varphi \to \chi)\}$
- 4. Which of the variable occurrences are free/bound in the following formulas? Find variants of these formulas without variables that have both free and bound occurrence.
 - (a) $(\exists x)(\forall y)P(y,z) \lor (y=0)$
 - (b) $(\exists x)(P(x) \land (\forall x)Q(x)) \lor (x=0)$
 - (c) $(\exists x)(x > y) \land (\exists y)(y > x)$
- 5. Let φ denote the formula $(\forall x)((x = z) \lor (\exists y)(f(x) = y) \lor (\forall z)(y = f(z)))$. Which of the following terms are substitutable into φ ?
 - (a) the term z for the variable x, the term y for the variable x,
 - (b) the term z for the variable y, the term 2 * y for the variable y,
 - (c) the term x for the variable z, the term y for the variable z,

6. Are the following formulas variants of the formula $(\forall x)(x < y \lor (\exists z)(z = y \land z \neq x))$?

- (a) $(\forall z)(z < y \lor (\exists z)(z = y \land z \neq z))$
- (b) $(\forall y)(y < y \lor (\exists z)(z = y \land z \neq y))$
- (c) $(\forall u)(u < y \lor (\exists z)(z = y \land z \neq u))$