Predicate and Propositional Logic - Seminar 12

Jan 5, 2016

- 1. (*Previous homework*) Show that the following set of clauses if resolution refutable. Describe the resolution refutation by a resolution tree. In each resolution step write down the unification used and underline resolved literals.
 - (a) $\{P(a, x, f(y)), P(a, z, f(h(b))), \neg Q(y, z)\}$
 - (b) $\{\neg Q(h(b), w), H(w, a)\}$
 - (c) $\{\neg P(a, w, f(h(b))), H(x, a)\}$
 - (d) $\{P(a, u, f(h(u))), H(u, a), Q(h(b), b)\}$
 - (e) $\{\neg H(v,a)\}$
- 2. (Previous homework) We know that
 - (a) If a brick is on (another) brick, then it is not on the ground.
 - (b) Every brick is on (another) brick or on the ground.
 - (c) No brick is on a brick that is on (another) brick.

Express these facts in a first-order language and prove by resolution that if a brick is on another brick, the lower brick is on the ground.

- 3. We know that
 - (a) Every barber shaves all who do not shave themselves.
 - (b) No barber shaves someone who shaves himself.

Express these facts in a first-order language and prove by resolution that no barber exists.

- 4. Consider structures $\langle \mathbb{N}, \leq \rangle$, $\langle \mathbb{Z}, \leq \rangle$, $\langle \mathbb{Q}, \leq \rangle$ with standard orderings.
 - (a) Which of them are elementarily non-equivalent?
 - (b) Which of them are non-isomorphic?
 - (c) Determine how many automorphisms these structures have.
- 5. Let $L = \langle U \rangle$ be with equality, where U is a unary relation symbol.
 - (a) For a given $n \in \mathbb{N}^+$ find a formula φ that says "U(x) holds for exactly n elements x".
 - (b) Is the theory $T = \{\varphi\}$ complete?
 - (c) Is $T \omega$ -categorical?
 - (d) Determine the isomorphism spectrum of T (up to countable cardinality).
 - (e) Find some simple complete extension of T.
 - (f) Find all (up to equivalence) simple complete extensions of T.
- 6. Let T be an extension of the theory DeLO (i.e. of dense linear orders without ends) by a new constant symbol c (and no additional axioms).
 - (a) Is T ω -categorical?
 - (b) Is T complete?
 - (c) Does the same hold for theory $DeLO^+$ (of dense linear orders with maximal element and without minimal element) instead of DeLO?