Exam test

Jan 27th, 2016

- 1. Three suspects of a crime mutually evaluate their allegations:
 - (i) The first one says that the second one lies.
 - (ii) The second one says that the third one lies.
 - (iii) The third one says that both the first one and second one lie.

Assume that each of them either always tells the truth or always lies. Let propositional letters p_1 , p_2 , p_3 represent (respectively) that the first, the second, the third one tells the truth and let $\mathbb{P} = \{p_1, p_2, p_3\}.$

- (a) Write propositions (in the form of equivalences) φ_1 , φ_2 , φ_3 over \mathbb{P} representing our knowledge from each statement (i), $\overline{(ii), (iii)}$. (2b)
- (b) Find all models of a theory $T = \{\varphi_1, \varphi_2, \varphi_3\}$ over \mathbb{P} and write an elementary conjunction ψ that is equivalent to T. *Hint:* T is complete. (2b)
- (c) Transform $T \cup \{\neg\psi\}$ into a set representation (i.e. clausal form). (2b)
- (d) Prove by resolution that $T \models \psi$. Present the resolution refutation by a resolution tree. (4b)
- 2. Let $T = \{(\forall x)(P(x) \to R(x, x)), (\exists x)(\forall y)(\neg P(y) \to R(x, y)), (\forall x)(\exists y)(\neg R(x, y) \land \neg R(y, y))\}$ be a theory in language $L = \langle P, R \rangle$ without equality where P, R is unary resp. binary relation symbol.
 - (a) Applying skolemization find a theory T' (in a some extended language) such that T' is equisatisfiable with T and all axioms of T' are universal sentences. (2b)
 - (b) Prove by tableau method that T' is unsatisfiable. (4b)
 - (c) Let T'' denote the set of open matrices of axioms of T', so T'' is an open theory equivalent to T'. Find a conjunction of ground instances of axioms of T'' that is unsatisfiable. Hint: use the tableau from (b). (2b)
 - (d) Is T complete? Give an explanation. (2b)
- 3. Let $T = \{x \le x, x \le y \land y \le x \to x = y, x \le y \land y \le z \to x \le z, x \le y \lor y \le x\}$ be a theory (of linear orderings) in language $L = \langle \le \rangle$ with equality. Let $\varphi(x, y)$ denote the formula $x < y \land \neg(\exists z)(x < z \land z < y)$ where x < y is a shortcut for " $x \le y \land \neg(x = y)$ ".
 - (a) Is $(\forall x)(\exists y)\varphi$ provable / refutable / independent in T? Give an explanation. (2b)
 - (b) Let $T' = T \cup \{(\forall x)(\exists y)\varphi\}$. Do the conditions of existence and uniqueness hold in T' for the definition of f(x) = y by formula $\varphi(x, y)$? Give an explanation. (2b)
 - (c) Is the theory $T' \cup \{f(x) = y \leftrightarrow \varphi(x, y)\}$ a conservative extension of T'? Give an explanation. (2b)
 - (d) Is the theory T' ω -categorical? Give an explanation. (2b)