Propositional and Predicate Logic - VII

Petr Gregor

KTIML MFF UK
WS 2022/2023

Structures

- $\underline{S}=\langle S, \leq\rangle$ is an ordered set where \leq is reflexive, antisymmetric, transitive binary relation on S,
- $G=\langle V, E\rangle$ is an undirected graph without loops where V is the set of vertices and E is irreflexive, symmetric binary relation on V (adjacency),
- $\mathbb{Z}_{p}=\left\langle\mathbb{Z}_{p},+,-, 0\right\rangle$ is the additive group of integers modulo p,
- $\underline{\mathbb{Q}}=\langle\mathbb{Q},+,-, \cdot, 0,1\rangle$ is the field of rational numbers,
- $\underline{\mathcal{P}(X)}=\langle\mathcal{P}(X),-, \cap, \cup, \emptyset, X\rangle$ is the set algebra over X,
- $\mathbb{N}=\langle\mathbb{N}, S,+, \cdot, 0, \leq\rangle$ is the standard model of arithmetic,
- finite automata and other models of computation,
- relational databases, ...

A structure for a language

Let $L=\langle\mathcal{R}, \mathcal{F}\rangle$ be a signature of a language and A be a nonempty set.

- A realization (interpretation) of a relation symbol $R \in \mathcal{R}$ on A is any relation $R^{A} \subseteq A^{\operatorname{ar}(R)}$. A realization of $=$ on A is the relation $I d_{A}$ (identity).
- A realization (interpretation) of a function symbol $f \in \mathcal{F}$ on A is any function $f^{A}: A^{\operatorname{ar}(f)} \rightarrow A$. Thus a realization of a constant symbol is some element of A.

A structure for the language L (L-structure) is a triple $\mathcal{A}=\left\langle A, \mathcal{R}^{A}, \mathcal{F}^{A}\right\rangle$, where

- A is nonempty set, called the domain of the structure \mathcal{A},
- $\mathcal{R}^{A}=\left\langle R^{A} \mid R \in \mathcal{R}\right\rangle$ is a collection of realizations of relation symbols,
- $\mathcal{F}^{A}=\left\langle f^{A} \mid f \in \mathcal{F}\right\rangle$ is a collection of realizations of function symbols.

A structure for the language L is also called a model of the language L. The class of all models of L is denoted by $M(L)$. Examples for $L=\langle\leq\rangle$ are

$$
\langle\mathbb{N}, \leq\rangle,\langle\mathbb{Q},>\rangle,\langle X, E\rangle,\langle\mathcal{P}(X), \subseteq\rangle .
$$

Value of terms

Let t be a term of $L=\langle\mathcal{R}, \mathcal{F}\rangle$ and $\mathcal{A}=\left\langle A, \mathcal{R}^{A}, \mathcal{F}^{A}\right\rangle$ be an L-structure.

- A variable assignment over the domain A is a function $e: \operatorname{Var} \rightarrow A$.
- The value $t^{A}[e]$ of the term t in the structure \mathcal{A} with respect to the assignment e is defined by

$$
\begin{aligned}
& x^{A}[e]=e(x) \quad \text { for every } x \in \operatorname{Var}, \\
& \left(f\left(t_{1}, \ldots, t_{n}\right)\right)^{A}[e]=f^{A}\left(t_{1}^{A}[e], \ldots, t_{n}^{A}[e]\right) \quad \text { for every } f \in \mathcal{F} .
\end{aligned}
$$

- In particular, for a constant symbol c we have $c^{A}[e]=c^{A}$.
- If t is a ground term, its value in \mathcal{A} is independent on the assignment e.
- The value of t in \mathcal{A} depends only on the assignment of variables in t.

For example, the value of the term $x+1$ in the structure $\mathcal{N}=\langle\mathbb{N}, ., 3\rangle$ with respect to the assignment e with $e(x)=2$ is $(x+1)^{N}[e]=6$.

Values of atomic formulas

Let φ be an atomic formula of $L=\langle\mathcal{R}, \mathcal{F}\rangle$ in the form $R\left(t_{1}, \ldots, t_{n}\right)$,
$\mathcal{A}=\left\langle A, \mathcal{R}^{A}, \mathcal{F}^{A}\right\rangle$ be an L-structure, and e be a variable assignment over A.

- The value $V_{a t}^{A}(\varphi)[e]$ of the formula φ in the structure \mathcal{A} with respect to e is

$$
V_{a t}^{A}\left(R\left(t_{1}, \ldots, t_{n}\right)\right)[e]= \begin{cases}1 & \text { if }\left(t_{1}^{A}[e], \ldots, t_{n}^{A}[e]\right) \in R^{A} \\ 0 & \text { otherwise } .\end{cases}
$$

where $={ }^{A}$ is Id_{A}; that is, $V_{a t}^{A}\left(t_{1}=t_{2}\right)[e]=1$ if $t_{1}^{A}[e]=t_{2}^{A}[e]$, and $V_{a t}^{A}\left(t_{1}=t_{2}\right)[e]=0$ otherwise.

- If φ is a sentence; that is, all its terms are ground, then its value in \mathcal{A} is independent on the assignment e.
- The value of φ in \mathcal{A} depends only on the assignment of variables in φ.

For example, the value of φ in form $x+1 \leq 1$ in $\mathcal{N}=\langle\mathbb{N},+, 1, \leq\rangle$ with respect to the assignment e is $V_{a t}^{N}(\varphi)[e]=1$ if and only if $e(x)=0$.

Values of formulas

The value $V^{A}(\varphi)[e]$ of the formula φ in the structure \mathcal{A} with respect to e is

$$
\begin{aligned}
V^{A}(\varphi)[e] & =V_{a t}^{A}(\varphi)[e] \text { if } \varphi \text { is atomic, } \\
V^{A}(\neg \varphi)[e] & =-1\left(V^{A}(\varphi)[e]\right) \\
V^{A}(\varphi \wedge \psi)[e] & =\wedge_{1}\left(V^{A}(\varphi)[e], V^{A}(\psi)[e]\right) \\
V^{A}(\varphi \vee \psi)[e] & =V_{1}\left(V^{A}(\varphi)[e], V^{A}(\psi)[e]\right) \\
V^{A}(\varphi \rightarrow \psi)[e] & =\rightarrow_{1}\left(V^{A}(\varphi)[e], V^{A}(\psi)[e]\right) \\
V^{A}(\varphi \leftrightarrow \psi)[e] & =\leftrightarrow_{1}\left(V^{A}(\varphi)[e], V^{A}(\psi)[e]\right) \\
V^{A}((\forall x) \varphi)[e] & =\min _{a \in A}\left(V^{A}(\varphi)[e(x / a)]\right) \\
V^{A}((\exists x) \varphi)[e] & =\max _{a \in A}\left(V^{A}(\varphi)[e(x / a)]\right)
\end{aligned}
$$

where ${ }_{1}, \wedge_{1}, \vee_{1}, \rightarrow_{1}, \leftrightarrow_{1}$ are the Boolean functions given by the tables and $e(x / a)$ for $a \in A$ denotes the assignment obtained from e by setting $e(x)=a$. Observation $V^{A}(\varphi)[e]$ depends only on the assignment of free variables in φ.

Satisfiability with respect to assignments

The structure \mathcal{A} satisfies the formula φ with assignment e if $V^{A}(\varphi)[e]=1$. Then we write $\mathcal{A} \models \varphi[e]$, and $\mathcal{A} \not \vDash \varphi[e]$ otherwise. It holds that

$$
\begin{array}{llll}
\mathcal{A} \models \neg \varphi[e] & & \Leftrightarrow & \mathcal{A} \nLeftarrow \varphi[e] \\
\mathcal{A} \models(\varphi \wedge \psi)[e] & & \Leftrightarrow & \mathcal{A} \models \varphi[e] \text { and } \mathcal{A} \models \psi[e] \\
\mathcal{A} \models(\varphi \vee \psi)[e] & & \Leftrightarrow & \mathcal{A} \models \varphi[e] \text { or } \mathcal{A} \models \psi[e] \\
\mathcal{A} \models(\varphi \rightarrow \psi)[e] & & \Leftrightarrow & \mathcal{A} \models \varphi[e] \text { implies } \mathcal{A} \models \psi[e] \\
\mathcal{A} \models(\varphi \leftrightarrow \psi)[e] & & \Leftrightarrow & \\
\mathcal{A} \models \varphi[e] \text { if and only if } \mathcal{A} \models \psi[e] \\
\mathcal{A} \models(\forall x) \varphi[e] & & \Leftrightarrow & \\
\mathcal{A} \models \varphi[e(x / a)] \text { for every } a \in \mathcal{A} \\
\mathcal{A} \models(\exists x) \varphi[e] & & \Leftrightarrow & \\
\mathcal{A} \models \varphi[e(x / a)] \text { for some } a \in A
\end{array}
$$

Observation Let term t be substitutable for x in φ and ψ be a variant of φ. Then for every structure \mathcal{A} and assignment e

1) $\mathcal{A} \models \varphi(x / t)[e]$ if and only if $\mathcal{A} \models \varphi[e(x / a)]$ where $a=t^{A}[e]$,
2) $\mathcal{A} \models \varphi[e]$ if and only if $\mathcal{A} \models \psi[e]$.

Validity in a structure

Let φ be a formula of a language L and \mathcal{A} be an L-structure.

- φ is valid (true) in the structure \mathcal{A}, denoted by $\mathcal{A} \models \varphi$, if $\mathcal{A} \models \varphi[e]$ for every $e: \operatorname{Var} \rightarrow A$. We say that \mathcal{A} satisfies φ. Otherwise, we write $\mathcal{A} \not \vDash \varphi$.
- φ is contradictory in \mathcal{A} if $\mathcal{A} \models \neg \varphi$; that is, $\mathcal{A} \not \models \varphi[e]$ for every e : Var $\rightarrow A$.
- For every formulas φ, ψ, variable x, and structure \mathcal{A}

(1)	$\mathcal{A} \models \varphi$	$\Rightarrow \mathcal{A} \not \models \neg \varphi$
(2)	$\mathcal{A} \models \varphi \wedge \psi$	$\Leftrightarrow \mathcal{A} \models \varphi$ and $\mathcal{A} \models \psi$
(3)	$\mathcal{A} \models \varphi \vee \psi$	$\Leftarrow \mathcal{A} \models \varphi$ or $\mathcal{A} \models \psi$
(4)	$\mathcal{A} \models \varphi$	$\Leftrightarrow \mathcal{A} \models(\forall x) \varphi$

- If φ is a sentence, it is valid or contradictory in \mathcal{A}, and thus also \Leftarrow holds in (1). If moreover ψ is a sentence, also \Rightarrow holds in (3).
- By (4), $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \psi$ where ψ is a universal closure of φ, i.e. a formula $\left(\forall x_{1}\right) \cdots\left(\forall x_{n}\right) \varphi$ where x_{1}, \ldots, x_{n} are all free variables in φ.

Validity in a theory

- A theory of a language L is any set T of formulas of L (so called axioms).
- A model of a theory T is an L-structure \mathcal{A} such that $\mathcal{A} \models \varphi$ for every $\varphi \in T$. Then we write $\mathcal{A} \vDash T$ and we say that \mathcal{A} satisfies T.
- The class of models of a theory T is $M(T)=\{\mathcal{A} \in M(L) \mid \mathcal{A} \models T\}$.
- A formula φ is valid in T (true in T), denoted by $T \models \varphi$, if $\mathcal{A} \models \varphi$ for every model \mathcal{A} of T. Otherwise, we write $T \not \vDash \varphi$.
- φ is contradictory in T if $T \models \neg \varphi$, i.e. φ is contradictory in all models of T.
- φ is independent in T if it is neither valid nor contradictory in T.
- If $T=\emptyset$, we have $M(T)=M(L)$ and we omit T, eventually we say "in logic". Then $\models \varphi$ means that φ is (logically) valid (a tautology).
- A consequence of T is the set $\theta^{L}(T)$ of all sentences of L valid in T, i.e.

$$
\theta^{L}(T)=\left\{\varphi \in \mathrm{Fm}_{L} \mid T \models \varphi \text { and } \varphi \text { is a sentence }\right\} .
$$

Example of a theory

The theory of orderings T of the language $L=\langle\leq\rangle$ with equality has axioms

$$
\begin{aligned}
& x \leq x \\
& x \leq y \wedge y \leq x \rightarrow x=y \\
& x \leq y \wedge y \leq z \rightarrow x \leq z
\end{aligned}
$$

(reflexivity)

Models of T are L-structures $\left\langle S, \leq_{S}\right\rangle$, so called ordered sets, that satisfy the axioms of T, for example $\mathcal{A}=\langle\mathbb{N}, \leq\rangle$ or $\mathcal{B}=\langle\mathcal{P}(X), \subseteq\rangle$ for $X=\{0,1,2\}$.

- The formula $\varphi: x \leq y \vee y \leq x$ is valid in \mathcal{A} but not in \mathcal{B} since $\mathcal{B} \not \vDash \varphi[e]$ for the assignment $e(x)=\{0\}, e(y)=\{1\}$, thus φ is independent in T.
- The sentence $\psi:(\exists x)(\forall y)(y \leq x)$ is valid in \mathcal{B} and contradictory in \mathcal{A}, hence it is independent in T as well. We write $\mathcal{B} \models \psi, \mathcal{A} \models \neg \psi$.
- The formula $\chi:(x \leq y \wedge y \leq z \wedge z \leq x) \rightarrow(x=y \wedge y=z)$ is valid in T, denoted by $T \models \chi$, the same holds for its universal closure.

Unsatisfiability and validity

The problem of validity in a theory can be transformed to the problem of satisfiability of (another) theory.

Proposition For every theory T and sentence φ (of the same language)

$$
T, \neg \varphi \text { is unsatisfiable } \Leftrightarrow T \models \varphi \text {. }
$$

Proof By definitions, it is equivalent that
(1) $T, \neg \varphi$ is unsatisfiable (i.e. it has no model),
(2) $\neg \varphi$ is not valid in any model of T,
(3) φ is valid in every model of T,
(4) $T \models \varphi$.

Remark The assumption that φ is a sentence is necessary for $(2) \Rightarrow(3)$.
For example, the theory $\{P(c), \neg P(x)\}$ is unsatisfiable, but $P(c) \not \vDash P(x)$, where P is a unary relation symbol and c is a constant symbol.

Basic algebraic theories

- theory of groups in the language $L=\langle+,-, 0\rangle$ with equality has axioms

$$
\begin{aligned}
& x+(y+z)=(x+y)+z \\
& 0+x=x=x+0 \\
& x+(-x)=0=(-x)+x
\end{aligned}
$$

(0 is neutral to +)
($-x$ is inverse of x)

- theory of Abelian groups has moreover ax. $x+y=y+x$ (commutativity)
- theory of rings in $L=\langle+,-, \cdot, 0,1\rangle$ with equality has moreover axioms

$$
\begin{aligned}
& 1 \cdot x=x=x \cdot 1 \\
& x \cdot(y \cdot z)=(x \cdot y) \cdot z \\
& x \cdot(y+z)=x \cdot y+x \cdot z,(x+y) \cdot z=x \cdot z+y \cdot z
\end{aligned}
$$

(1 is neutral to)
(associativity of •)
(distributivity)

- theory of commutative rings has moreover ax. $x \cdot y=y \cdot x$ (commutativity)
- theory of fields in the same language has additional axioms
$x \neq 0 \rightarrow(\exists y)(x \cdot y=1)$
$0 \neq 1$
(existence of inverses to •)
(nontriviality)

Properties of theories

A theory T of a language L is (semantically)

- inconsistent if $T \models \perp$, otherwise T is consistent (satisfiable),
- complete if it is consistent and every sentence of L is valid in T or contradictory in T,
- an extension of a theory T^{\prime} of language L^{\prime} if $L^{\prime} \subseteq L$ and $\theta^{L^{\prime}}\left(T^{\prime}\right) \subseteq \theta^{L}(T)$, we say that an extension T of a theory T^{\prime} is simple if $L=L^{\prime}$; and conservative if $\theta^{L^{\prime}}\left(T^{\prime}\right)=\theta^{L}(T) \cap \operatorname{Fm}_{L^{\prime}}$,
- equivalent with a theory T^{\prime} if T is an extension of T^{\prime} and vice-versa, Structures \mathcal{A}, \mathcal{B} for a language L are elementarily equivalent, denoted by $\mathcal{A} \equiv \mathcal{B}$, if they satisfy the same sentences of L.
Observation Let T and T^{\prime} be theories of a language $L . T$ is (semantically)
(1) consistent if and only if it has a model,
(2) complete iff it has a single model, up to elementarily equivalence,
(3) an extension of T^{\prime} if and only if $M(T) \subseteq M\left(T^{\prime}\right)$,
(4) equivalent with T^{\prime} if and only if $M(T)=M\left(T^{\prime}\right)$.

Substructures

Let $\mathcal{A}=\left\langle A, \mathcal{R}^{A}, \mathcal{F}^{A}\right\rangle$ and $\mathcal{B}=\left\langle B, \mathcal{R}^{B}, \mathcal{F}^{B}\right\rangle$ be structures for $L=\langle\mathcal{R}, \mathcal{F}\rangle$.
We say that \mathcal{B} is an (induced) substructure of \mathcal{A}, denoted by $\mathcal{B} \subseteq \mathcal{A}$, if
(i) $B \subseteq A$,
(ii) $R^{B}=R^{A} \cap B^{\operatorname{ar}(R)}$ for every $R \in \mathcal{R}$,
(iii) $f^{B}=f^{A} \cap\left(B^{\operatorname{ar}(f)} \times B\right)$; that is, $f^{B}=f^{A} \upharpoonright B^{\operatorname{ar}(f)}$, for every $f \in \mathcal{F}$.

A set $C \subseteq A$ is a domain of some substructure of \mathcal{A} if and only if C is closed under all functions of \mathcal{A}. Then the respective substructure, denoted by $\mathcal{A} \upharpoonright C$, is said to be the restriction of the structure \mathcal{A} to C.

- A set $C \subseteq A$ is closed under a function $f: A^{n} \rightarrow A$ if $f\left(x_{0}, \ldots, x_{n-1}\right) \in C$ for every $x_{0}, \ldots, x_{n-1} \in C$.

Example: $\underline{\mathbb{Z}}=\langle\mathbb{Z},+, \cdot, 0\rangle$ is a substructure of $\mathbb{Q}=\langle\mathbb{Q},+, \cdot, 0\rangle$ and $\underline{\mathbb{Z}}=\underline{\mathbb{Q}} \mid \mathbb{Z}$. Furthermore, $\underline{\mathbb{N}}=\langle\mathbb{N},+, \cdot, 0\rangle$ is their substructure and $\mathbb{N}=\underline{\mathbb{Q}} \mid \mathbb{N}=\underline{\mathbb{Z}} \upharpoonright \mathbb{N}$.

Validity in a substructure

Let \mathcal{B} be a substructure of a structure \mathcal{A} for a (fixed) language L.
Proposition For every open formula φ and assignment $e: \operatorname{Var} \rightarrow B$,

$$
\mathcal{A} \models \varphi[e] \quad \text { if and only if } \quad \mathcal{B} \models \varphi[e] .
$$

Proof For atomic φ it follows from the definition of the truth value with respect to an assignment. Otherwise by induction on the structure of the formula.

Corollary For every open formula φ and structure \mathcal{A},

$$
\mathcal{A} \models \varphi \quad \text { if and only if } \quad \mathcal{B} \models \varphi \text { for every substructure } \mathcal{B} \subseteq \mathcal{A} \text {. }
$$

- A theory T is open if all axioms of T are open.

Corollary Every substructure of a model of an open theory T is a model of T.
For example, every substructure of a graph, i.e. a model of theory of graphs, is a graph, called a subgraph. Similarly subgroups, Boolean subalgebras, etc.

Generated substructure, expansion, reduct

Let $\mathcal{A}=\left\langle A, \mathcal{R}^{A}, \mathcal{F}^{A}\right\rangle$ be a structure and $X \subseteq A$. Let B be the smallest subset of A containing X that is closed under all functions of the structure \mathcal{A} (including constants). Then the structure $\mathcal{A} \upharpoonright B$ is denoted by $\mathcal{A}\langle X\rangle$ and is called the substructure of \mathcal{A} generated by the set X.

Example: for $\underline{\mathbb{Q}}=\langle\mathbb{Q},+, \cdot, 0\rangle, \underline{\mathbb{Z}}=\langle\mathbb{Z},+, \cdot, 0\rangle, \underline{\mathbb{N}}=\langle\mathbb{N},+, \cdot, 0\rangle$ it is $\underline{\mathbb{Q}}\langle\{1\}\rangle=\underline{\mathbb{N}}$, $\underline{\mathbb{Q}}\langle\{-1\}\rangle=\underline{\mathbb{Z}}$, and $\underline{\mathbb{Q}}\langle\{2\}\rangle$ is the substructure on all even natural numbers.

Let \mathcal{A} be a structure for a language L and $L^{\prime} \subseteq L$. By omitting realizations of symbols that are not in L^{\prime} we obtain from \mathcal{A} a structure \mathcal{A}^{\prime} called the reduct of \mathcal{A} to the language L^{\prime}. Conversely, \mathcal{A} is an expansion of \mathcal{A}^{\prime} into L.

For example, $\langle\mathbb{N},+\rangle$ is a reduct of $\langle\mathbb{N},+, \cdot, 0\rangle$. On the other hand, the structure $\left\langle\mathbb{N},+, c_{i}\right\rangle_{i \in \mathbb{N}}$ with $c_{i}=i$ for every $i \in \mathbb{N}$ is the expansion of $\langle\mathbb{N},+\rangle$ by names of elements from \mathbb{N}.

Theorem on constants

Theorem Let φ be a formula in a language L with free variables x_{1}, \ldots, x_{n} and let T be a theory in L. Let L^{\prime} be the extension of L with new constant symbols c_{1}, \ldots, c_{n} and let T^{\prime} denote the theory T in L^{\prime}. Then

$$
T \models \varphi \quad \text { if and only if } \quad T^{\prime} \models \varphi\left(x_{1} / c_{1}, \ldots, x_{n} / c_{n}\right) .
$$

Proof (\Rightarrow) If \mathcal{A}^{\prime} is a model of T^{\prime}, let \mathcal{A} be the reduct of \mathcal{A}^{\prime} to L. Since $\mathcal{A} \models \varphi[e]$ for every assignment e, we have in particular

$$
\mathcal{A} \models \varphi\left[e\left(x_{1} / c_{1}^{A^{\prime}}, \ldots, x_{n} / c_{n}^{A^{\prime}}\right)\right] \text {, i.e. } \mathcal{A}^{\prime} \models \varphi\left(x_{1} / c_{1}, \ldots, x_{n} / c_{n}\right) .
$$

(\Leftarrow) If \mathcal{A} is a model of T and e an assignment, let \mathcal{A}^{\prime} be the expansion of A into L^{\prime} by setting $c_{i}^{A^{\prime}}=e\left(x_{i}\right)$ for every i. Since $\mathcal{A}^{\prime} \models \varphi\left(x_{1} / c_{1}, \ldots, x_{n} / c_{n}\right)\left[e^{\prime}\right]$ for every assignment e^{\prime}, we have

$$
\mathcal{A}^{\prime} \models \varphi\left[e\left(x_{1} / c_{1}^{A^{\prime}}, \ldots, x_{n} / c_{n}^{A^{\prime}}\right)\right], \quad \text { i.e. } \mathcal{A} \models \varphi[e] .
$$

Definable sets

We interested in which sets can be defined within a given structure.

- A set defined by a formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ in structure \mathcal{A} is the set

$$
\varphi^{\mathcal{A}}\left(x_{1}, \ldots, x_{n}\right)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in A^{n} \mid \mathcal{A} \models \varphi\left[e\left(x_{1} / a_{1}, \ldots, x_{n} / a_{n}\right)\right]\right\} .
$$

Shortly, $\varphi^{\mathcal{A}}(\bar{x})=\left\{\bar{a} \in A^{|\bar{x}|} \mid \mathcal{A}=\varphi[e(\bar{x} / \bar{a})]\right\}$, where $|\bar{x}|=n$.

- A set defined by a formula $\varphi(\bar{x}, \bar{y})$ with parameters $\bar{b} \in A^{|\bar{y}|}$ in \mathcal{A} is

$$
\varphi^{\mathcal{A}, \bar{b}}(\bar{x}, \bar{y})=\left\{\bar{a} \in A^{|\bar{x}|} \mid \mathcal{A} \models \varphi[e(\bar{x} / \bar{a}, \bar{y} / \bar{b})]\right\} .
$$

Example: $E(x, y)^{\mathcal{G}, b}$ is the set of neighbors of a vertex b in a graph \mathcal{G}.

- For a structure \mathcal{A}, a set $B \subseteq A$, and $n \in \mathbb{N}$ let $\mathrm{Df}^{n}(\mathcal{A}, B)$ denote the class of definable sets $D \subseteq A^{n}$ in the structure \mathcal{A} with parameters from B.

Observation $\mathrm{Df}^{n}(\mathcal{A}, B)$ is closed under complements, union, intersection and it contains \emptyset, A^{n}. Thus it forms a subalgebra of the set algebra $\underline{\mathcal{P}}\left(A^{n}\right)$.

Example - database queries

Movie	name	director	actor	Program	cinema	name	time
	Lidé z Maringotek	M. Frič	J. Tříska		Světozor	Po strništi bos	$13: 15$
	Po strništi bos	J. Svěrák	Z. Svěrák		Mat	Po strništi bos	$16: 15$
	Po strništi bos	J. Svěrák	J. Tříska		Mat	Lidé z Maringotek	$18: 30$
	\ldots						

Where and when can I see a movie with J. Tříska?
select Program.cinema, Program.time from Movie, Program where Movie.name = Program.name and actor = 'J. Tříska';

Equivalently, it is the set $\varphi^{\mathcal{D}}(x, y)$ defined by the formula $\varphi(x, y)$

$$
(\exists n)(\exists d)(P(x, n, y) \wedge M(n, d, \text { ‘J. Tříska’ }))
$$

in the structure $\mathcal{D}=\left\langle D \text {, Movie, Program, } c^{D}\right\rangle_{c \in D}$ of $L=\langle M, P, c\rangle_{c \in D}$, where $D=\{$ 'Po strništi bos', 'J. Tříska', 'Mat', '13:15', $\ldots\}$ and $c^{D}=c$ for any $c \in D$.

Boolean algebras

The theory of Boolean algebras has the language $L=\langle-, \wedge, \vee, 0,1\rangle$ with equality and the following axioms.

$$
\begin{aligned}
& x \wedge(y \wedge z)=(x \wedge y) \wedge z \\
& x \vee(y \vee z)=(x \vee y) \vee z \\
& x \wedge y=y \wedge x \\
& x \vee y=y \vee x \\
& x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z) \\
& x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z) \\
& x \wedge(x \vee y)=x, \quad x \vee(x \wedge y)=x \\
& x \vee(-x)=1, \quad x \wedge(-x)=0 \\
& 0 \neq 1
\end{aligned}
$$

(asociativity of \wedge)
(asociativity of \vee)
(commutativity of \wedge)
(commutativity of \vee)
(distributivity of \wedge over \vee)
(distributivity of \vee over \wedge)
(absorption)
(complementation)
(non-triviality)

The smallest model is $\underline{2}=\left\langle\{0,1\},{ }_{1}, \wedge_{1}, \vee_{1}, 0,1\right\rangle$. Finite Boolean algebras are (up to isomorphism) $\left\langle\{0,1\}^{n},-_{n}, \wedge_{n}, \vee_{n}, 0_{n}, 1_{n}\right\rangle$ for $n \in \mathbb{N}^{+}$, where the operations (on binary n-tuples) are the coordinate-wise operations of $\underline{2}$.

Relations of propositional and predicate logic

- Propositional formulas over connectives \neg, \wedge, \vee (eventually with \top, \perp) can be viewed as Boolean terms. Then the truth value of φ in a given assignment is the value of the term in the Boolean algebra 2.
- Lindenbaum-Tarski algebra over \mathbb{P} is Boolean algebra (also for \mathbb{P} infinite).
- If we represent atomic subformulas in an open formula φ (without equality) with propositional letters, we obtain a proposition that is valid if and only if φ is valid.
- Propositional logic can be introduced as a fragment of predicate logic using nullary relation symbols (syntax) and nullary relations (semantics) since $A^{0}=\{\emptyset\}=1$, so $R^{A} \subseteq A^{0}$ is either $R^{A}=\emptyset=0$ or $R^{A}=\{\emptyset\}=1$.

