Propositional and Predicate Logic - VII

Petr Gregor

KTIML MFF UK

WS 2022/2023

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - VII

WS 2022/2023

イロト イヨト イヨト

Structures

- $S = \langle S, \leq \rangle$ is an ordered set where \leq is reflexive, antisymmetric, transitive binary relation on S,
- $G = \langle V, E \rangle$ is an undirected graph without loops where V is the set of *vertices* and *E* is irreflexive, symmetric binary relation on *V* (*adjacency*),
- $\underline{\mathbb{Z}}_{p} = \langle \mathbb{Z}_{p}, +, -, 0 \rangle$ is the additive group of integers modulo p,
- $\mathbb{Q} = \langle \mathbb{Q}, +, -, \cdot, 0, 1 \rangle$ is the field of rational numbers,
- $\mathcal{P}(X) = \langle \mathcal{P}(X), -, \cap, \cup, \emptyset, X \rangle$ is the set algebra over X,
- $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ is the standard model of arithmetic,
- finite automata and other models of computation.
- relational databases, ...

A structure for a language

Let $L = \langle \mathcal{R}, \mathcal{F} \rangle$ be a signature of a language and A be a nonempty set.

- A realization (interpretation) of a relation symbol $R \in \mathcal{R}$ on A is any relation $R^A \subset A^{\operatorname{ar}(R)}$. A realization of = on A is the relation Id_A (identity).
- A realization (interpretation) of a function symbol $f \in \mathcal{F}$ on A is any function $f^A: A^{\operatorname{ar}(f)} \to A$. Thus a realization of a constant symbol is some element of A.

A *structure* for the language L (*L-structure*) is a triple $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$, where

- A is nonempty set, called the *domain* of the structure \mathcal{A} ,
- $\mathcal{R}^A = \langle R^A | R \in \mathcal{R} \rangle$ is a collection of realizations of relation symbols,
- $\mathcal{F}^A = \langle f^A \mid f \in \mathcal{F} \rangle$ is a collection of realizations of function symbols.

A structure for the language L is also called a *model of the language L*. The class of all models of L is denoted by M(L). Examples for $L = \langle \leq \rangle$ are $\langle \mathbb{N}, < \rangle, \langle \mathbb{Q}, > \rangle, \langle X, E \rangle, \langle \mathcal{P}(X), \subset \rangle.$

イロン イボン イヨン 一日

Value of terms

Let *t* be a term of $L = \langle \mathcal{R}, \mathcal{F} \rangle$ and $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ be an *L*-structure.

- A *variable assignment* over the domain A is a function $e: Var \rightarrow A$.
- The *value* $t^{A}[e]$ of the term *t* in the structure A with respect to the assignment *e* is defined by

 $x^{A}[e] = e(x)$ for every $x \in Var$,

 $(f(t_1,\ldots,t_n))^A[e] = f^A(t_1^A[e],\ldots,t_n^A[e])$ for every $f \in \mathcal{F}$.

- In particular, for a constant symbol c we have $c^{A}[e] = c^{A}$.
- If t is a ground term, its value in A is independent on the assignment e.
- The value of t in A depends only on the assignment of variables in t.

For example, the value of the term x + 1 in the structure $\mathcal{N} = \langle \mathbb{N}, ., 3 \rangle$ with respect to the assignment *e* with e(x) = 2 is $(x + 1)^N[e] = 6$.

Truth values

Values of atomic formulas

Let φ be an atomic formula of $L = \langle \mathcal{R}, \mathcal{F} \rangle$ in the form $R(t_1, \ldots, t_n)$,

 $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ be an *L*-structure, and *e* be a variable assignment over *A*.

• The value $V_{at}^{A}(\varphi)[e]$ of the formula φ in the structure \mathcal{A} with respect to e is

$$V_{at}^{A}(R(t_{1},\ldots,t_{n}))[e] = \begin{cases} 1 & \text{if } (t_{1}^{A}[e],\ldots,t_{n}^{A}[e]) \in R^{A}, \\ 0 & \text{otherwise.} \end{cases}$$

where $=^{A}$ is Id_A; that is, $V_{at}^{A}(t_{1} = t_{2})[e] = 1$ if $t_{1}^{A}[e] = t_{2}^{A}[e]$, and $V_{at}^A(t_1 = t_2)[e] = 0$ otherwise.

- If φ is a sentence; that is, all its terms are ground, then its value in \mathcal{A} is independent on the assignment e.
- The value of φ in \mathcal{A} depends only on the assignment of variables in φ .

For example, the value of φ in form x + 1 < 1 in $\mathcal{N} = \langle \mathbb{N}, +, 1, < \rangle$ with respect to the assignment *e* is $V_{at}^{N}(\varphi)[e] = 1$ if and only if e(x) = 0.

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ● ●

Values of formulas

The *value* $V^{A}(\varphi)[e]$ of the formula φ in the structure \mathcal{A} with respect to e is

$$V^{A}(\varphi)[e] = V^{A}_{at}(\varphi)[e] \text{ if } \varphi \text{ is atomic,}$$

$$V^{A}(\neg \varphi)[e] = -_{1}(V^{A}(\varphi)[e])$$

$$V^{A}(\varphi \land \psi)[e] = \land_{1}(V^{A}(\varphi)[e], V^{A}(\psi)[e])$$

$$V^{A}(\varphi \lor \psi)[e] = \lor_{1}(V^{A}(\varphi)[e], V^{A}(\psi)[e])$$

$$V^{A}(\varphi \to \psi)[e] = \to_{1}(V^{A}(\varphi)[e], V^{A}(\psi)[e])$$

$$V^{A}(\varphi \leftrightarrow \psi)[e] = \leftrightarrow_{1}(V^{A}(\varphi)[e], V^{A}(\psi)[e])$$

$$V^{A}((\forall x)\varphi)[e] = \min_{a \in A}(V^{A}(\varphi)[e(x/a)])$$

$$V^{A}((\exists x)\varphi)[e] = \max_{a \in A}(V^{A}(\varphi)[e(x/a)])$$

where $-_1$, \wedge_1 , \vee_1 , \rightarrow_1 , \leftrightarrow_1 are the Boolean functions given by the tables and e(x/a) for $a \in A$ denotes the assignment obtained from e by setting e(x) = a. *Observation* $V^A(\varphi)[e]$ depends only on the assignment of free variables in φ .

Image: A marked and A marked

Satisfiability with respect to assignments

The structure \mathcal{A} satisfies the formula φ with assignment e if $V^A(\varphi)[e] = 1$. Then we write $\mathcal{A} \models \varphi[e]$, and $\mathcal{A} \not\models \varphi[e]$ otherwise. It holds that

Observation Let term t be substitutable for x in φ and ψ be a variant of φ . Then for every structure A and assignment e

1)
$$\mathcal{A} \models \varphi(x/t)[e]$$
 if and only if $\mathcal{A} \models \varphi[e(x/a)]$ where $a = t^{A}[e]$,

2)
$$\mathcal{A} \models \varphi[e]$$
 if and only if $\mathcal{A} \models \psi[e]$.

イロト イポト イヨト イヨト

Validity in a structure

Let φ be a formula of a language *L* and *A* be an *L*-structure.

- φ is *valid* (*true*) in the structure A, denoted by A ⊨ φ, if A ⊨ φ[e] for every e: Var → A. We say that A satisfies φ. Otherwise, we write A ⊭ φ.
- φ is *contradictory in* \mathcal{A} if $\mathcal{A} \models \neg \varphi$; that is, $\mathcal{A} \not\models \varphi[e]$ for every $e \colon \text{Var} \to A$.
- For every formulas φ , ψ , variable x, and structure \mathcal{A}

(1)	$\mathcal{A}\models\varphi$	\Rightarrow	$\mathcal{A} \not\models \neg \varphi$
(2)	$\mathcal{A}\models\varphi\wedge\psi$	\Leftrightarrow	$\mathcal{A} \models \varphi$ and $\mathcal{A} \models \psi$
(3)	$\mathcal{A}\models\varphi\lor\psi$	\Leftarrow	$\mathcal{A}\models arphi$ or $\mathcal{A}\models \psi$
(4)	$\mathcal{A}\models\varphi$	\Leftrightarrow	$\mathcal{A} \models (\forall x) \varphi$

- If φ is a sentence, it is valid or contradictory in A, and thus also ⇐ holds in (1). If moreover ψ is a sentence, also ⇒ holds in (3).
- By (4), $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \psi$ where ψ is a *universal closure* of φ , i.e. a formula $(\forall x_1) \cdots (\forall x_n) \varphi$ where x_1, \ldots, x_n are all free variables in φ .

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Theory

Validity in a theory

- A *theory* of a language L is any set T of formulas of L (so called *axioms*).
- A *model of a theory* T is an L-structure A such that $A \models \varphi$ for every $\varphi \in T$. Then we write $\mathcal{A} \models T$ and we say that \mathcal{A} satisfies T.
- The *class of models* of a theory *T* is $M(T) = \{A \in M(L) \mid A \models T\}$.
- A formula φ is valid in T (true in T), denoted by $T \models \varphi$, if $\mathcal{A} \models \varphi$ for every model \mathcal{A} of T. Otherwise, we write $T \not\models \varphi$.
- φ is contradictory in T if $T \models \neg \varphi$, i.e. φ is contradictory in all models of T.
- φ is *independent in T* if it is neither valid nor contradictory in T.
- If $T = \emptyset$, we have M(T) = M(L) and we omit T, eventually we say *"in logic"*. Then $\models \varphi$ means that φ is (*logically*) valid (a tautology).
- A consequence of T is the set $\theta^L(T)$ of all sentences of L valid in T, i.e. $\theta^{L}(T) = \{ \varphi \in \operatorname{Fm}_{L} \mid T \models \varphi \text{ and } \varphi \text{ is a sentence} \}.$

・ロン ・回 と ・ ヨ と ・

Example of a theory

The *theory of orderings T* of the language $L = \langle \leq \rangle$ with equality has axioms

Models of *T* are *L*-structures $\langle S, \leq_S \rangle$, so called ordered sets, that satisfy the axioms of *T*, for example $\mathcal{A} = \langle \mathbb{N}, \leq \rangle$ or $\mathcal{B} = \langle \mathcal{P}(X), \subseteq \rangle$ for $X = \{0, 1, 2\}$.

- The formula φ: x ≤ y ∨ y ≤ x is valid in A but not in B since B ⊭ φ[e] for the assignment e(x) = {0}, e(y) = {1}, thus φ is independent in T.
- The sentence ψ: (∃x)(∀y)(y ≤ x) is valid in B and contradictory in A, hence it is independent in T as well. We write B ⊨ ψ, A ⊨ ¬ψ.
- The formula χ: (x ≤ y ∧ y ≤ z ∧ z ≤ x) → (x = y ∧ y = z) is valid in T, denoted by T ⊨ χ, the same holds for its universal closure.

イロン イボン イヨン 一日

Unsatisfiability and validity

The problem of validity in a theory can be transformed to the problem of satisfiability of (another) theory.

Proposition For every theory T and sentence φ (of the same language)

 $T, \neg \varphi$ is unsatisfiable \Leftrightarrow $T \models \varphi$.

Proof By definitions, it is equivalent that

- (1) $T, \neg \varphi$ is unsatisfiable (i.e. it has no model),
- (2) $\neg \varphi$ is not valid in any model of T,
- (3) φ is valid in every model of T,

(4) $T \models \varphi$.

Remark The assumption that φ is a sentence is necessary for $(2) \Rightarrow (3)$.

For example, the theory $\{P(c), \neg P(x)\}$ is unsatisfiable, but $P(c) \not\models P(x)$, where P is a unary relation symbol and c is a constant symbol.

Basic algebraic theories

- theory of *groups* in the language $L = \langle +, -, 0 \rangle$ with equality has axioms x + (y + z) = (x + y) + z (associativity of +) 0 + x = x = x + 0 (0 is neutral to +) x + (-x) = 0 = (-x) + x (-x is inverse of x)
- theory of Abelian groups has moreover ax. x + y = y + x (commutativity)
- theory of *rings* in $L = \langle +, -, \cdot, 0, 1 \rangle$ with equality has moreover axioms
 - $1 \cdot x = x = x \cdot 1 \tag{1 is neutral to })$
 - $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ (associativity of ·)
 - $x \cdot (y + z) = x \cdot y + x \cdot z, (x + y) \cdot z = x \cdot z + y \cdot z$ (distributivity)
- theory of *commutative rings* has moreover ax. $x \cdot y = y \cdot x$ (commutativity)
- theory of *fields* in the same language has additional axioms
 - $x \neq 0 \rightarrow (\exists y)(x \cdot y = 1)$ (existence of inverses to ·) $0 \neq 1$ (nontriviality)

・ ロ ト ・ 日 ト ・ 日 ト ・ 日 ト

Theory

Properties of theories

A theory T of a language L is (semantically)

- *inconsistent* if $T \models \bot$, otherwise T is *consistent* (*satisfiable*),
- complete if it is consistent and every sentence of L is valid in T or contradictory in T,
- an *extension* of a theory T' of language L' if $L' \subset L$ and $\theta^{L'}(T') \subset \theta^{L}(T)$. we say that an extension T of a theory T' is simple if L = L'; and *conservative* if $\theta^{L'}(T') = \theta^{L}(T) \cap \operatorname{Fm}_{L'}$,
- equivalent with a theory T' if T is an extension of T' and vice-versa,

Structures \mathcal{A}, \mathcal{B} for a language L are *elementarily equivalent*, denoted by $\mathcal{A} \equiv \mathcal{B}$, if they satisfy the same sentences of L.

Observation Let T and T' be theories of a language L. T is (semantically)

- (1) consistent if and only if it has a model,
- (2) complete iff it has a single model, up to elementarily equivalence,
- (3) an extension of T' if and only if $M(T) \subseteq M(T')$,
- (4) equivalent with T' if and only if M(T) = M(T').

Substructures

Let $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ and $\mathcal{B} = \langle B, \mathcal{R}^B, \mathcal{F}^B \rangle$ be structures for $L = \langle \mathcal{R}, \mathcal{F} \rangle$.

We say that \mathcal{B} is an (induced) substructure of \mathcal{A} , denoted by $\mathcal{B} \subseteq \mathcal{A}$, if

(*i*) $B \subseteq A$, (*ii*) $R^B = R^A \cap B^{\operatorname{ar}(R)}$ for every $R \in \mathcal{R}$, (*iii*) $f^B = f^A \cap (B^{\operatorname{ar}(f)} \times B)$; that is, $f^B = f^A \upharpoonright B^{\operatorname{ar}(f)}$, for every $f \in \mathcal{F}$.

A set $C \subseteq A$ is a domain of some substructure of A if and only if C is closed under all functions of A. Then the respective substructure, denoted by $A \upharpoonright C$, is said to be the *restriction* of the structure \mathcal{A} to C.

• A set $C \subseteq A$ is *closed* under a function $f: A^n \to A$ if $f(x_0, \ldots, x_{n-1}) \in C$ for every $x_0, \ldots, x_{n-1} \in C$.

Example: $\underline{\mathbb{Z}} = \langle \mathbb{Z}, +, \cdot, 0 \rangle$ *is a substructure of* $\mathbb{Q} = \langle \mathbb{Q}, +, \cdot, 0 \rangle$ *and* $\underline{\mathbb{Z}} = \mathbb{Q} \upharpoonright \mathbb{Z}$. *Furthermore*, $\mathbb{N} = \langle \mathbb{N}, +, \cdot, 0 \rangle$ *is their substructure and* $\mathbb{N} = \mathbb{Q} \upharpoonright \mathbb{N} = \mathbb{Z} \upharpoonright \mathbb{N}$.

Validity in a substructure

Let \mathcal{B} be a substructure of a structure \mathcal{A} for a (fixed) language L. **Proposition** For every open formula φ and assignment $e \colon \operatorname{Var} \to B$, $\mathcal{A} \models \varphi[e]$ if and only if $\mathcal{B} \models \varphi[e]$.

Proof For atomic φ it follows from the definition of the truth value with respect to an assignment. Otherwise by induction on the structure of the formula.

Corollary For every open formula φ and structure A,

 $\mathcal{A}\models\varphi\quad\text{if and only if}\quad \mathcal{B}\models\varphi\text{ for every substructure }\mathcal{B}\subseteq\mathcal{A}.$

• A theory *T* is *open* if all axioms of *T* are open.

Corollary Every substructure of a model of an open theory *T* is a model of *T*.

For example, every substructure of a graph, i.e. a model of theory of graphs, is a graph, called a subgraph. Similarly subgroups, Boolean subalgebras, etc.

э.

Generated substructure, expansion, reduct

Let $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ be a structure and $X \subseteq A$. Let *B* be the smallest subset of *A* containing *X* that is closed under all functions of the structure \mathcal{A} (including constants). Then the structure $\mathcal{A} \upharpoonright B$ is denoted by $\mathcal{A}\langle X \rangle$ and is called the substructure of \mathcal{A} generated by the set *X*.

Example: for $\underline{\mathbb{Q}} = \langle \mathbb{Q}, +, \cdot, 0 \rangle$, $\underline{\mathbb{Z}} = \langle \mathbb{Z}, +, \cdot, 0 \rangle$, $\underline{\mathbb{N}} = \langle \mathbb{N}, +, \cdot, 0 \rangle$ it is $\underline{\mathbb{Q}} \langle \{1\} \rangle = \underline{\mathbb{N}}$, $\underline{\mathbb{Q}} \langle \{-1\} \rangle = \underline{\mathbb{Z}}$, and $\underline{\mathbb{Q}} \langle \{2\} \rangle$ is the substructure on all even natural numbers.

Let \mathcal{A} be a structure for a language L and $L' \subseteq L$. By omitting realizations of symbols that are not in L' we obtain from \mathcal{A} a structure \mathcal{A}' called the *reduct* of \mathcal{A} to the language L'. Conversely, \mathcal{A} is an *expansion* of \mathcal{A}' into L.

For example, $\langle \mathbb{N}, + \rangle$ is a reduct of $\langle \mathbb{N}, +, \cdot, 0 \rangle$. On the other hand, the structure $\langle \mathbb{N}, +, c_i \rangle_{i \in \mathbb{N}}$ with $c_i = i$ for every $i \in \mathbb{N}$ is the expansion of $\langle \mathbb{N}, + \rangle$ by names of elements from \mathbb{N} .

イロン イヨン イヨン

Theorem on constants

Theorem Let φ be a formula in a language L with free variables x_1, \ldots, x_n and let T be a theory in L. Let L' be the extension of L with new constant symbols c_1, \ldots, c_n and let T' denote the theory T in L'. Then

 $T \models \varphi$ if and only if $T' \models \varphi(x_1/c_1, \ldots, x_n/c_n)$.

Proof (\Rightarrow) If \mathcal{A}' is a model of T', let \mathcal{A} be the reduct of \mathcal{A}' to L. Since $\mathcal{A} \models \varphi[e]$ for every assignment e, we have in particular

 $\mathcal{A} \models \varphi[e(x_1/c_1^{A'}, \dots, x_n/c_n^{A'})], \text{ i.e. } \mathcal{A}' \models \varphi(x_1/c_1, \dots, x_n/c_n).$

 (\Leftarrow) If \mathcal{A} is a model of T and e an assignment, let \mathcal{A}' be the expansion of A into L' by setting $c_i^{A'} = e(x_i)$ for every *i*. Since $\mathcal{A}' \models \varphi(x_1/c_1, \ldots, x_n/c_n)[e']$ for every assignment e', we have

$$\mathcal{A}' \models \varphi[e(x_1/c_1^{A'}, \dots, x_n/c_n^{A'})], \quad \text{i.e. } \mathcal{A} \models \varphi[e]. \quad \Box$$

Definable sets

We interested in which sets can be defined within a given structure.

• A set defined by a formula $\varphi(x_1, \ldots, x_n)$ in structure A is the set

 $\varphi^{\mathcal{A}}(x_1,\ldots,x_n)=\{(a_1,\ldots,a_n)\in A^n\mid \mathcal{A}\models \varphi[e(x_1/a_1,\ldots,x_n/a_n)]\}.$

Shortly, $\varphi^{\mathcal{A}}(\overline{x}) = \{\overline{a} \in A^{|\overline{x}|} \mid \mathcal{A} \models \varphi[e(\overline{x}/\overline{a})]\}$, where $|\overline{x}| = n$.

• A set defined by a formula $\varphi(\overline{x},\overline{y})$ with parameters $\overline{b} \in A^{|\overline{y}|}$ in \mathcal{A} is

$$\varphi^{\mathcal{A},\overline{b}}(\overline{x},\overline{y}) = \{\overline{a} \in A^{|\overline{x}|} \mid \mathcal{A} \models \varphi[e(\overline{x}/\overline{a},\overline{y}/\overline{b})]\}.$$

Example: $E(x, y)^{\mathcal{G}, b}$ *is the set of neighbors of a vertex* b *in a graph* \mathcal{G} *.*

For a structure A, a set B ⊆ A, and n ∈ N let Dfⁿ(A, B) denote the class of definable sets D ⊆ Aⁿ in the structure A with parameters from B.

Observation $Df^n(\mathcal{A}, B)$ is closed under complements, union, intersection and it contains \emptyset , A^n . Thus it forms a subalgebra of the set algebra $\underline{\mathcal{P}}(A^n)$.

Definability

Example - database queries

1	Movie	name	director	actor	Program	n cinema	name	time	
		Lidé z Maringotek	M. Frič	J. Tříska		Světozor	Po strništi bos	13:15	
		Po strništi bos	J. Svěrák	Z. Svěrák		Mat	Po strništi bos	16:15	
		Po strništi bos	J. Svěrák	J. Tříska		Mat	Lidé z Maringotek	18:30	

Where and when can I see a movie with J. Tříska?

select Program.cinema, Program.time from Movie, Program where Movie.name = Program.name and actor = 'J. Tříska';

Equivalently, it is the set $\varphi^{\mathcal{D}}(x, y)$ defined by the formula $\varphi(x, y)$

 $(\exists n)(\exists d)(P(x, n, v) \land M(n, d, \mathsf{J}, \mathsf{T}\check{\mathsf{r}}(\mathsf{ska}')))$

in the structure $\mathcal{D} = \langle D, Movie, Program, c^D \rangle_{c \in D}$ of $L = \langle M, P, c \rangle_{c \in D}$, where $D = \{$ 'Po strništi bos', 'J. Tříska', 'Mat', '13:15', ... $\}$ and $c^D = c$ for any $c \in D$.

・ロット (日) (日) (日)

Boolean algebras

The theory of *Boolean algebras* has the language $L = \langle -, \wedge, \vee, 0, 1 \rangle$ with equality and the following axioms.

$$x \land (y \land z) = (x \land y) \land z$$
(asociativity of \land) $x \lor (y \lor z) = (x \lor y) \lor z$ (asociativity of \lor) $x \land y = y \land x$ (commutativity of \land) $x \lor y = y \lor x$ (commutativity of \lor) $x \land (y \lor z) = (x \land y) \lor (x \land z)$ (distributivity of \land over \lor) $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ (distributivity of \lor over \land) $x \land (x \lor y) = x$, $x \lor (x \land y) = x$ (asociativity of \lor) $x \lor (-x) = 1$, $x \land (-x) = 0$ (commutativity of \lor over \land) $0 \ne 1$ (non-triviality)

The smallest model is $\underline{2} = \langle \{0, 1\}, -1, \wedge_1, \vee_1, 0, 1 \rangle$. Finite Boolean algebras are (up to isomorphism) $\langle \{0, 1\}^n, -n, \wedge_n, \vee_n, 0_n, 1_n \rangle$ for $n \in \mathbb{N}^+$, where the operations *(on binary n-tuples)* are the coordinate-wise operations of $\underline{2}$.

Relations of propositional and predicate logic

- Propositional formulas over connectives ¬, ∧, ∨ (eventually with ⊤, ⊥) can be viewed as Boolean terms. Then the truth value of φ in a given assignment is the value of the term in the Boolean algebra 2.
- Lindenbaum-Tarski algebra over \mathbb{P} is Boolean algebra (also for \mathbb{P} infinite).
- If we represent atomic subformulas in an open formula φ (without equality) with propositional letters, we obtain a proposition that is valid if and only if φ is valid.
- Propositional logic can be introduced as a fragment of predicate logic using nullary relation symbols (*syntax*) and nullary relations (*semantics*) since A⁰ = {∅} = 1, so R^A ⊆ A⁰ is either R^A = ∅ = 0 or R^A = {∅} = 1.

イロン イヨン イヨン

э.