Propositional and Predicate Logic - VIII

Petr Gregor
KTIML MFF UK
WS 2022/23

Theorem on constants

Theorem Let φ be a formula in a language L with free variables x_{1}, \ldots, x_{n} and let T be a theory in L. Let L^{\prime} be the extension of L with new constant symbols c_{1}, \ldots, c_{n} and let T^{\prime} denote the theory T in L^{\prime}. Then

$$
T \models \varphi \quad \text { if and only if } \quad T^{\prime} \models \varphi\left(x_{1} / c_{1}, \ldots, x_{n} / c_{n}\right) .
$$

Proof (\Rightarrow) If \mathcal{A}^{\prime} is a model of T^{\prime}, let \mathcal{A} be the reduct of \mathcal{A}^{\prime} to L. Since $\mathcal{A} \models \varphi[e]$ for every assignment e, we have in particular

$$
\mathcal{A} \models \varphi\left[e\left(x_{1} / c_{1}^{A^{\prime}}, \ldots, x_{n} / c_{n}^{A^{\prime}}\right)\right], \quad \text { i.e. } \mathcal{A}^{\prime} \models \varphi\left(x_{1} / c_{1}, \ldots, x_{n} / c_{n}\right) .
$$

(\Leftarrow) If \mathcal{A} is a model of T and e an assignment, let \mathcal{A}^{\prime} be the expansion of A into L^{\prime} by setting $c_{i}^{A^{\prime}}=e\left(x_{i}\right)$ for every i. Since $\mathcal{A}^{\prime} \models \varphi\left(x_{1} / c_{1}, \ldots, x_{n} / c_{n}\right)\left[e^{\prime}\right]$ for every assignment e^{\prime}, we have

$$
\mathcal{A}^{\prime} \models \varphi\left[e\left(x_{1} / c_{1}^{A^{\prime}}, \ldots, x_{n} / c_{n}^{A^{\prime}}\right)\right], \quad \text { i.e. } \mathcal{A} \models \varphi[e] .
$$

Extensions of theories

We show that introducing new definitions has only an "auxiliary character".
Proposition Let T be a theory of L and T^{\prime} be a theory of L^{\prime} where $L \subseteq L^{\prime}$.
(i) T^{\prime} is an extension of T if and only if the reduct \mathcal{A} of every model \mathcal{A}^{\prime} of T^{\prime} to the language L is a model of T,
(ii) T^{\prime} is a conservative extension of T if T^{\prime} is an extension of T and every model \mathcal{A} of T can be expanded to the language L^{\prime} on a model \mathcal{A}^{\prime} of T^{\prime}.
Proof
(i)a) If T^{\prime} is an extension of T and φ is any axiom of T, then $T^{\prime} \models \varphi$. Thus $\mathcal{A}^{\prime} \models \varphi$ and also $\mathcal{A} \models \varphi$, which implies that \mathcal{A} is a model of T.
(i)b) If \mathcal{A} is a model of T and $T \models \varphi$ where φ is of L, then $\mathcal{A} \models \varphi$ and also $\mathcal{A}^{\prime} \models \varphi$. This implies that $T^{\prime} \models \varphi$ and thus T^{\prime} is an extension of T.
(ii) If $T^{\prime} \models \varphi$ where φ is of L and \mathcal{A} is a model of T, then in its expansion \mathcal{A}^{\prime} that models T^{\prime} we have $\mathcal{A}^{\prime} \models \varphi$. Thus also $\mathcal{A} \models \varphi$, and hence $T \models \varphi$. Therefore T^{\prime} is conservative.

Extensions by definition of a relation symbol

Let T be a theory of $L, \psi\left(x_{1}, \ldots, x_{n}\right)$ be a formula of L in free variables x_{1}, \ldots, x_{n} and L^{\prime} denote the language L with a new n-ary relation symbol R. The extension of T by definition of R with the formula ψ is the theory T^{\prime} of L^{\prime} obtained from T by adding the axiom

$$
R\left(x_{1}, \ldots, x_{n}\right) \leftrightarrow \psi\left(x_{1}, \ldots, x_{n}\right)
$$

Observation Every model of T can be uniquely expanded to a model of T^{\prime}. Corollary T^{\prime} is a conservative extension of T.

Proposition For every formula φ^{\prime} of L^{\prime} there is φ of L s.t. $T^{\prime} \models \varphi^{\prime} \leftrightarrow \varphi$. Proof Replace each subformula $R\left(t_{1}, \ldots, t_{n}\right)$ in φ with $\psi^{\prime}\left(x_{1} / t_{1}, \ldots, x_{n} / t_{n}\right)$, where ψ^{\prime} is a suitable variant of ψ allowing all substitutions. \square For example, the symbol \leq can be defined in arithmetics by the axiom

$$
x \leq y \quad \leftrightarrow \quad(\exists z)(x+z=y)
$$

Extensions by definition of a function symbol

Let T be a theory of a language L and $\psi\left(x_{1}, \ldots, x_{n}, y\right)$ be a formula of L in free variables x_{1}, \ldots, x_{n}, y such that

$$
\begin{aligned}
& T \models(\exists y) \psi\left(x_{1}, \ldots, x_{n}, y\right) \\
& T \models \psi\left(x_{1}, \ldots, x_{n}, y\right) \wedge \psi\left(x_{1}, \ldots, x_{n}, z\right) \rightarrow y=z
\end{aligned}
$$

Let L^{\prime} denote the language L with a new n-ary function symbol f.
The extension of T by definition of f with the formula ψ is the theory T^{\prime} of L^{\prime} obtained from T by adding the axiom

$$
f\left(x_{1}, \ldots, x_{n}\right)=y \leftrightarrow \psi\left(x_{1}, \ldots, x_{n}, y\right)
$$

Remark In particular, if ψ is $t\left(x_{1}, \ldots, x_{n}\right)=y$ where t is a term and x_{1}, \ldots, x_{n} are the variables in t, both the conditions of existence and uniqueness hold. For example binary - can be defined using + and unary - by the axiom

$$
x-y=z \leftrightarrow x+(-y)=z
$$

Extensions by definition of a function symbol (cont.)

Observation Every model of T can be uniquely expanded to a model of T^{\prime}. Corollary T^{\prime} is a conservative extension of T.

Proposition For every formula φ^{\prime} of L^{\prime} there is φ of L s.t. $T^{\prime} \models \varphi^{\prime} \leftrightarrow \varphi$. Proof It suffices to consider φ^{\prime} with a single occurrence of f. If φ^{\prime} has more, we may proceed inductively. Let φ^{*} denote the formula obtained from φ^{\prime} by replacing the term $f\left(t_{1}, \ldots, t_{n}\right)$ with a new variable z. Let φ be the formula

$$
(\exists z)\left(\varphi^{*} \wedge \psi^{\prime}\left(x_{1} / t_{1}, \ldots, x_{n} / t_{n}, y / z\right)\right)
$$

where ψ^{\prime} is a suitable variant of ψ allowing all substitutions.
Let \mathcal{A} be a model of T^{\prime}, e be an assignment, and $a=f^{A}\left(t_{1}, \ldots, t_{n}\right)[e]$. By the two conditions, $\mathcal{A} \models \psi^{\prime}\left(x_{1} / t_{1}, \ldots, x_{n} / t_{n}, y / z\right)[e]$ if and only if $e(z)=a$. Thus

$$
\mathcal{A} \models \varphi[e] \Leftrightarrow \mathcal{A} \models \varphi^{*}[e(z / a)] \Leftrightarrow \mathcal{A} \models \varphi^{\prime}[e]
$$

for every assignment e, i.e. $\mathcal{A} \models \varphi^{\prime} \leftrightarrow \varphi$ and so $T^{\prime} \models \varphi^{\prime} \leftrightarrow \varphi . \quad \square$

Extensions by definitions

A theory T^{\prime} of L^{\prime} is called an extension of a theory T of L by definitions if it is obtained from T by successive definitions of relation and function symbols.
Corollary Let T^{\prime} be an extension of a theory T by definitions. Then

- every model of T can be uniquely expanded to a model of T^{\prime},
- T^{\prime} is a conservative extension of T,
- for every formula φ^{\prime} of L^{\prime} there is a formula φ of L such that $T^{\prime} \models \varphi^{\prime} \leftrightarrow \varphi$.

For example, in $T=\{(\exists y)(x+y=0),(x+y=0) \wedge(x+z=0) \rightarrow y=z\}$ of $L=\langle+, 0, \leq\rangle$ with equality we can define $<$ and unary - by the axioms

$$
\begin{aligned}
-x=y & \leftrightarrow x+y=0 \\
x<y & \leftrightarrow x \leq y \wedge \neg(x=y)
\end{aligned}
$$

Then the formula $-x<y$ is equivalent in this extension to a formula

$$
(\exists z)((z \leq y \wedge \neg(z=y)) \wedge x+z=0) .
$$

Definable sets

We interested in which sets can be defined within a given structure.

- A set defined by a formula $\varphi\left(x_{1}, \ldots, x_{n}\right)$ in structure \mathcal{A} is the set

$$
\varphi^{\mathcal{A}}\left(x_{1}, \ldots, x_{n}\right)=\left\{\left(a_{1}, \ldots, a_{n}\right) \in A^{n} \mid \mathcal{A} \models \varphi\left[e\left(x_{1} / a_{1}, \ldots, x_{n} / a_{n}\right)\right]\right\} .
$$

Shortly, $\varphi^{\mathcal{A}}(\bar{x})=\left\{\bar{a} \in A^{|\bar{x}|} \mid \mathcal{A}=\varphi[e(\bar{x} / \bar{a})]\right\}$, where $|\bar{x}|=n$.

- A set defined by a formula $\varphi(\bar{x}, \bar{y})$ with parameters $\bar{b} \in A^{|\bar{y}|}$ in \mathcal{A} is

$$
\varphi^{\mathcal{A}, \bar{b}}(\bar{x}, \bar{y})=\left\{\bar{a} \in A^{|\bar{x}|} \mid \mathcal{A} \models \varphi[e(\bar{x} / \bar{a}, \bar{y} / \bar{b})]\right\} .
$$

Example: $E(x, y)^{\mathcal{G}, b}$ is the set of neighbors of a vertex b in a graph \mathcal{G}.

- For a structure \mathcal{A}, a set $B \subseteq A$, and $n \in \mathbb{N}$ let $\mathrm{Df}^{n}(\mathcal{A}, B)$ denote the class of definable sets $D \subseteq A^{n}$ in the structure \mathcal{A} with parameters from B.

Observation $\mathrm{Df}^{n}(\mathcal{A}, B)$ is closed under complements, union, intersection and it contains \emptyset, A^{n}. Thus it forms a subalgebra of the set algebra $\underline{\mathcal{P}}\left(A^{n}\right)$.

Example - database queries

Movie	name	director	actor	Program	cinema	name	time
	Lidé z Maringotek	M. Frič	J. Tříska		Světozor	Po strništi bos	$13: 15$
	Po strništi bos	J. Svěrák	Z. Svěrák		Mat	Po strništi bos	$16: 15$
	Po strništi bos	J. Svěrák	J. Tříska		Mat	Lidé z Maringotek	$18: 30$
	\ldots						

Where and when can I see a movie with J. Tříska?
select Program.cinema, Program.time from Movie, Program where Movie.name = Program.name and actor = 'J. Tříska';

Equivalently, it is the set $\varphi^{\mathcal{D}}(x, y)$ defined by the formula $\varphi(x, y)$

$$
(\exists n)(\exists d)(P(x, n, y) \wedge M(n, d, \text { ‘J. Tříska’ }))
$$

in the structure $\mathcal{D}=\left\langle D \text {, Movie, Program, } c^{D}\right\rangle_{c \in D}$ of $L=\langle M, P, c\rangle_{c \in D}$, where $D=\{$ 'Po strništi bos', 'J. Tříska', 'Mat', '13:15', $\ldots\}$ and $c^{D}=c$ for any $c \in D$.

Boolean algebras

The theory of Boolean algebras has the language $L=\langle-, \wedge, \vee, 0,1\rangle$ with equality and the following axioms.

$$
\begin{aligned}
& x \wedge(y \wedge z)=(x \wedge y) \wedge z \\
& x \vee(y \vee z)=(x \vee y) \vee z \\
& x \wedge y=y \wedge x \\
& x \vee y=y \vee x \\
& x \wedge(y \vee z)=(x \wedge y) \vee(x \wedge z) \\
& x \vee(y \wedge z)=(x \vee y) \wedge(x \vee z) \\
& x \wedge(x \vee y)=x, \quad x \vee(x \wedge y)=x \\
& x \vee(-x)=1, \quad x \wedge(-x)=0 \\
& 0 \neq 1
\end{aligned}
$$

(asociativity of \wedge)
(asociativity of \vee)
(commutativity of \wedge)
(commutativity of \vee)
(distributivity of \wedge over \vee)
(distributivity of \vee over \wedge)
(absorption)
(complementation)
(non-triviality)

The smallest model is $\underline{2}=\left\langle\{0,1\},{ }_{1}, \wedge_{1}, \vee_{1}, 0,1\right\rangle$. Finite Boolean algebras are (up to isomorphism) $\left\langle\{0,1\}^{n},-_{n}, \wedge_{n}, \vee_{n}, 0_{n}, 1_{n}\right\rangle$ for $n \in \mathbb{N}^{+}$, where the operations (on binary n-tuples) are the coordinate-wise operations of $\underline{2}$.

Relations of propositional and predicate logic

- Propositional formulas over connectives \neg, \wedge, \vee (eventually with \top, \perp) can be viewed as Boolean terms. Then the truth value of φ in a given assignment is the value of the term in the Boolean algebra 2.
- Lindenbaum-Tarski algebra over \mathbb{P} is Boolean algebra (also for \mathbb{P} infinite).
- If we represent atomic subformulas in an open formula φ (without equality) with propositional letters, we obtain a proposition that is valid if and only if φ is valid.
- Propositional logic can be introduced as a fragment of predicate logic using nullary relation symbols (syntax) and nullary relations (semantics) since $A^{0}=\{\emptyset\}=1$, so $R^{A} \subseteq A^{0}$ is either $R^{A}=\emptyset=0$ or $R^{A}=\{\emptyset\}=1$.

Tableau method in propositional logic - a review

- A tableau is a binary tree that represents a search for a counterexample.
- Nodes are labeled by entries, i.e. formulas with a sign T / F that represents an assumption that the formula is true / false in some model.
- If this assumption is correct, then it is correct also for all the entries in some branch below that came from this entry.
- A branch is contradictory (it fails) if it contains $T \psi, F \psi$ for some ψ.
- A proof of formula φ is a contradictory tableau with root $F \varphi$, i.e. a tableau in which every branch is contradictory. If φ has a proof, it is valid.
- If a counterexample exists, there will be a branch in a finished tableau that provides us with this counterexample, but this branch can be infinite.
- We can construct a systematic tableau that is always finished.
- If φ is valid, the systematic tableau for φ is contradictory, i.e. it is a proof of φ; and in this case, it is also finite.

Tableau method in predicate logic - what is different

- Formulas in entries will always be sentences (closed formulas), i.e. formulas without free variables.
- We add new atomic tableaux for quantifiers.
- In these tableaux we substitute ground terms for quantified variables following certain rules.
- We extend the language by new (auxiliary) constant symbols (countably many) to represent "witnesses" of entries $T(\exists x) \varphi(x)$ and $F(\forall x) \varphi(x)$.
- In a finished noncontradictory branch containing an entry $T(\forall x) \varphi(x)$ or $F(\exists x) \varphi(x)$ we have instances $T \varphi(x / t)$ resp. $F \varphi(x / t)$ for every ground term t (of the extended language).

Assumptions

1) The formula φ that we want to prove (or refute) is a sentence. If not, we can replace φ with its universal closure φ^{\prime}, since for every theory T,

$$
T \models \varphi \quad \text { if and only if } \quad T \models \varphi^{\prime} .
$$

2) We prove from a theory in a closed form, i.e. every axiom is a sentence. By replacing every axiom ψ with its universal closure ψ^{\prime} we obtain an equivalent theory since for every structure \mathcal{A} (of the given language L),

$$
\mathcal{A} \models \psi \quad \text { if and only if } \quad \mathcal{A} \models \psi^{\prime} .
$$

3) The language L is countable. Then every theory of L is countable. We denote by L_{C} the extension of L by new constant symbols c_{0}, c_{1}, \ldots (countably many). Then there are countably many ground terms of L_{C}. Let t_{i} denote the i-th ground term (in some fixed enumeration).
4) First, we assume that the language is without equality.

Tableaux in predicate logic - examples

Atomic tableaux - previous

An atomic tableau is one of the following trees (labeled by entries), where α is any atomic sentence and φ, ψ are any sentences, all of language L_{C}.

T α	$F \alpha$	$\begin{gathered} T(\varphi \wedge \psi) \\ \mid \\ T \varphi \\ \mid \\ T \psi \end{gathered}$	$\underset{F \varphi}{F(\varphi \wedge \psi)}{ }_{F \psi}$	$\stackrel{T(\varphi \vee \psi)}{T \varphi} \underset{T \psi}{/}$	$\begin{gathered} F(\varphi \vee \psi) \\ \mid \\ F \varphi \\ \mid \\ F \psi \end{gathered}$
$\begin{gathered} T(\neg \varphi) \\ \mid \\ F \varphi \end{gathered}$	$\begin{gathered} F(\neg \varphi) \\ \mid \\ T \varphi \end{gathered}$	$\stackrel{T(\varphi \rightarrow \psi)}{\stackrel{T}{F \varphi}} \underset{T \psi}{ }$	$\begin{gathered} F(\varphi \rightarrow \psi) \\ \mid \\ T \varphi \\ \mid \\ F \psi \end{gathered}$	$\begin{array}{cc} T(\varphi \leftrightarrow \psi) \\ / & \rangle \\ T \varphi & F \varphi \\ \mid & \mid \\ T \psi & F \psi \end{array}$	$\begin{array}{cc} F(\varphi \leftrightarrow \psi) \\ / & \searrow \\ T \varphi & F \varphi \\ \mid & \mid \\ F \psi & T \psi \end{array}$

Atomic tableaux - new

Atomic tableaux are also the following trees (labeled by entries), where φ is any formula of the language L_{C} with a free variable x, t is any ground term of L_{C} and c is a new constant symbol from $L_{C} \backslash L$.

$\# T(\forall x) \varphi(x)$	$F(\forall x) \varphi(x)$	$T(\exists x) \varphi(x)$	${ }^{*} \quad F(\exists x) \varphi(x)$
\mid	\mid	\mid	\mid
$T \varphi(x / t)$	$F \varphi(x / c)$	$T \varphi(x / c)$	$F \varphi(x / t)$
for any ground	for a new	for a new	for any ground
term t of L_{C}	constant c	constant c	term t of L_{C}

Remark The constant symbol c represents a "witness" of the entry $T(\exists x) \varphi(x)$ or $F(\forall x) \varphi(x)$. Since we need that no prior demands are put on c, we specify (in the definition of a tableau) which constant symbols c may be used.

Tableau

A finite tableau from a theory T is a binary tree labeled with entries described
(i) every atomic tableau is a finite tableau from T, whereas in case (*) we may use any constant symbol $c \in L_{C} \backslash L$,
(ii) if P is an entry on a branch V in a finite tableau from T, then by adjoining the atomic tableau for P at the end of branch V we obtain (again) a finite tableau from T, whereas in case (*) we may use only a constant symbol $c \in L_{C} \backslash L$ that does not appear on V,
(iii) if V is a branch in a finite tableau from T and $\varphi \in T$, then by adjoining $T \varphi$ at the end of branch V we obtain (again) a finite tableau from T.
(iv) every finite tableau from T is formed by finitely many steps (i), (ii), (iii).

A tableau from T is a sequence $\tau_{0}, \tau_{1}, \ldots, \tau_{n}, \ldots$ of finite tableaux from T such that τ_{n+1} is formed from τ_{n} by (ii) or (iii), formally $\tau=\cup \tau_{n}$.

Construction of tableaux

Convention

We will not write the entry that is expanded again on the branch, except in cases when the entry is in the form of $T(\forall x) \varphi(x)$ or $F(\exists x) \varphi(x)$.

Tableau proof

- A branch V in a tableau τ is contradictory if it contains entries $T \varphi$ and $F \varphi$ for some sentence φ, otherwise V is noncontradictory.
- A tableau τ is contradictory if every branch in τ is contradictory.
- A tableau proof (proof by tableau) of a sentence φ from a theory T is a contradictory tableau from T with $F \varphi$ in the root.
- A sentence φ is (tableau) provable from T, denoted by $T \vdash \varphi$, if it has a tableau proof from T.
- A refutation of a sentence φ by tableau from a theory T is a contradictory tableau from T with the root entry $T \varphi$.
- A sentence φ is (tableau) refutable from T if it has a refutation by tableau from T, i.e. $T \vdash \neg \varphi$.

Examples

