Propositional and Predicate Logic - VIII

Petr Gregor

KTIML MFF UK

WS 2022/23

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - VIII

WS 2022/23

・ロト ・ 日 ・ ・ ヨ ・ ・

э

Theorem on constants

Theorem Let φ be a formula in a language L with free variables x_1, \ldots, x_n and let T be a theory in L. Let L' be the extension of L with new constant symbols c_1, \ldots, c_n and let T' denote the theory T in L'. Then

 $T \models \varphi$ if and only if $T' \models \varphi(x_1/c_1, \ldots, x_n/c_n)$.

Proof (\Rightarrow) If \mathcal{A}' is a model of T', let \mathcal{A} be the reduct of \mathcal{A}' to L. Since $\mathcal{A} \models \varphi[e]$ for every assignment e, we have in particular

 $\mathcal{A} \models \varphi[e(x_1/c_1^{A'}, \dots, x_n/c_n^{A'})], \text{ i.e. } \mathcal{A}' \models \varphi(x_1/c_1, \dots, x_n/c_n).$

 (\Leftarrow) If \mathcal{A} is a model of T and e an assignment, let \mathcal{A}' be the expansion of A into L' by setting $c_i^{A'} = e(x_i)$ for every *i*. Since $\mathcal{A}' \models \varphi(x_1/c_1, \ldots, x_n/c_n)[e']$ for every assignment e', we have

$$\mathcal{A}' \models \varphi[e(x_1/c_1^{A'}, \dots, x_n/c_n^{A'})], \quad \text{i.e. } \mathcal{A} \models \varphi[e]. \quad \Box$$

Extensions of theories

We show that introducing new definitions has only an "auxiliary character".

Proposition Let *T* be a theory of *L* and *T'* be a theory of *L'* where $L \subseteq L'$.

- (i) T' is an extension of T if and only if the reduct A of every model A' of T' to the language L is a model of T,
- (*ii*) T' is a conservative extension of T if T' is an extension of T and every model A of T can be expanded to the language L' on a model A' of T'.
 Proof
- (*i*)*a*) If *T*' is an extension of *T* and φ is any axiom of *T*, then *T*' $\models \varphi$. Thus $\mathcal{A}' \models \varphi$ and also $\mathcal{A} \models \varphi$, which implies that \mathcal{A} is a model of *T*.
- (*i*)*b*) If \mathcal{A} is a model of T and $T \models \varphi$ where φ is of L, then $\mathcal{A} \models \varphi$ and also $\mathcal{A}' \models \varphi$. This implies that $T' \models \varphi$ and thus T' is an extension of T.
 - (*ii*) If $T' \models \varphi$ where φ is of *L* and *A* is a model of *T*, then in its expansion *A'* that models *T'* we have $A' \models \varphi$. Thus also $A \models \varphi$, and hence $T \models \varphi$. Therefore *T'* is conservative.

Extensions by definitions

Extensions by definition of a relation symbol

Let *T* be a theory of *L*, $\psi(x_1, \ldots, x_n)$ be a formula of *L* in free variables x_1, \ldots, x_n and L' denote the language L with a new n-ary relation symbol R. The *extension* of T by definition of R with the formula ψ is the theory T' of L'

obtained from T by adding the axiom

 $R(x_1,\ldots,x_n) \leftrightarrow \psi(x_1,\ldots,x_n)$

Observation Every model of T can be uniquely expanded to a model of T'. **Corollary** T' is a conservative extension of T.

Proposition For every formula φ' of L' there is φ of L s.t. $T' \models \varphi' \leftrightarrow \varphi$. **Proof** Replace each subformula $R(t_1, \ldots, t_n)$ in φ with $\psi'(x_1/t_1, \ldots, x_n/t_n)$, where ψ' is a suitable variant of ψ allowing all substitutions.

For example, the symbol \leq can be defined in arithmetics by the axiom $x < y \leftrightarrow (\exists z)(x + z = y)$

Extensions by definition of a function symbol

Let *T* be a theory of a language *L* and $\psi(x_1, \ldots, x_n, y)$ be a formula of *L* in free variables x_1, \ldots, x_n, y such that

 $T \models (\exists y)\psi(x_1, \dots, x_n, y)$ (existence)

 $T \models \psi(x_1, \dots, x_n, y) \land \psi(x_1, \dots, x_n, z) \rightarrow y = z$ (uniqueness)

Let L' denote the language L with a new n-ary function symbol f.

The *extension* of *T* by definition of *f* with the formula ψ is the theory *T'* of *L'* obtained from *T* by adding the axiom

$$f(x_1,\ldots,x_n)=y \leftrightarrow \psi(x_1,\ldots,x_n,y)$$

Remark In particular, if ψ is $t(x_1, ..., x_n) = y$ where t is a term and $x_1, ..., x_n$ are the variables in t, both the conditions of existence and uniqueness hold. For example binary – can be defined using + and unary – by the axiom

$$x - y = z \iff x + (-y) = z$$

Extensions by definition of a function symbol (cont.)

Observation Every model of T can be uniquely expanded to a model of T'. **Corollary** T' is a conservative extension of T.

Proposition For every formula φ' of *L*' there is φ of *L* s.t. $T' \models \varphi' \leftrightarrow \varphi$.

Proof It suffices to consider φ' with a single occurrence of f. If φ' has more, we may proceed inductively. Let φ^* denote the formula obtained from φ' by replacing the term $f(t_1, \ldots, t_n)$ with a new variable z. Let φ be the formula

 $(\exists z)(\varphi^* \land \psi'(x_1/t_1,\ldots,x_n/t_n,y/z)),$

where ψ' is a suitable variant of ψ allowing all substitutions.

Let \mathcal{A} be a model of T', e be an assignment, and $a = f^A(t_1, \ldots, t_n)[e]$. By the two conditions, $\mathcal{A} \models \psi'(x_1/t_1, \ldots, x_n/t_n, y/z)[e]$ if and only if e(z) = a. Thus

 $\mathcal{A}\models \varphi[e] \Leftrightarrow \mathcal{A}\models \varphi^*[e(z/a)] \Leftrightarrow \mathcal{A}\models \varphi'[e]$

for every assignment *e*, i.e. $\mathcal{A} \models \varphi' \leftrightarrow \varphi$ and so $T' \models \varphi' \leftrightarrow \varphi$. \Box

Extensions by definitions

A theory T' of L' is called an *extension* of a theory T of L by definitions if it is obtained from T by successive definitions of relation and function symbols.

Corollary Let T' be an extension of a theory T by definitions. Then

- every model of T can be uniquely expanded to a model of T',
- T' is a conservative extension of T,
- for every formula φ' of L' there is a formula φ of L such that $T' \models \varphi' \leftrightarrow \varphi$.

For example, in $T = \{(\exists y)(x + y = 0), (x + y = 0) \land (x + z = 0) \rightarrow y = z\}$ of $L = \langle +, 0, \leq \rangle$ with equality we can define < and unary - by the axioms

$$\begin{aligned} -x &= y \quad \leftrightarrow \quad x + y = 0 \\ x &< y \quad \leftrightarrow \quad x \leq y \quad \wedge \quad \neg (x = y) \end{aligned}$$

Then the formula -x < y is equivalent in this extension to a formula

$$(\exists z)((z \leq y \land \neg (z = y)) \land x + z = 0).$$

・ロン ・回 と ・ ヨ と ・

Definable sets

We interested in which sets can be defined within a given structure.

• A set defined by a formula $\varphi(x_1, \ldots, x_n)$ in structure A is the set

 $\varphi^{\mathcal{A}}(x_1,\ldots,x_n)=\{(a_1,\ldots,a_n)\in A^n\mid \mathcal{A}\models \varphi[e(x_1/a_1,\ldots,x_n/a_n)]\}.$

Shortly, $\varphi^{\mathcal{A}}(\overline{x}) = \{\overline{a} \in A^{|\overline{x}|} \mid \mathcal{A} \models \varphi[e(\overline{x}/\overline{a})]\}$, where $|\overline{x}| = n$.

• A set defined by a formula $\varphi(\overline{x},\overline{y})$ with parameters $\overline{b} \in A^{|\overline{y}|}$ in \mathcal{A} is

$$\varphi^{\mathcal{A},\overline{b}}(\overline{x},\overline{y}) = \{\overline{a} \in A^{|\overline{x}|} \mid \mathcal{A} \models \varphi[e(\overline{x}/\overline{a},\overline{y}/\overline{b})]\}.$$

Example: $E(x, y)^{\mathcal{G}, b}$ *is the set of neighbors of a vertex* b *in a graph* \mathcal{G} *.*

For a structure A, a set B ⊆ A, and n ∈ N let Dfⁿ(A, B) denote the class of definable sets D ⊆ Aⁿ in the structure A with parameters from B.

Observation $\text{Df}^n(\mathcal{A}, B)$ is closed under complements, union, intersection and it contains \emptyset , A^n . Thus it forms a subalgebra of the set algebra $\underline{\mathcal{P}}(A^n)$.

Example - database queries

Movie	name	director	actor	Program	cinema	name	time
	Lidé z Maringotek	M. Frič	J. Tříska		Světozor	Po strništi bos	13:15
	Po strništi bos	J. Svěrák	Z. Svěrák		Mat	Po strništi bos	16:15
	Po strništi bos	J. Svěrák	J. Tříska		Mat	Lidé z Maringotek	18:30

Where and when can I see a movie with J. Tříska?

select Program.cinema, Program.time from Movie, Program where Movie.name = Program.name and actor = 'J. Tříska';

Equivalently, it is the set $\varphi^{\mathcal{D}}(x, y)$ defined by the formula $\varphi(x, y)$

 $(\exists n)(\exists d)(P(x, n, v) \land M(n, d, \mathsf{J}, \mathsf{T}\check{\mathsf{r}}(\mathsf{ska}')))$

in the structure $\mathcal{D} = \langle D, Movie, Program, c^D \rangle_{c \in D}$ of $L = \langle M, P, c \rangle_{c \in D}$, where $D = \{$ 'Po strništi bos', 'J. Tříska', 'Mat', '13:15', ... $\}$ and $c^D = c$ for any $c \in D$.

Boolean algebras

The theory of *Boolean algebras* has the language $L = \langle -, \wedge, \vee, 0, 1 \rangle$ with equality and the following axioms.

$$x \land (y \land z) = (x \land y) \land z$$
(asociativity of \land) $x \lor (y \lor z) = (x \lor y) \lor z$ (asociativity of \lor) $x \land y = y \land x$ (commutativity of \land) $x \lor y = y \lor x$ (commutativity of \lor) $x \land (y \lor z) = (x \land y) \lor (x \land z)$ (distributivity of \land over \lor) $x \lor (y \land z) = (x \lor y) \land (x \lor z)$ (distributivity of \lor over \land) $x \land (x \lor y) = x$, $x \lor (x \land y) = x$ (absorption) $x \lor (-x) = 1$, $x \land (-x) = 0$ (complementation) $0 \ne 1$ (non-triviality)

The smallest model is $\underline{2} = \langle \{0, 1\}, -1, \wedge_1, \vee_1, 0, 1 \rangle$. Finite Boolean algebras are (up to isomorphism) $\langle \{0, 1\}^n, -n, \wedge_n, \vee_n, 0_n, 1_n \rangle$ for $n \in \mathbb{N}^+$, where the operations *(on binary n-tuples)* are the coordinate-wise operations of $\underline{2}$.

Relations of propositional and predicate logic

- Propositional formulas over connectives ¬, ∧, ∨ (eventually with ⊤, ⊥) can be viewed as Boolean terms. Then the truth value of φ in a given assignment is the value of the term in the Boolean algebra 2.
- Lindenbaum-Tarski algebra over \mathbb{P} is Boolean algebra (also for \mathbb{P} infinite).
- If we represent atomic subformulas in an open formula φ (without equality) with propositional letters, we obtain a proposition that is valid if and only if φ is valid.
- Propositional logic can be introduced as a fragment of predicate logic using nullary relation symbols (*syntax*) and nullary relations (*semantics*) since A⁰ = {∅} = 1, so R^A ⊆ A⁰ is either R^A = ∅ = 0 or R^A = {∅} = 1.

イロン イボン イヨン 一日

Tableau method in propositional logic - a review

- A tableau is a binary tree that represents a search for a counterexample.
- Nodes are labeled by entries, i.e. formulas with a sign T / F that represents an assumption that the formula is true / false in some model.
- If this assumption is correct, then it is correct also for all the entries in some branch below that came from this entry.
- A branch is contradictory (it fails) if it contains $T\psi$, $F\psi$ for some ψ .
- A proof of formula φ is a contradictory tableau with root $F\varphi$, i.e. a tableau in which every branch is contradictory. If φ has a proof, it is valid.
- If a counterexample exists, there will be a branch in a finished tableau that provides us with this counterexample, but this branch can be infinite.
- We can construct a systematic tableau that is always finished.
- If φ is valid, the systematic tableau for φ is contradictory, i.e. it is a proof of φ ; and in this case, it is also finite.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Tableau method in predicate logic - what is different

- Formulas in entries will always be sentences (closed formulas), i.e. formulas without free variables.
- We add new atomic tableaux for guantifiers.
- In these tableaux we substitute ground terms for quantified variables ۰ following certain rules.
- We extend the language by new (auxiliary) constant symbols (countably many) to represent *"witnesses"* of entries $T(\exists x)\varphi(x)$ and $F(\forall x)\varphi(x)$.
- In a finished noncontradictory branch containing an entry $T(\forall x)\varphi(x)$ or $F(\exists x)\varphi(x)$ we have instances $T\varphi(x/t)$ resp. $F\varphi(x/t)$ for every ground term t (of the extended language).

Assumptions

1) The formula φ that we want to prove (or refute) is a sentence. If not, we can replace φ with its universal closure φ' , since for every theory *T*,

 $T \models \varphi$ if and only if $T \models \varphi'$.

 We prove from a theory in a closed form, i.e. every axiom is a sentence. By replacing every axiom ψ with its universal closure ψ' we obtain an equivalent theory since for every structure A (of the given language L),

 $\mathcal{A} \models \psi$ if and only if $\mathcal{A} \models \psi'$.

- 3) The language *L* is countable. Then every theory of *L* is countable. We denote by L_C the extension of *L* by new constant symbols c_0, c_1, \ldots (countably many). Then there are countably many ground terms of L_C . Let t_i denote the *i*-th ground term (in some fixed enumeration).
- 4) *First, we assume that the language is without equality.*

Tableaux in predicate logic - examples

$$\begin{array}{cccc} F((\exists x) \neg P(x) \rightarrow \neg (\forall x) P(x)) & F(\neg (\forall x) P(x) \rightarrow (\exists x) \neg P(x)) \\ & & & & | \\ T(\exists x) \neg P(x) & T(\neg (\forall x) P(x)) \\ & & & | \\ F(\neg (\forall x) P(x)) & F(\exists x) \neg P(x) \\ & & & | \\ T(\forall x) P(x) & F(\forall x) P(x) \\ & & & | \\ T(\neg P(c)) & c & \text{new} & FP(d) & d & \text{new} \\ & & & | \\ FP(c) & F(\exists x) \neg P(x) \\ & & & | \\ T(\forall x) P(x) & F(\neg P(d)) \\ & & & | \\ & & & \otimes \\ \end{array}$$

æ

Atomic tableaux - previous

An *atomic tableau* is one of the following trees (labeled by entries), where α is any atomic sentence and φ , ψ are any sentences, all of language L_C .

<ロ> <同> <同> < 回> < 回> < 回> = 三

Atomic tableaux - new

Atomic tableaux are also the following trees (labeled by entries), where φ is any formula of the language L_C with a free variable x, t is any ground term of L_C and c is a new constant symbol from $L_C \setminus L$.

$ \stackrel{\sharp}{=} T(\forall x)\varphi(x) $	$* F(\forall x)\varphi(x)$	$* T(\exists x)\varphi(x)$	$\begin{array}{c} \sharp \\ F(\exists x)\varphi(x) \end{array}$
 $T\varphi(x/t)$	$ F\varphi(x/c)$	 $T\varphi(x/c)$	 $F\varphi(x/t)$
for any ground term t of L_C	for a new constant c	for a new constant c	for any ground term t of L_C

Remark The constant symbol *c* represents a "witness" of the entry $T(\exists x)\varphi(x)$ or $F(\forall x)\varphi(x)$. Since we need that no prior demands are put on *c*, we specify (in the definition of a tableau) which constant symbols *c* may be used.

Tableau

A *finite tableau* from a theory T is a binary tree labeled with entries described

- (*i*) every atomic tableau is a finite tableau from *T*, whereas in case (*) we may use any constant symbol $c \in L_C \setminus L$,
- (*ii*) if *P* is an entry on a branch *V* in a finite tableau from *T*, then by adjoining the atomic tableau for *P* at the end of branch *V* we obtain (again) a finite tableau from *T*, whereas in case (*) we may use only a constant symbol $c \in L_C \setminus L$ that does not appear on *V*,
- (*iii*) if *V* is a branch in a finite tableau from *T* and $\varphi \in T$, then by adjoining $T\varphi$ at the end of branch *V* we obtain (again) a finite tableau from *T*.
- (iv) every finite tableau from T is formed by finitely many steps (i), (ii), (iii).

A *tableau* from *T* is a sequence $\tau_0, \tau_1, \ldots, \tau_n, \ldots$ of finite tableaux from *T* such that τ_{n+1} is formed from τ_n by (*ii*) or (*iii*), formally $\tau = \cup \tau_n$.

Construction of tableaux

æ

Convention

We will not write the entry that is expanded again on the branch, except in cases when the entry is in the form of $T(\forall x)\varphi(x)$ or $F(\exists x)\varphi(x)$.

Proof

Tableau proof

- A branch V in a tableau τ is *contradictory* if it contains entries $T\varphi$ and $F\varphi$ for some sentence φ , otherwise V is *noncontradictory*.
- A tableau τ is contradictory if every branch in τ is contradictory.
- A tableau proof (proof by tableau) of a sentence φ from a theory T is a contradictory tableau from T with $F\varphi$ in the root.
- A sentence φ is (tableau) provable from T, denoted by $T \vdash \varphi$, if it has a tableau proof from T.
- A *refutation* of a sentence φ by *tableau* from a theory T is a contradictory tableau from T with the root entry $T\varphi$.
- A sentence φ is (tableau) refutable from T if it has a refutation by tableau from T, i.e. $T \vdash \neg \varphi$.

э.

Proof

Examples

