Propositional and Predicate Logic - IX

Petr Gregor

KTIML MFF UK

WS 2022/2023

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - IX

WS 2022/2023

・ロト ・日本 ・ヨト ・ヨト

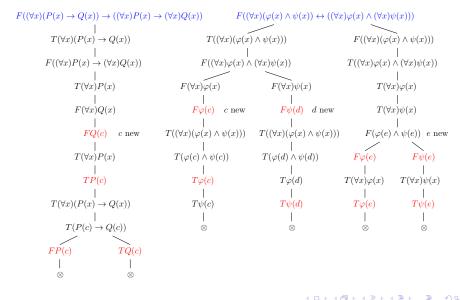

Proof

Tableau proof

- A branch V in a tableau τ is *contradictory* if it contains entries $T\varphi$ and $F\varphi$ for some sentence φ , otherwise V is *noncontradictory*.
- A tableau τ is contradictory if every branch in τ is contradictory.
- A tableau proof (proof by tableau) of a sentence φ from a theory T is a contradictory tableau from T with $F\varphi$ in the root.
- A sentence φ is (tableau) provable from T, denoted by $T \vdash \varphi$, if it has a tableau proof from T.
- A *refutation* of a sentence φ by *tableau* from a theory T is a contradictory tableau from T with the root entry $T\varphi$.
- A sentence φ is (tableau) refutable from T if it has a refutation by tableau from T, i.e. $T \vdash \neg \varphi$.

Proof

Examples

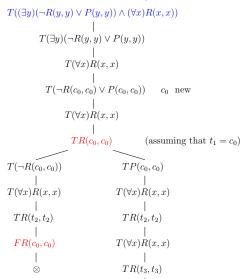
Finished tableau

A finished noncontradictory branch should provide us with a counterexample. An occurrence of an entry P in a node v of a tableau τ is *i-th* if v has exactly

- i-1 predecessors labeled by P; and is *reduced* on a branch V through v if
 - *a*) *P* is neither in form of $T(\forall x)\varphi(x)$ nor $F(\exists x)\varphi(x)$ and *P* occurs on *V* as a root of an atomic tableau, i.e. it was already expanded on *V*, or
 - *b) P* is in form of $T(\forall x)\varphi(x)$ or $F(\exists x)\varphi(x)$, *P* has an (i + 1)-th occurrence on *V*, and *V* contains an entry $T\varphi(x/t_i)$ resp. $F\varphi(x/t_i)$ where t_i is the *i*-th ground term (of the language L_C).
- Let V be a branch in a tableau τ from a theory T. We say that
 - V is *finished* if it is contradictory, or every occurrence of an entry on V is reduced on V and, moreover, V contains Tφ for every φ ∈ T,
 - τ is *finished* if every branch in τ is finished.

イロト イヨト イヨト

э


Systematic tableau - construction

Let *R* be an entry and $T = \{\varphi_0, \varphi_1, \dots\}$ be a (possibly infinite) theory.

- (1) We take the atomic tableau for *R* as τ_0 . In case (*) we choose any $c \in L_C \setminus L$, in case (\sharp) we take t_1 for *t*. Till possible, proceed as follows.
- (2) Let *v* be the leftmost node in the smallest level as possible in tableau τ_n containing an occurrence of an entry *P* that is not reduced on some noncontradictory branch through *v*. (If *v* does not exist, we take $\tau'_n = \tau_n$.)
- (3*a*) If *P* is neither $T(\forall x)\varphi(x)$ nor $F(\exists x)\varphi(x)$, let τ'_n be the tableau obtained from τ_n by adjoining the atomic tableau for *P* to every noncontradictory branch through *v*. In case (*) we choose c_i for the smallest possible *i*.
- (3*b*) If *P* is $T(\forall x)\varphi(x)$ or $F(\exists x)\varphi(x)$ and it has *i*-th occurrence in *v*, let τ'_n be the tableau obtained from τ_n by adjoining atomic tableau for *P* to every noncontradictory branch through *v*, where we take the term t_i for *t*.
 - (4) Let τ_{n+1} be the tableau obtained from τ'_n by adjoining $T\varphi_n$ to every noncontradictory branch that does not contain $T\varphi_n$ yet. (If φ_n does not exist, we take $\tau_{n+1} = \tau'_n$.)

The systematic tableau for R from T is the result $\tau = \bigcup \tau_n$ of this construction.

Systematic tableau - an example

A ₽

Systematic tableau - being finished

Proposition Every systematic tableau is finished.

Proof Let $\tau = \bigcup \tau_n$ be a systematic tableau from $T = \{\varphi_0, \varphi_1, \dots\}$ with root *R* and let *P* be an entry in a node ν of the tableau τ .

- There are only finitely many entries in τ in levels up to the level of v.
- If the occurrence of *P* in *v* was unreduced on some noncontradictory branch in *τ*, it would be found in some step (2) and reduced by (3*a*), (3*b*).
- By step (4) every $\varphi_n \in T$ will be (no later than) in τ_{n+1} on every noncontradictory branch.
- Hence the systematic tableau au has all branches finished. $\ \Box$

Proposition If a systematic tableau τ is a proof (from a theory *T*), it is finite. *Proof* Suppose that τ is infinite. Then by König's lemma, τ contains an infinite branch. This branch is noncontradictory since in the construction only noncontradictory branches are prolonged. But this contradicts the assumption that τ is a contradictory tableau.

Equality

Axioms of equality for a language L with equality are

- (*i*) x = x
- (ii) $x_1 = y_1 \land \cdots \land x_n = y_n \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$ for each *n*-ary function symbol f of the language L.
- (*iii*) $x_1 = y_1 \land \cdots \land x_n = y_n \rightarrow (R(x_1, \ldots, x_n) \rightarrow R(y_1, \ldots, y_n))$ for each *n*-ary relation symbol R of the language L including =.

A tableau proof from a theory T in a language L with equality is a tableau proof from T^* where T^* denotes the extension of T by adding axioms of equality for L (resp. their universal closures).

Remark In context of logic programming the equality often has other meaning than in mathematics (identity). For example in Prolog, $t_1 = t_2$ means that t_1 and to are unifiable.

Congruence and guotient structure

Let \sim be an equivalence on $A, f: A^n \to A$, and $R \subseteq A^n$ for $n \in \mathbb{N}$. Then \sim is

• a congruence for the function f if for every $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$

 $x_1 \sim y_1 \land \cdots \land x_n \sim y_n \Rightarrow f(x_1, \ldots, x_n) \sim f(y_1, \ldots, y_n),$

• a congruence for the relation *R* if for every $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$ $x_1 \sim y_1 \wedge \cdots \wedge x_n \sim y_n \quad \Rightarrow \quad (R(x_1, \ldots, x_n) \Leftrightarrow R(y_1, \ldots, y_n)).$

Let an equivalence \sim on A be a congruence for every function and relation in a structure $\mathcal{A} = \langle A, \mathcal{F}^A, \mathcal{R}^A \rangle$ of language $L = \langle \mathcal{F}, \mathcal{R} \rangle$. Then the *quotient* (*structure*) of \mathcal{A} by \sim is the structure $\mathcal{A}/\sim = \langle A/\sim, \mathcal{F}^{A/\sim}, \mathcal{R}^{A/\sim} \rangle$ where

$$f^{A/\sim}([x_1]_{\sim},\ldots,[x_n]_{\sim}) = [f^A(x_1,\ldots,x_n)]_{\sim}$$
$$R^{A/\sim}([x_1]_{\sim},\ldots,[x_n]_{\sim}) \Leftrightarrow R^A(x_1,\ldots,x_n)$$

for each $f \in \mathcal{F}$, $R \in \mathcal{R}$, and $x_1, \ldots, x_n \in A$, i.e. the functions and relations are defined from \mathcal{A} using representatives.

Example: $\underline{\mathbb{Z}}_p$ is the quotient of $\underline{\mathbb{Z}} = \langle \mathbb{Z}, +, -, 0 \rangle$ by the congruence modulo p.

・ロン ・四 と ・ 回 と ・ 日 と

э.

Role of axioms of equality

Let A be a structure of a language L in which the equality is interpreted as a relation $=^{A}$ satisfying the axioms of equality for L, i.e. not necessarily the identity relation.

- 1) From axioms (*i*) and (*iii*) it follows that the relation $=^{A}$ is an equivalence.
- 2) Axioms (*ii*) and (*iii*) express that the relation $=^{A}$ is a congruence for every function and relation in A.
- 3) If $\mathcal{A} \models T^*$ then also $(\mathcal{A}/=^A) \models T^*$ where $\mathcal{A}/=^A$ is the quotient of \mathcal{A} by
 - $=^{A}$. Moreover, the equality is interpreted in $\mathcal{A}/=^{A}$ as the identity relation.

On the other hand, in every model in which the equality is interpreted as the identity relation, all axioms of equality evidently hold.

・ロト ・回ト ・ヨト ・ヨト - ヨ

Soundness

We say that a model \mathcal{A} *agrees* with an entry *P*, if *P* is $T\varphi$ and $\mathcal{A} \models \varphi$ or if *P* is $F\varphi$ and $\mathcal{A} \models \neg \varphi$, i.e. $\mathcal{A} \not\models \varphi$. Moreover, \mathcal{A} *agrees* with a branch *V* if \mathcal{A} agrees with every entry on *V*.

Lemma Let A be a model of a theory T of a language L that agrees with the root entry R in a tableau $\tau = \bigcup \tau_n$ from T. Then A can be expanded to the language L_C so that it agrees with some branch V in τ .

Remark It suffices to expand A only by constants c^A such that $c \in L_C \setminus L$ occurs on V, other constants may be defined arbitrarily.

Proof By induction on *n* we find a branch V_n in τ_n and an expansion A_n of A by constants c^A for all $c \in L_C \setminus L$ on V_n s.t. A_n agrees with V_n and $V_{n-1} \subseteq V_n$.

Assume we have a branch V_n in τ_n and an expansion \mathcal{A}_n that agrees with V_n .

- If τ_{n+1} is formed from τ_n without extending the branch V_n , we take $V_{n+1} = V_n$ and $A_{n+1} = A_n$.
- If τ_{n+1} is formed from τ_n by appending $T\varphi$ to V_n for some $\varphi \in T$, let V_{n+1} be this branch and $\mathcal{A}_{n+1} = \mathcal{A}_n$. Since $\mathcal{A} \models \varphi$, \mathcal{A}_{n+1} agrees with V_{n+1} .

Soundness - proof (cont.)

- Otherwise τ_{n+1} is formed from τ_n by appending an atomic tableau to V_n for some entry P on V_n. By induction we know that A_n agrees with P.
- (*i*) If *P* is formed by a logical connective, we take $A_{n+1} = A_n$ and verify that V_n can always be extended to a branch V_{n+1} agreeing with A_{n+1} .
- (*ii*) If *P* is in form $T(\forall x)\varphi(x)$, let V_{n+1} be the (unique) extension of V_n to a branch in τ_{n+1} , i.e. by the entry $T\varphi(x/t)$. Let \mathcal{A}_{n+1} be any expansion by new constants from *t*. Since $\mathcal{A}_n \models (\forall x)\varphi(x)$, we have $\mathcal{A}_{n+1} \models \varphi(x/t)$. Analogously for *P* in form $F(\exists x)\varphi(x)$.
- (*iii*) If *P* is in form $T(\exists x)\varphi(x)$, let V_{n+1} be the (unique) extension of V_n to a branch in τ_{n+1} , i.e. by the entry $T\varphi(x/c)$. Since $\mathcal{A}_n \models (\exists x)\varphi(x)$, there is some $a \in A$ with $\mathcal{A}_n \models \varphi(x)[e(x/a)]$ for every assignment *e*. Let \mathcal{A}_{n+1} be the expansion of \mathcal{A}_n by a new constant $c^A = a$. Then $\mathcal{A}_{n+1} \models \varphi(x/c)$. Analogously for *P* in form $F(\forall x)\varphi(x)$.

The base step for n = 0 follows from similar analysis of atomic tableaux for the root entry *R* applying the assumption that *A* agrees with *R*.

・ロン ・回 ・ ・ ヨン

Theorem on soundness

We will show that the tableau method in predicate logic is sound.

Theorem For every theory *T* and sentence φ , if φ is tableau provable from *T*, then φ is valid in *T*, i.e. $T \vdash \varphi \Rightarrow T \models \varphi$.

Proof

- Let φ be tableau provable from a theory *T*, i.e. there is a contradictory tableau τ from *T* with the root entry $F\varphi$.
- Suppose for a contradiction that φ is not valid in *T*, i.e. there exists a model A of the theory *T* in which φ is not true (a counterexample).
- Since A agrees with the root entry *F*φ, by the previous lemma, A can be expanded to the language *L_C* so that it agrees with some branch in *τ*.
- But this is impossible, since every branch of τ is contradictory, i.e. it contains a pair of entries $T\psi$, $F\psi$ for some sentence ψ .

・ロ・・ (日・・ 日・・ 日・・

э.

The canonical model

From a noncontradictory branch V of a finished tableau we build a model that agrees with V. We build it on available (syntactical) objects - ground terms.

Let *V* be a noncontradictory branch of a finished tableau from a theory *T* of a language $L = \langle \mathcal{F}, \mathcal{R} \rangle$. The *canonical model* from *V* is the *L*_{*C*}-structure $\mathcal{A} = \langle A, \mathcal{F}^A, \mathcal{R}^A \rangle$ where

- (1) A is the set of all ground terms of the language L_C ,
- (2) $f^A(t_{i_1},\ldots,t_{i_n}) = f(t_{i_1},\ldots,t_{i_n})$

for every *n*-ary function symbol $f \in \mathcal{F} \cup (L_C \setminus L)$ and $t_{i_1}, \ldots, t_{i_n} \in A$.

(3) $R^A(t_{i_1}, \ldots, t_{i_n}) \Leftrightarrow T R(t_{i_1}, \ldots, t_{i_n})$ is an entry on V for every *n*-ary relation symbol $R \in \mathcal{R}$ or equality and $t_{i_1}, \ldots, t_{i_n} \in A$.

Remark The expression $f(t_{i_1}, ..., t_{i_n})$ on the right side of (2) is a ground term of L_C , i.e. an element of A. Informally, to indicate that it is a syntactical object

$$f^{A}(t_{i_{1}},\ldots,t_{i_{n}})=$$
 " $f(t_{i_{1}},\ldots,t_{i_{n}})$ "

The canonical model - an example

Let $T = \{(\forall x)R(f(x))\}$ be a theory of a language $L = \langle R, f, d \rangle$. The systematic tableau for $F \neg R(d)$ from *T* contains a single branch *V*, which is noncontradictory.

The canonical model $\mathcal{A} = \langle A, R^A, f^A, d^A, c_i^A \rangle_{i \in \mathbb{N}}$ from V is for language L_C and

 $\begin{aligned} A &= \{d, f(d), f(f(d)), \dots, c_0, f(c_0), f(f(c_0)), \dots, c_1, f(c_1), f(f(c_1)), \dots \}, \\ d^A &= d, \quad c_i^A = c_i \text{ for } i \in \mathbb{N}, \\ f^A(d) &= ``f(d)", \quad f^A(f(d)) = ``f(f(d))", \quad f^A(f(f(d))) = ``f(f(f(d)))", \ \dots \\ R^A &= \{d, f(d), f(f(d)), \dots, f(c_0), f(f(c_0)), \dots, f(c_1), f(f(c_1)), \dots \}. \end{aligned}$

The reduct of \mathcal{A} to the language *L* is $\mathcal{A}' = \langle A, R^A, f^A, d^A \rangle$.

・ロ・・ (日・・ 日・・ 日・・

Completeness

The canonical model with equality

If L is with equality, T^* is the extension of T by the axioms of equality for L. If we require that the equality is interpreted as the identity, we have to take the quotient of the canonical model A by the congruence $=^{A}$.

By (3), for the relation $=^{A}$ in \mathcal{A} from V it holds that for every s, $t \in A$,

 $s =^{A} t \Leftrightarrow T(s = t)$ is an entry on V.

Since V is finished and contains the axioms of equality, the relation $=^{A}$ is a congruence for all functions and relations in \mathcal{A} .

The *canonical model with equality* from V is the quotient $\mathcal{A}/=^{A}$.

Observation For every formula φ ,

 $\mathcal{A} \models \varphi \iff (\mathcal{A}/=^{A}) \models \varphi,$

where = is interpreted in \mathcal{A} by the relation =^{*A*}, while in $\mathcal{A}/=^{A}$ by the identity. *Remark* A is a countably infinite model, but $A/=^A$ can be finite.

The canonical model with equality - an example

Let $T = \{(\forall x)R(f(x)), (\forall x)(x = f(f(x)))\}$ be of $L = \langle R, f, d \rangle$ with equality. The systematic tableau for $F \neg R(d)$ from T^* contains a noncontradictory V.

In the canonical model $\mathcal{A} = \langle A, R^A, =^A, f^A, d^A, c_i^A \rangle_{i \in \mathbb{N}}$ from V we have that

$$s = {}^{A} t \quad \Leftrightarrow \quad t = f(\cdots(f(s)\cdots) \text{ or } s = f(\cdots(f(t)\cdots)),$$

where f is applied 2i-times for some $i \in \mathbb{N}$.

The canonical model with equality from V is $\mathcal{B} = (\mathcal{A}/=^{A}) = \langle A/=^{A}, R^{B}, f^{B}, d^{B}, c_{i}^{B} \rangle_{i \in \mathbb{N}} \text{ where}$ $(A/=^{A}) = \{ [d]_{=^{A}}, [f(d)]_{=^{A}}, [c_{0}]_{=^{A}}, [f(c_{0})]_{=^{A}}, [c_{1}]_{=^{A}}, [f(c_{1})]_{=^{A}}, \dots \},$ $d^{B} = [d]_{=^{A}}, \quad c_{i}^{B} = [c_{i}]_{=^{A}} \text{ for } i \in \mathbb{N},$ $f^{B}([d]_{=^{A}}) = [f(d)]_{=^{A}}, \quad f^{B}([f(d)]_{=^{A}}) = [f(f(d))]_{=^{A}} = [d]_{=^{A}}, \dots$ $R^{B} = (A/=^{A}).$

The reduct of \mathcal{B} to the language L is $\mathcal{B}' = \langle A/=^A, R^B, f^B, d^B \rangle$.

Completeness

Lemma The canonical model A from a noncontr. finished V agrees with V. *Proof* By induction on the structure of a sentence in an entry on V.

- For atomic φ , if $T\varphi$ is on V, then $\mathcal{A} \models \varphi$ by (3). If $F\varphi$ is on V, then $T\varphi$ is not on V since V is noncontradictory, so $\mathcal{A} \models \neg \varphi$ by (3).
- If T(φ ∧ ψ) is on V, then Tφ and Tψ are on V since V is finished. By induction, A ⊨ φ and A ⊨ ψ, and thus A ⊨ φ ∧ ψ.
- If $F(\varphi \land \psi)$ is on *V*, then $F\varphi$ or $F\psi$ is on *V* since *V* is finished. By induction, $\mathcal{A} \models \neg \varphi$ or $\mathcal{A} \models \neg \psi$, and thus $\mathcal{A} \models \neg (\varphi \land \psi)$.
- For other connectives similarly as in previous two cases.
- If $T(\forall x)\varphi(x)$ is on *V*, then $T\varphi(x/t)$ is on *V* for every $t \in A$ since *V* is finished. By induction, $\mathcal{A} \models \varphi(x/t)$ for every $t \in A$, and thus $\mathcal{A} \models (\forall x)\varphi(x)$. Similarly for $F(\exists x)\varphi(x)$ on *V*.
- If $T(\exists x)\varphi(x)$ is on *V*, then $T\varphi(x/c)$ is on *V* for some $c \in A$ since *V* is finished. By induction, $\mathcal{A} \models \varphi(x/c)$, and thus $\mathcal{A} \models (\exists x)\varphi(x)$. Similarly for $F(\forall x)\varphi(x)$ on *V*. \Box

イロン イヨン イヨン

Theorem on completeness

We will show that the tableau method in predicate logic is complete.

Theorem For every theory *T* and sentence φ , if φ is valid in *T*, then φ is tableau provable from *T*, i.e. $T \models \varphi \Rightarrow T \vdash \varphi$.

Proof Let φ be valid in *T*. We will show that an arbitrary finished tableau (e.g. systematic) τ from a theory *T* with the root entry $F\varphi$ is contradictory.

- If not, then there is some noncontradictory branch V in τ .
- By the previous lemma, there is a structure \mathcal{A} for L_C that agrees with V, in particular with the root entry $F\varphi$, i.e. $\mathcal{A} \models \neg \varphi$.
- Let \mathcal{A}' be the reduct of \mathcal{A} to the language *L*. Then $\mathcal{A}' \models \neg \varphi$.
- Since V is finished, it contains $T\psi$ for every $\psi \in T$.
- Thus \mathcal{A}' is a model of T (as \mathcal{A}' agrees with $T\psi$ for every $\psi \in T$).
- But this contradicts the assumption that φ is valid in *T*.

Therefore the tableau τ is a proof of φ from *T*.

・ロ・・ (日・・ 日・・ 日・・

Properties of theories

We introduce syntactic variants of previous semantical definitions.

Let *T* be a theory of a language *L*. If a sentence φ is provable from *T*, we say that φ is a *theorem* of *T*. The set of theorems of *T* is denoted by

Thm^{*L*}(*T*) = { $\varphi \in \operatorname{Fm}_L \mid T \vdash \varphi$ }.

We say that a theory T is

- *inconsistent* if $T \vdash \bot$, otherwise T is *consistent*,
- *complete* if it is consistent and every sentence is provable or refutable from *T*, i.e. $T \vdash \varphi$ or $T \vdash \neg \varphi$.
- an *extension* of a theory T' of L' if $L' \subseteq L$ and $\operatorname{Thm}^{L'}(T') \subseteq \operatorname{Thm}^{L}(T)$, we say that an extension T of a theory T' is *simple* if L = L'; and *conservative* if $\operatorname{Thm}^{L'}(T') = \operatorname{Thm}^{L}(T) \cap \operatorname{Fm}_{L'}$,
- *equivalent* with a theory T' if T is an extension of T' and vice-versa.

Corollaries

From the soundness and completeness of the tableau method it follows that these syntactic definitions agree with their semantic variants.

Corollary For every theory *T* and sentences φ , ψ of a language *L*,

•
$$T \vdash \varphi$$
 if and only if $T \models \varphi$,

- Thm^L(T) = $\theta^L(T)$,
- T is inconsistent if and only if T is unsatisfiable, i.e. it has no model,
- *T* is complete if and only if *T* is semantically complete, i.e. it has a single model, up to elementarily equivalence,
- $T, \varphi \vdash \psi$ if and only if $T \vdash \varphi \rightarrow \psi$ (Deduction theorem).

Remark Deduction theorem can be proved directly by transformations of tableaux.

・ロン ・四 と ・ 回 と ・ 日 と

э.

Existence of a countable model and compactness

Theorem Every consistent theory T of a countable language L without equality has a countably infinite model.

Proof Let τ be the systematic tableau from T with $F \perp$ in the root. Since τ is finished and contains a noncontradictory branch V as \perp is not provable from T, there exists a canonical model \mathcal{A} from V. Since \mathcal{A} agrees with V, its reduct to the language L is a desired countably infinite model of T.

Remark This is a weak version of so called Löwenheim-Skolem theorem. In a countable language with equality the canonical model with equality is countable (i.e. finite or countably infinite).

Theorem A theory T has a model iff every finite subset of T has a model. *Proof* The implication from left to right is obvious. If T has no model, then it is inconsistent, i.e. \perp is provable by a systematic tableau τ from T. Since τ is finite, \perp is provable from some finite $T' \subseteq T$, i.e. T' has no model.

イロト イヨト イヨト イヨト

Corollaries

Non-standard model of natural numbers

Let $\mathbb{N} = \langle \mathbb{N}, S, +, \cdot, 0, < \rangle$ be the standard model of natural numbers.

Let $Th(\mathbb{N})$ denote the set of all sentences that are valid in \mathbb{N} . For $n \in \mathbb{N}$ let n denote the term $S(S(\dots(S(0))\dots))$, so called the *n*-th numeral, where S is applied *n*-times.

Consider the following theory T where c is a new constant symbol. $T = \text{Th}(\mathbb{N}) \cup \{n < c \mid n \in \mathbb{N}\}$

Observation Every finite subset of T has a model.

Thus by the compactness theorem, T has a model A. It is a non-standard model of natural numbers. Every sentence from $Th(\mathbb{N})$ is valid in \mathcal{A} but it contains an element c^A that is greater then every $n \in \mathbb{N}$ (i.e. the value of the term n in \mathcal{A}).