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Properties of theories

We introduce syntactic variants of previous semantical definitions.
Let T be a theory of a language L. If a sentence ¢ is provable from T, we say
that ¢ is a theorem of T. The set of theorems of T is denoted by
Thm"™(T) = {¢ € Fm, | T+ ©}.
We say that a theory T is
@ inconsistentif T+ 1, otherwise T is consistent,
@ complete if it is consistent and every sentence is provable or refutable
fromT,ie. THyporTF —p.
@ an extension of a theory T’ of L' if L' C L and Thm®(T") C ThmX(T),
we say that an extension T of a theory T’ is simpleif L = L'; and
conservative if Thm”(T") = ThmX(T) 0 Fmy,,

@ equivalent with a theory T if T is an extension of T’ and vice-versa.
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Corollaries

From the soundness and completeness of the tableau method it follows that
these syntactic definitions agree with their semantic variants.

Corollary For every theory T and sentences ¢, v of a language L,
@ Tryifandonlyif T |= ¢,
e Thm’(T) = ¢%(T),
@ T isinconsistent if and only if T is unsatisfiable, i.e. it has no model,

@ T is complete if and only if T is semantically complete, i.e. it has
a single model, up to elementarily equivalence,

@ T,poF v ifandonly if T - ¢ — 1 (Deduction theorem).

Remark Deduction theorem can be proved directly by transformations of
tableaux.
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Existence of a countable model and compactness

Theorem Every consistent theory T of a countable language L without
equality has a countably infinite model.

Proof Let 7 be the systematic tableau from T with F_L in the root. Since 7 is
finished and contains a noncontradictory branch V as 1 is not provable from
T, there exists a canonical model A from V. Since A agrees with V, its reduct
to the language L is a desired countably infinite model of T. [

Remark This is a weak version of so called Léwenheim-Skolem theorem.
In a countable language with equality the canonical model with equality is
countable (i.e. finite or countably infinite).

Theorem A theory T has a model iff every finite subset of T has a model.

Proof The implication from left to right is obvious. If T has no model, then
it is inconsistent, i.e. | is provable by a systematic tableau 7 from T. Since
is finite, L is provable from some finite 7' C T, i.e. T" has no model. [
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Non-standard model of natural numbers
Let N = (N, S, +,-,0, <) be the standard model of natural numbers.

Let Th(N) denote the set of all sentences that are valid in N. For n € N let n
denote the term S(S(---(S(0))---)), so called the n-th numeral, where S is
applied n-times.

Consider the following theory T where c is a new constant symbol.
T=Th(N)u{n<c|neN}

Observation Every finite subset of T has a model.

Thus by the compactness theorem, T has a model A. It is a non-standard
model of natural numbers. Every sentence from Th(N) is valid in A but it
contains an element c* that is greater then every n ¢ N (i.e. the value of
thetermnin A).
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Equisatisfiability
We will see that the problem of satisfiability can be reduced to open theories.
@ Theories T, T’ are equisatisfiable if T has a model < T’ has a model.

@ Aformula ¢ is in the prenex (normal) form (PNF) if it is written as

(Q1x1) ... (Quxn)¢',
where Q; denotes V or 3, variables xi, ..., x, are all distinct and ¢’ is an
open formula, called the matrix. (Q1x1) ... (Qnxy) is called the prefix.

@ In particular, if all quantifiers are Vv, then ¢ is a universal formula.
To find an open theory equisatisfiable with T we proceed as follows.
(1) We replace axioms of T by equivalent formulas in the prenex form.

(2) We transform them, using new function symbols, to equisatisfiable
universal formulas, so called Skolem variants.

(3) We take their matrices as axioms of a new theory.
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Conversion rules for quantifiers

Let Q denote V or 3 and let Q denote the complementary quantifier.
For every formulas ¢, ¥ such that x is not free in the formula ,

= ~(Qx)p < (Qx)=yp
<~

<~

=
=
= (Qx)p =7
= (W= (Qre
The above equivalences can be verified semantically or proved by the tableau
method (by taking the universal closure if it is not a sentence).

<

<~

Remark The assumption that x is not free in 1) is necessary in each rule
above (except the first one) for some quantifier Q. For example,

7 ((Ex)P(x) A P(x)) < (3x)(P(x) A P(x))
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Skolemization Prenex normal form

Conversion to the prenex normal form

Proposition Let ¢’ be the formula obtained from ¢ by replacing some
occurrences of a subformula ) with'. If T =1 < ¢/, then T |= ¢ <> ¢'.

Proof Easily by induction on the structure of the formula . O

Proposition For every formula ¢ there is an equivalent formula ¢’ in the
prenex normal form, i.e. = ¢ + ¢'.

Proof By induction on the structure of ¢ applying the conversion rules for
quantifiers, replacing subformulas with their variants if needed, and applying
the above proposition on equivalent transformations. [

For example, ((V2)P(x,2) AN P(y,2)) — —(3x)P(x,y)
(Vu)P(x,u) NP(y,2)) — (Vx)=P(x,y)
(Vu)(P(x,u) N P(y,2)) — (Yv)=P(v,y)
(Fu)((P(x,u) A P(y,z)) — (Vv)=P(v,y))
(Fu)(Vv)((P(x, u) A P(y,z)) = —P(v,y))
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Skolem variants

Let © be a sentence of a language L in the prenex normal form, let y1, ..., y,
be the existentially quantified variables in ¢ (in this order), and for every i < n
let xi, ..., x,, be the variables that are universally quantified in ¢ before y;.
Let L’ be an extension of L with new n;-ary function symbols f; for all i < n.

Let s denote the formula of L’ obtained from ¢ by removing all (3y;)’s from
the prefix and by replacing each occurrence of y; with the term fi(xi,. .., x,,).
Then g is called a Skolem variant of .

For example, for the formula ¢
(Fy1) (V1) (Vxz) (Fy2) (Vs ) R(y1, X1, Xz, Yo, X3)
the following formula s is a Skolem variant of ¢
(V1) (Vx2) (VX3) R(fi, X1, Xz, fo (X1, X2), %3),
where f is a new constant symbol and f> is a new binary function symbol.
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Properties of Skolem variants

Lemma Lety be a sentence (Vx;)...(Vx,)(3y)y of L and ' be a sentence
(Vx1) ... (Vx)0(y/f(x1,...,x,)) where f is a new function symbol. Then

(1) the reduct A of every model A’ of ¢’ to the language L is a model of ¢,
(2) every model A of ¢ can be expanded into a model A’ of ¢'.

Remark Compared to extensions by definition of a function symbol, the
expansion in (2) does not need to be unique now.

Proof (1) Let A’ = ¢ and A be the reduct of A’ to L. Since A = v[e(y/a)
for every assignment e where a = (f(x1,. ..., x,))" [e], we have also A = .
(2) Let A = . There exists a function f4: A" — A such that for every
assignment e it holds A = «[e(y/a)] where a = fA(e(x), ..., e(x,)), and thus
the expansion A’ of A by the function f4 is a model of ¢'. [J

Corollary If ¢’ is a Skolem variant of , then both statements (1) and (2)
hold for ¢, ¢’ as well. Hence ¢, ¢’ are equisatisfiable.
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Skolem’s theorem

Theorem Every theory T has an open conservative extension T*.
Proof We may assume that T is in a closed form. Let L be its language.

@ By replacing each axiom of T with an equivalent formula in the prenex
normal form we obtain an equivalent theory T°.

@ By replacing each axiom of T° with its Skolem variant we obtain a theory
T’ in an extended language L' O L.

@ Since the reduct of every model of T’ to the language L is a model of T,
the theory T’ is an extension of T.

@ Furthermore, since every model of T can be expanded to a model of 17,
it is a conservative extension.

@ Since every axiom of T’ is a universal sentence, by replacing them
with their matrices we obtain an open theory T* equivalentto T". [

Corollary For every theory there is an equisatisfiable open theory.
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Reduction of unsatisfiability to propositional logic

If an open theory is unsatisfiable, we can demonstrate it “via ground terms”.
For example, in the language L = (P, R, f, c) the theory
T ={P(x,y)VR(x,y), =P(c,y), ~R(x,f(x))}

is unsatisfiable, and this can be demonstrated by an unsatisfiable conjunction
of finitely many instances of (some) axioms of T in ground terms

(P(c,f(c)) V R(c.f(c))) A =P(c,f(c)) A =R(c.f(c)),
which may be seen as an unsatisfiable propositional formula

(pVvr) A =p A .

Aninstance p(x;/t, ..., x,/t,) of an open formula ¢ in free variables
X1,...,Xp s @ ground instance if all terms 11, ..., t, are ground terms (i.e.
terms without variables).
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Herbrand model

Let L = (R, F) be a language with at least one constant symbol. (/f needed,
we add a new constant symbol to L.)

@ The Herbrand universe for L is the set of all ground terms of L.
For example, for L = (P, f, c) with f binary function sym., ¢ constant sym.

A= {c.fle,¢). f(f(c,¢), ). f(e.f(e. ). f(flc, ). f(c, ).}

@ An L-structure A is a Herbrand structure if its domain A is the Herbrand
universe for L and for each n-ary function symbol f € F, t;,...,t, € A,

A, ... t)=f(t,..., t)
(including n = 0, i.e. ¢ = ¢ for every constant symbol c).
Remark Compared to a canonical model, the relations are not specified.
E.g. A= (A PA fA ¢t with PA =0, ¢! = ¢, fA(c,c) = f(c,c0), ...
@ A Herbrand model of a theory T is a Herbrand structure that models T.
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Herbrand’s theorem

Theorem Let T be an open theory of a language L without equality and with

at least one constant symbol. Then

(a) either T has a Herbrand model, or

(b) there are finitely many ground instances of axioms of T whose
conjunction is unsatisfiable, and thus T has no model.

Proof Let T’ be the set of all ground instances of axioms of T. Consider a
finished (e.g. systematic) tableau = from T’ in the language L (without adding
new constant symbols) with the root entry F 1.
@ If the tableau 7 contains a noncontradictory branch V, the canonical
model from V is a Herbrand model of T.
@ Else, 7 is contradictory, i.e. T’ - L. Moreover, T is finite, so L is provable
from finitely many formulas of T”, i.e. their conjunction is unsatisfiable. [J

Remark If the language L is with equality, we extend T to T* by axioms of
equality for L and if T* has a Herbrand model A, we take its quotient by =*.
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Corollaries of Herbrand’s theorem

Let L be a language containing at least one constant symbol.

Corollary For every open o(x1,...,x,) of L, the formula (3x,) ... (3x,)p is
valid if and only if there exist mn ground terms t;; of L for some m such that

is a (propositional) tautology.

Proof (3x1)...(3x,)pis valid < (Vx;) ... (Vx,)— is unsatisfiable < —p is
unsatisfiable. The rest follows from Herbrand’s theorem for {—¢}. O

Corollary An open theory T of L is satisfiable if and only if the theory T’
of all ground instances of axioms of T is satisfiable.

Proof If T has a model A, every instance of each axiom of T is valid in A,
thus A is a model of T". If T is unsatisfiable, by H. theorem there are (finitely)
formulas of T” whose conjunction is unsatisfiable, thus T’ is unsatisfiable. [
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Resolution method in predicate logic - introduction

@ A refutation procedure - its aim is to show that a given formula (or theory)
is unsatisfiable.

@ It assumes open formulas in CNF (and in clausal form).
A literal is (now) an atomic formula or its negation.
A clause is a finite set of literals, [(J denotes the empty clause.
A formula (in clausal form) is a (possibly infinite) set of clauses.

Remark Every formula (theory) can be converted to an equisatisfiable
open formula (theory) in CNF, and then to a formula in clausal form.

@ The resolution rule is more general - it allows to resolve through literals
that are unifiable.

@ Resolution in predicate logic is based on resolution in propositional logic
and unification.
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Local scope of variables

Variables can be renamed locally within clauses.

Let © be an (input) open formula in CNF.
@ ¢ is satisfiable if and only if its universal closure ¢’ is satisfiable.

@ For every two formulas v, x and a variable x
F (V)@ AX) < (VX9 A (VX)X
(also in the case that x is free both in i) and ).

@ Every clause in ¢ can thus be replaced by its universal closure.

@ We can then take any variants of clauses (to rename variables apart).

For example, by renaming variables in the second clause of (1) we obtain
an equisatisfiable formula (2).

(1) {{P(x), Q(x,y)},{~P(x),~Q(y, )} }
(2) {{P(x), Q(x,y)}, {~P(v), ~Q(u, v)}}
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Reduction to propositional level (grounding)

Herbrand’s theorem gives us the following (inefficient) method.
@ Let S be the (input) formula in clausal form.
@ We can assume that the language contains at least one constant symbol.
@ Let S be the set of all ground instances of all clauses from S.

@ By introducing propositional letters representing atomic sentences we
may view S’ as a (possibly infinite) propositional formula in clausal form.

@ We may verify that it is unsatisfiable by resolution on propositional level.

For example, for S = {{P(x,y),R(x,y)},{=P(c,y)},{—R(x, f(x))}} the set

§" = {{P(c,c),R(c, o)}, {P(c, f(c)), R(c, f(e)}, {P(f(c), f(c), R(f(¢). f(e))} - ..,
{=P(c, )}, {=P(c. f(c)}- -, {~R(c. f(e)}, {-R(f(e), f(f(c))}- - }

is unsatisfiable since on propositional level

§" 2 {{P(c.f(c), R(c. f(e)} {~P(c. f(e)}, {=R(c. f(¢)}} Fr O
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The general resolution rule

Let Gy, G be clauses with distinct variables such that
C=CU{A,...,A)}, G =CU{~Bi,...,~By},
where S = {A,,..., Ay, Bi,..., By} is unifiable and n, m > 1. Then the clause
C = ClocUCCjo,
where ¢ is a most general unification of S, is the resolvent of C; and G,.
For example, in clauses {P(x), Q(x, z)} and {—P(y),-Q(f(y),y)} we can

unify S = {Q(x, z), Q(f(y),y)} applying a most general unification
o ={x/f(y),z/y}, and then resolve to a clause {P(f(y)),~P(y)}.

Remark The condition on distinct variables can be satisfied by renaming
variables apart. This is sometimes necessary, e.g. from {{P(x)},{—-P(f(x))}}
after renaming we can get O, but { P(x), P(f(x))} is not unifiable.
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Resolution method in predicate logic Resolution proof

Resolution proof

We have the same notions as in propositional logic, up to renaming variables.

@ Resolution proof (deduction) of a clause C from a formula S is a finite
sequence (, ..., C, = C such that for every i < n, we have C; = C/o
for some C; € S and a renaming of variables ¢, or C; is a resolvent of
some previous clauses.

@ Aclause C is (resolution) provable from S, denoted by S kg C, if it has
a resolution proof from S.

@ A (resolution) refutation of a formula S is a resolution proof of (1 from S.

@ Sis (resolution) refutable if S Fg O1.

Remark Elimination of several literals at once is sometimes necessary, e.g.
S={{P(x),P(y)},{-P(x),~P(y)}} is resolution refutable, but it has no
refutation that eliminates only a single literal in each resolution step.
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tion method in predicate logic Resolution proof

Resolution in predicate logic - an example

Consider T'= {—=P(x,x), P(x,y) — P(y,x), P(x,y) NP(y,z) — P(x,2)}.
Is T = (3x)-P(x, f(x)) ? Equivalently, is the following T” unsatisfiable?
T" = {{=P(x,x)},{~P(x,¥), P(y,X)}, {~P(x,y), ~P(y, 2), P(x, 2) }, { P(x, f(x)) }}

T'Fr0O / \

(P, 2)) (=P, 2}
/ a0 e
(~P(f(2).2). P (P(), )
i), N P A T
{=P(z,9),~P(y.2), Pz, ) @D} {~Play) Py} (PG, f)
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