Propositional and Predicate Logic - XI

Petr Gregor

KTIML MFF UK

WS 2022/2023

Resolution method in predicate logic - introduction

- A refutation procedure its aim is to show that a given formula (or theory) is unsatisfiable.
- It assumes open formulas in CNF (and in clausal form).

A *literal* is *(now)* an atomic formula or its negation.

A *clause* is a finite set of literals, \square denotes the empty clause.

A formula (in clausal form) is a (possibly infinite) set of clauses.

Remark Every formula (theory) can be converted to an equisatisfiable open formula (theory) in CNF, and then to a formula in clausal form.

- The resolution rule is more general it allows to resolve through literals that are unifiable.
- Resolution in predicate logic is based on resolution in propositional logic and unification.

Local scope of variables

Variables can be renamed locally within clauses.

Let φ be an *(input)* open formula in CNF.

- φ is satisfiable if and only if its universal closure φ' is satisfiable.
- For every two formulas ψ , χ and a variable x

$$\models (\forall x)(\psi \land \chi) \leftrightarrow (\forall x)\psi \land (\forall x)\chi$$

(also in the case that x is free both in ψ and χ).

- Every clause in φ can thus be replaced by its universal closure.
- We can then take any variants of clauses (to rename variables apart).

For example, by renaming variables in the second clause of (1) we obtain an equisatisfiable formula (2).

- (1) $\{\{P(x), Q(x, y)\}, \{\neg P(x), \neg Q(y, x)\}\}$
- (2) $\{\{P(x), Q(x, y)\}, \{\neg P(v), \neg Q(u, v)\}\}$

Reduction to propositional level (grounding)

Herbrand's theorem gives us the following (inefficient) method.

- Let *S* be the *(input)* formula in clausal form.
- We can assume that the language contains at least one constant symbol.
- Let S' be the set of all ground instances of all clauses from S.
- By introducing propositional letters representing atomic sentences we may view S' as a (possibly infinite) propositional formula in clausal form.
- We may verify that it is unsatisfiable by resolution on propositional level.

For example, for
$$S = \{\{P(x,y), R(x,y)\}, \{\neg P(c,y)\}, \{\neg R(x,f(x))\}\}$$
 the set $S' = \{\{P(c,c), R(c,c)\}, \{P(c,f(c)), R(c,f(c))\}, \{P(f(c),f(c)), R(f(c),f(c))\} \dots, \{\neg P(c,c)\}, \{\neg P(c,f(c))\}, \dots, \{\neg R(c,f(c))\}, \{\neg R(f(c),f(f(c)))\}, \dots\}$

is unsatisfiable since on propositional level

$$S' \supseteq \{\{P(c, f(c)), R(c, f(c))\}, \{\neg P(c, f(c))\}, \{\neg R(c, f(c))\}\} \vdash_R \square.$$

Substitutions - examples

It is more efficient to use suitable substitutions. For example, in

- a) $\{P(x), Q(x, a)\}$, $\{\neg P(y), \neg Q(b, y)\}$ substituting x/b, y/a gives $\{P(b), Q(b, a)\}$, $\{\neg P(a), \neg Q(b, a)\}$, which resolves to $\{P(b), \neg P(a)\}$.
 - Or, substituting x/y and resolving through P(y) gives $\{Q(y, a), \neg Q(b, y)\}$.
- b) $\{P(x), Q(x,a), Q(b,y)\}$, $\{\neg P(v), \neg Q(u,v)\}$ substituting x/b, y/a, u/b, v/a gives $\{P(b), Q(b,a)\}$, $\{\neg P(a), \neg Q(b,a)\}$, resolving to $\{P(b), \neg P(a)\}$.
- $c) \ \ \{P(x),Q(x,z)\}, \ \{\neg P(y),\neg Q(f(y),y)\} \ \text{substituting} \ x/f(z), \ y/z \ \text{gives} \\ \{P(f(z)),Q(f(z),z)\}, \ \{\neg P(z),\neg Q(f(z),z)\}, \ \text{resolving to} \ \{P(f(z)),\neg P(z)\}.$

Alternatively, substituting x/f(a), y/a, z/a gives $\{P(f(a)), Q(f(a), a)\}$, $\{\neg P(a), \neg Q(f(a), a)\}$, which resolves to $\{P(f(a)), \neg P(a)\}$. But the previous substitution is more general.

Substitutions

- A *substitution* is a (finite) set $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$, where x_i 's are distinct variables, t_i 's are terms, and the term t_i is not x_i .
- If all t_i 's are ground terms, then σ is a ground substitution.
- If all t_i 's are distinct variables, then σ is a renaming of variables.
- An expression is a literal or a term.
- An *instance* of an expression E by substitution $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$ is the expression $E\sigma$ obtained from E by simultaneous replacing all occurrences of all x_i 's for t_i 's, respectively.
- For a set *S* of expressions, let $S\sigma = \{E\sigma \mid E \in S\}$.

Remark Since we substitute for all variables simultaneously, a possible occurrence of x_i in t_j does not lead to a chain of substitutions.

For example, for
$$S=\{P(x),R(y,z)\}$$
 and $\sigma=\{x/f(y,z),y/x,z/c\}$ we have
$$S\sigma=\{P(f(y,z)),R(x,c)\}.$$

Composing substitutions

For substitutions $\sigma = \{x_1/t_1, \dots, x_n/t_n\}$ and $\tau = \{y_1/s_1, \dots, y_n/s_n\}$ we define $\sigma \tau = \{x_i/t_i\tau \mid x_i \in X, t_i\tau \text{ is not } x_i\} \cup \{y_i/s_i \mid y_i \in Y \setminus X\}$

to be the *composition* of σ and τ , where $X = \{x_1, \ldots, x_n\}, Y = \{y_1, \ldots, y_m\}.$

For example, for $\sigma = \{x/f(y), w/v\}, \tau = \{x/a, y/g(x), v/w, u/c\}$ we have $\sigma\tau = \{x/f(g(x)), y/g(x), v/w, u/c\}.$

Proposition (without proof) For every expression E and substitutions σ, τ, ρ ,

- (i) $(E\sigma)\tau = E(\sigma\tau)$.
- (ii) $(\sigma\tau)\rho = \sigma(\tau\rho)$.

Remark Composition of substitutions is not commutative, for the above σ , τ . $\tau \sigma = \{x/a, y/g(f(y)), u/c, w/v\} \neq \sigma \tau.$

Unification

Let $S = \{E_1, \dots, E_n\}$ be a (finite) set of expressions.

- A *unification* of S is a substitution σ such that $E_1\sigma=E_2\sigma=\cdots=E_n\sigma$, i.e. $S\sigma$ is a singleton.
- S is unifiable if it has a unification.
- A unification σ of S is a *most general unification (mgu)* if for every unification τ of S there is a substitution λ such that $\tau = \sigma \lambda$.

For example, $S = \{P(f(x), y), P(f(a), w)\}$ is unifiable by a most general unification $\sigma = \{x/a, y/w\}$. A unification $\tau = \{x/a, y/b, w/b\}$ is obtained as $\sigma\lambda$ for $\lambda = \{w/b\}$. τ is not mgu, it cannot give us $\varrho = \{x/a, y/c, w/c\}$.

Observation If σ , τ are two most general unifications of S, they differ only in renaming of variables.

Unification algorithm

Let S be a (finite) nonempty set of expressions and p be the leftmost position in which some expressions of S differ. Then the difference in S is the set D(S) of subexpressions of all expressions from S starting at the position p.

For example,
$$S = \{P(x, y), P(f(x), z), P(z, f(x))\}$$
 has $D(S) = \{x, f(x), z\}$.

Input Nonempty (finite) set of expressions *S*.

Output A most general unification σ of S or "S is not unifiable".

(0) Let $S_0 := S$, $\sigma_0 := \emptyset$, k := 0.

- (initialization)
- (1) If S_k is a singleton, output the substitution $\sigma = \sigma_0 \sigma_1 \cdots \sigma_k$. (mgu of S)
- (2) Find if $D(S_k)$ contains a variable x and a term t with no occurrence of x.
- (3) If not, output "S is not unifiable".
- (4) Otherwise, let $\sigma_{k+1} := \{x/t\}$, $S_{k+1} := S_k \sigma_{k+1}$, k := k+1 and go to (1).

Remark The occurrence check of x in t in step (2) can be "expensive".

4 D > 4 B > 4 B > 4 B = 990

Unification algorithm - an example

$$S = \{ P(f(y, g(z)), h(b)), \ P(f(h(w), g(a)), t), \ P(f(h(b), g(z)), y) \}$$

- 1) $S_0 = S$ is not a singleton and $D(S_0) = \{y, h(w), h(b)\}$ has a term h(w) and a variable y not occurring in h(w). Let $\sigma_1 = \{y/h(w)\}$, $S_1 = S_0\sigma_1$, i.e. $S_1 = \{P(f(h(w), g(z)), h(b)), P(f(h(w), g(a)), t), P(f(h(b), g(z)), h(w))\}$.
- 2) $D(S_1)=\{w,b\},\,\sigma_2=\{w/b\},\,S_2=S_1\sigma_2,\,\text{i.e.}$ $S_2=\{P(f(h(b),g(z)),h(b)),\,P(f(h(b),g(a)),t)\}.$
- 3) $D(S_2)=\{z,a\},\,\sigma_3=\{z/a\},\,S_3=S_2\sigma_3,\,\text{i.e.}$ $S_3=\{P(f(h(b),g(a)),h(b)),\,P(f(h(b),g(a)),t)\}.$
- 4) $D(S_3) = \{h(b), t\}, \sigma_4 = \{t/h(b)\}, S_4 = S_3\sigma_4, i.e.$ $S_4 = \{P(f(h(b), g(a)), h(b))\}.$
- 5) S_4 is a singleton and a most general unification of S is $\sigma = \{\gamma/h(w)\}\{w/b\}\{z/a\}\{t/h(b)\} = \{\gamma/h(b), w/b, z/a, t/h(b)\}.$

Unification algorithm - correctness

Proposition The unification algorithm outputs a correct answer in finite time for any input S, i.e. a most general unification σ of S or it detects that S is not unifiable. (*) Moreover, for every unification τ of S it holds that $\tau = \sigma \tau$.

Proof It eliminates one variable in each round, so it ends in finite time.

- If it ends negatively after k rounds, $D(S_k)$ is not unifiable, thus also S.
- If it outputs $\sigma = \sigma_0 \sigma_1 \cdots \sigma_k$, clearly σ is a unification of S.
- If we show the property (*) for σ , then σ is a most general unification of S.
- (1) Let τ be a unification of S. We show that $\tau = \sigma_0 \sigma_1 \cdots \sigma_i \tau$ for all $i \leq k$.
- (2) For i=0 it holds. Let $\sigma_{i+1}=\{x/t\}$ and assume that $\tau=\sigma_0\sigma_1\cdots\sigma_i\tau$.
- It suffices to show that $v\sigma_{i+1}\tau = v\tau$ for every variable v.
- (4) If $v \neq x$, $v\sigma_{i+1} = v$, so (3) holds. Otherwise v = x and $v\sigma_{i+1} = x\sigma_{i+1} = t$.
- (5) Since τ unifies $S_i = S\sigma_0\sigma_1\cdots\sigma_i$ and both the variable x and the term tare in $D(S_i)$, τ has to unify x and t, i.e. $t\tau = x\tau$, as required for (3).

WS 2022/2023

The general resolution rule

Let C_1 , C_2 be clauses with distinct variables such that

$$C_1 = C'_1 \sqcup \{A_1, \ldots, A_n\}, \quad C_2 = C'_2 \sqcup \{\neg B_1, \ldots, \neg B_m\},$$

where $S = \{A_1, \dots, A_n, B_1, \dots, B_m\}$ is unifiable and $n, m \ge 1$. Then the clause

$$C=C_1'\sigma\cup C_2'\sigma,$$

where σ is a most general unification of S, is the *resolvent* of C_1 and C_2 .

For example, in clauses $\{P(x),Q(x,z)\}$ and $\{\neg P(y),\neg Q(f(y),y)\}$ we can unify $S=\{Q(x,z),Q(f(y),y)\}$ applying a most general unification $\sigma=\{x/f(y),z/y\}$, and then resolve to a clause $\{P(f(y)),\neg P(y)\}$.

Remark The condition on distinct variables can be satisfied by renaming variables apart. This is sometimes necessary, e.g. from $\{\{P(x)\}, \{\neg P(f(x))\}\}$ after renaming we can get \Box , but $\{P(x), P(f(x))\}$ is not unifiable.

Resolution proof

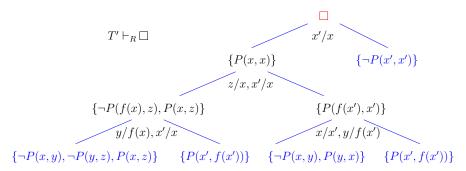
We have the same notions as in propositional logic, up to renaming variables.

- Resolution proof (deduction) of a clause C from a formula S is a finite sequence $C_0, \ldots, C_n = C$ such that for every $i \leq n$, we have $C_i = C'_i \sigma$ for some $C'_i \in S$ and a renaming of variables σ , or C_i is a resolvent of some previous clauses.
- A clause C is (resolution) provable from S, denoted by $S \vdash_R C$, if it has a resolution proof from S.
- A (resolution) *refutation* of a formula S is a resolution proof of \square from S.
- *S* is (resolution) *refutable* if $S \vdash_R \square$.

Remark Elimination of several literals at once is sometimes necessary, e.g. $S = \{\{P(x), P(y)\}, \{\neg P(x), \neg P(y)\}\}\$ is resolution refutable, but it has no refutation that eliminates only a single literal in each resolution step.

Resolution in predicate logic - an example

Consider $T = \{\neg P(x,x), \ P(x,y) \rightarrow P(y,x), \ P(x,y) \land P(y,z) \rightarrow P(x,z)\}.$ Is $T \models (\exists x) \neg P(x,f(x))$? Equivalently, is the following T' unsatisfiable? $T' = \{\{\neg P(x,x)\}, \{\neg P(x,y), P(y,x)\}, \{\neg P(x,y), \neg P(y,z), P(x,z)\}, \{P(x,f(x))\}\}$



Soundness of resolution

First we show soundness of the general resolution rule.

Proposition Let C be a resolvent of clauses C_1 , C_2 . For every L-structure A, $A \models C_1$ and $A \models C_2 \Rightarrow A \models C$.

Proof Let $C_1 = C_1' \sqcup \{A_1, \ldots, A_n\}$, $C_2 = C_2' \sqcup \{\neg B_1, \ldots, \neg B_m\}$, σ be a most general unification for $S = \{A_1, \ldots, A_n, B_1, \ldots, B_m\}$, and $C = C_1' \sigma \cup C_2' \sigma$.

- Since C_1 , C_2 are open, it holds also $A \models C_1 \sigma$ and $A \models C_2 \sigma$.
- We have $C_1\sigma = C_1'\sigma \cup \{S\sigma\}$ and $C_2\sigma = C_2'\sigma \cup \{\neg(S\sigma)\}$.
- We show $\mathcal{A} \models C[e]$ for every e. If $\mathcal{A} \models S\sigma[e]$, then $\mathcal{A} \models C_2'\sigma[e]$, and thus $\mathcal{A} \models C[e]$. Otherwise $\mathcal{A} \not\models S\sigma[e]$, so $\mathcal{A} \models C_1'\sigma[e]$, and thus $\mathcal{A} \models C[e]$.

Theorem (soundness) If S is resolution refutable, then S is unsatisfiable.

Proof Let $S \vdash_R \square$. Suppose $\mathcal{A} \models S$ for some structure \mathcal{A} . By soundness of the general resolution rule we have $\mathcal{A} \models \square$, which is impossible.

Lifting lemma

A resolution proof on propositional level can be "lifted" to predicate level.

Lemma Let $C_1^* = C_1\tau_1$, $C_2^* = C_2\tau_2$ be ground instances of clauses C_1 , C_2 with distinct variables and C^* be a resolvent of C_1^* a C_2^* . Then there exists a resolvent C of C_1 and C_2 such that $C^* = C\tau_1\tau_2$ is a ground instance of C.

Proof Assume that C^* is a resolvent of C_1^* , C_2^* through a literal $P(t_1, \ldots, t_k)$.

- We have $C_1 = C_1' \sqcup \{A_1, \ldots, A_n\}$ and $C_2 = C_2' \sqcup \{\neg B_1, \ldots, \neg B_m\}$, where $\{A_1,\ldots,A_n\}\tau_1=\{P(t_1,\ldots,t_k)\}\$ and $\{\neg B_1,\ldots,\neg B_m\}\tau_2=\{\neg P(t_1,\ldots,t_k)\}$
- Thus $(\tau_1 \tau_2)$ unifies $S = \{A_1, \dots, A_n, B_1, \dots, B_m\}$ and if σ is mgu of S from the unification algorithm, then $C = C'_1 \sigma \cup C'_2 \sigma$ is a resolvent of C_1 , C_2 .
- Moreover, $(\tau_1\tau_2) = \sigma(\tau_1\tau_2)$ by the property (*) for σ , and hence $C\tau_1\tau_2 = (C_1'\sigma \cup C_2'\sigma)\tau_1\tau_2 = C_1'\sigma\tau_1\tau_2 \cup C_2'\sigma\tau_1\tau_2 = C_1'\tau_1 \cup C_2'\tau_2$ $= (C_1 \setminus \{A_1, \ldots, A_n\})\tau_1 \cup (C_2 \setminus \{\neg B_1, \ldots, \neg B_m\})\tau_2$ $= (C_1^* \setminus \{P(t_1, \ldots, t_k)\}) \cup (C_2^* \setminus \{\neg P(t_1, \ldots, t_k)\}) = C^*.$

Completeness

Corollary Let S' be the set of all ground instances of clauses of formula S. If $S' \vdash_R C'$ (on prop. level) where C' is a ground clause, then $C' = C\sigma$ for some clause C and a ground substitution σ such that $S \vdash_R C$ (on pred. level).

Proof By induction on the length of resolution proof using lifting lemma.

Theorem (completeness) If *S* is unsatisfiable, then $S \vdash_R \Box$.

Proof If S is unsatisfiable, then by the (corollary of) Herbrand's theorem, also the set S' of all ground instances of clauses of S is unsatisfiable.

- By completeness of resolution in prop. logic, $S' \vdash_R \Box$ (on prop. level).
- By the above corollary, there is a clause C and a ground substitution σ such that $\Box = C\sigma$ and $S \vdash_R C$ (on pred. level).
- ullet The only clause that has \square as a ground instance is the clause $C=\square$.

Linear resolution

Resolution can be significantly refined (without loss of completeness).

- A *linear proof* of a clause C from a formula S is a finite sequence of pairs $(C_0, B_0), \ldots, (C_n, B_n)$ s.t. C_0 is a variant of a clause from S and for $i \le n$
 - i) B_i is a variant of a clause from S or $B_i = C_j$ for some j < i,
 - *ii*) C_{i+1} is a resolvent of C_i and B_i , and $C_{n+1} = C$.
- *C* is *linearly provable* from S, $S \vdash_L C$, if it has a linear proof from S,
- a *linear refutation* of S is a linear proof of \square from S,
- *S* is *linearly refutable* if $S \vdash_L \Box$.

Theorem S is linearly refutable if and only if S is unsatisfiable.

Proof (\Rightarrow) Every linear proof can be transformed to a resolution proof.

 (\Leftarrow) Follows from completeness of linear resolution in prop. logic (omitted) since the lifting lemma preserves linearity of resolution proofs. \Box

LI-resolution

For Horn formulas we can refine the linear resolution further.

- *LI-resolution* ("linear input") from a formula S is a linear resolution where each side clause B_i is a variant of a clause from the (input) formula S,
- $S \vdash_{LI} C$ denotes that C is provable by LI-resolution from S,
- a Horn formula is a set (possibly infinite) of Horn clauses,
- a Horn clause is a clause containing at most one positive literal,
- a fact is a (Horn) clause with exactly one positive and no negative literal,
- a rule is a (Horn) clause with exactly one positive and at least one negative literal, rules and facts are called program clauses,
- a goal is a nonempty (Horn) clause without positive literals.

Theorem If a Horn formula T is satisfiable and $T \cup \{G\}$ is uns	satisfiable for
a goal G , then $T \cup \{G\}$ can be refuted by LI-resolution starting	g with clause G

Proof Follows by Herbrand's theorem, the same statement in prop. logic and the lifting lemma. □

Program in Prolog

A *program* (in Prolog) is a Horn formula containing only program clauses, i.e. only facts or rules.

```
son(X,Y) := father(Y,X), man(X). \qquad \{son(X,Y), \neg father(Y,X), \neg man(X)\} son(X,Y) := mother(Y,X), man(X). \qquad \{son(X,Y), \neg mother(Y,X), \neg man(X)\} man(jan). \qquad \{man(jan)\} father(jiri, jan). \qquad \{father(jiri, jan)\} mother(julie, jan). \qquad \{mother(julie, jan)\} ?-son(jan,X) \quad P \models (\exists X)son(jan,X) ? \qquad \{\neg son(jan,X)\}
```

We are interested whether a given existential query holds in a given program. Corollary For a program P and a goal $G = \{\neg A_1, \dots, \neg A_n\}$ in var. X_1, \dots, X_m

- (1) $P \models (\exists X_1) \dots (\exists X_m) (A_1 \wedge \dots \wedge A_n)$, if and only if
- (2) $P \cup \{G\}$ can be refuted by LI-resolution starting with (a variant of) G.

LI-resolution over a program

If the answer is positive, we want to know the output substitution.

The *output substitution* σ of a LI-refutation from $P \cup \{G\}$ starting with a goal $G = \{\neg A_1, \dots, \neg A_n\}$ is a composition of mgu's in all steps (restricted only to variables in G). It holds that

$$P \models (A_1 \wedge \ldots \wedge A_n)\sigma.$$

The output substitutions a) X = jiri, b) X = julie.

Hilbert's calculus in predicate logic

- basic connectives and quantifier: \neg , \rightarrow , $(\forall x)$ (others are derived)
- allows to prove any formula (not just sentences)
- logical axioms (schemes of axioms):

(i)
$$\varphi \to (\psi \to \varphi)$$

$$(ii) \quad (\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))$$

(iii)
$$(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$$

$$(iv)$$
 $(\forall x)\varphi \rightarrow \varphi(x/t)$ if t is substitutable for x to φ

$$(\nu)$$
 $(\forall x)(\varphi \to \psi) \to (\varphi \to (\forall x)\psi)$ if x is not free in φ

where φ , ψ , χ are any formulas (of a given language), t is any term, and x is any variable

- in a language with equality we include also the axioms of equality
- rules of inference

$$\frac{arphi,\;arphi o\psi}{\psi}$$
 (modus ponens), $\frac{arphi}{(\forall x)arphi}$ (generalization)

Hilbert-style proofs

A *proof* (in *Hilbert-style*) of a formula φ from a theory T is a finite sequence $\varphi_0, \ldots, \varphi_n = \varphi$ of formulas such that for every $i \leq n$

- φ_i is a logical axiom or $\varphi_i \in T$ (an axiom of the theory), or
- ullet φ_i can be inferred from the previous formulas applying a rule of inference.

A formula φ is *provable* from T if it has a proof from T, denoted by $T \vdash_H \varphi$.

Theorem (soundness) For every theory T and formula φ , $T \vdash_H \varphi \Rightarrow T \models \varphi$.

Proof

- If φ is an axiom (logical or from T), then $T \models \varphi$ (I. axioms are tautologies),
- if $T \models \varphi$ and $T \models \varphi \rightarrow \psi$, then $T \models \psi$, i.e. modus ponens is sound,
- if $T \models \varphi$, then $T \models (\forall x)\varphi$, i.e. generalization is sound,
- thus every formula in a proof from *T* is valid in *T*.

Remark The completeness holds as well, i.e. $T \models \varphi \Rightarrow T \vdash_H \varphi$.

