Propositional and Predicate Logic - XI

Petr Gregor

KTIML MFF UK
WS 2022/2023

Resolution method in predicate logic - introduction

- A refutation procedure - its aim is to show that a given formula (or theory) is unsatisfiable.
- It assumes open formulas in CNF (and in clausal form).

A literal is (now) an atomic formula or its negation.
A clause is a finite set of literals, \square denotes the empty clause.
A formula (in clausal form) is a (possibly infinite) set of clauses.
Remark Every formula (theory) can be converted to an equisatisfiable open formula (theory) in CNF, and then to a formula in clausal form.

- The resolution rule is more general - it allows to resolve through literals that are unifiable.
- Resolution in predicate logic is based on resolution in propositional logic and unification.

Local scope of variables

Variables can be renamed locally within clauses.
Let φ be an (input) open formula in CNF.

- φ is satisfiable if and only if its universal closure φ^{\prime} is satisfiable.
- For every two formulas ψ, χ and a variable x

$$
\vDash \quad(\forall x)(\psi \wedge \chi) \leftrightarrow(\forall x) \psi \wedge(\forall x) \chi
$$

(also in the case that x is free both in ψ and χ).

- Every clause in φ can thus be replaced by its universal closure.
- We can then take any variants of clauses (to rename variables apart).

For example, by renaming variables in the second clause of (1) we obtain an equisatisfiable formula (2).
(1) $\{\{P(x), Q(x, y)\},\{\neg P(x), \neg Q(y, x)\}\}$
(2) $\{\{P(x), Q(x, y)\},\{\neg P(v), \neg Q(u, v)\}\}$

Reduction to propositional level (grounding)

Herbrand's theorem gives us the following (inefficient) method.

- Let S be the (input) formula in clausal form.
- We can assume that the language contains at least one constant symbol.
- Let S^{\prime} be the set of all ground instances of all clauses from S.
- By introducing propositional letters representing atomic sentences we may view S^{\prime} as a (possibly infinite) propositional formula in clausal form.
- We may verify that it is unsatisfiable by resolution on propositional level.

For example, for $S=\{\{P(x, y), R(x, y)\},\{\neg P(c, y)\},\{\neg R(x, f(x))\}\}$ the set

$$
\begin{aligned}
& S^{\prime}=\{\{P(c, c), R(c, c)\},\{P(c, f(c)), R(c, f(c))\},\{P(f(c), f(c)), R(f(c), f(c))\} \\
&\{\neg P(c, c)\},\{\neg P(c, f(c))\}, \ldots,\{\neg R(c, f(c))\},\{\neg R(f(c), f(f(c)))\}, \ldots\}
\end{aligned}
$$

is unsatisfiable since on propositional level

$$
S^{\prime} \supseteq\{\{P(c, f(c)), R(c, f(c))\},\{\neg P(c, f(c))\},\{\neg R(c, f(c))\}\} \vdash_{R} \square .
$$

Substitutions - examples

It is more efficient to use suitable substitutions. For example, in
a) $\{P(x), Q(x, a)\},\{\neg P(y), \neg Q(b, y)\}$ substituting $x / b, y / a$ gives $\{P(b), Q(b, a)\},\{\neg P(a), \neg Q(b, a)\}$, which resolves to $\{P(b), \neg P(a)\}$. Or, substituting x / y and resolving through $P(y)$ gives $\{Q(y, a), \neg Q(b, y)\}$.
b) $\{P(x), Q(x, a), Q(b, y)\},\{\neg P(v), \neg Q(u, v)\}$ substituting $x / b, y / a, u / b$, v / a gives $\{P(b), Q(b, a)\},\{\neg P(a), \neg Q(b, a)\}$, resolving to $\{P(b), \neg P(a)\}$.
c) $\{P(x), Q(x, z)\},\{\neg P(y), \neg Q(f(y), y)\}$ substituting $x / f(z), y / z$ gives $\{P(f(z)), Q(f(z), z)\},\{\neg P(z), \neg Q(f(z), z)\}$, resolving to $\{P(f(z)), \neg P(z)\}$.

Alternatively, substituting $x / f(a), y / a, z / a$ gives $\{P(f(a)), Q(f(a), a)\}$, $\{\neg P(a), \neg Q(f(a), a)\}$, which resolves to $\{P(f(a)), \neg P(a)\}$. But the previous substitution is more general.

Substitutions

- A substitution is a (finite) set $\sigma=\left\{x_{1} / t_{1}, \ldots, x_{n} / t_{n}\right\}$, where x_{i} 's are distinct variables, t_{i} 's are terms, and the term t_{i} is not x_{i}.
- If all t_{i} 's are ground terms, then σ is a ground substitution.
- If all t_{i} 's are distinct variables, then σ is a renaming of variables.
- An expression is a literal or a term.
- An instance of an expression E by substitution $\sigma=\left\{x_{1} / t_{1}, \ldots, x_{n} / t_{n}\right\}$ is the expression $E \sigma$ obtained from E by simultaneous replacing all occurrences of all x_{i} 's for t_{i} 's, respectively.
- For a set S of expressions, let $S \sigma=\{E \sigma \mid E \in S\}$.

Remark Since we substitute for all variables simultaneously, a possible occurrence of x_{i} in t_{j} does not lead to a chain of substitutions.
For example, for $S=\{P(x), R(y, z)\}$ and $\sigma=\{x / f(y, z), y / x, z / c\}$ we have

$$
S \sigma=\{P(f(y, z)), R(x, c)\} .
$$

Composing substitutions

For substitutions $\sigma=\left\{x_{1} / t_{1}, \ldots, x_{n} / t_{n}\right\}$ and $\tau=\left\{y_{1} / s_{1}, \ldots, y_{n} / s_{n}\right\}$ we define

$$
\sigma \tau=\left\{x_{i} / t_{i} \tau \mid x_{i} \in X, t_{i} \tau \text { is not } x_{i}\right\} \cup\left\{y_{j} / s_{j} \mid y_{j} \in Y \backslash X\right\}
$$

to be the composition of σ and τ, where $X=\left\{x_{1}, \ldots, x_{n}\right\}, Y=\left\{y_{1}, \ldots, y_{m}\right\}$.
For example, for $\sigma=\{x / f(y), w / v\}, \tau=\{x / a, y / g(x), v / w, u / c\}$ we have $\sigma \tau=\{x / f(g(x)), y / g(x), v / w, u / c\}$.

Proposition (without proof) For every expression E and substitutions σ, τ, ϱ,
(i) $(E \sigma) \tau=E(\sigma \tau)$,
(ii) $(\sigma \tau) \varrho=\sigma(\tau \varrho)$.

Remark Composition of substitutions is not commutative, for the above σ, τ,

$$
\tau \sigma=\{x / a, y / g(f(y)), u / c, w / v\} \neq \sigma \tau .
$$

Unification

Let $S=\left\{E_{1}, \ldots, E_{n}\right\}$ be a (finite) set of expressions.

- A unification of S is a substitution σ such that $E_{1} \sigma=E_{2} \sigma=\cdots=E_{n} \sigma$, i.e. $S \sigma$ is a singleton.
- S is unifiable if it has a unification.
- A unification σ of S is a most general unification (mgu) if for every unification τ of S there is a substitution λ such that $\tau=\sigma \lambda$.

For example, $S=\{P(f(x), y), P(f(a), w)\}$ is unifiable by a most general unification $\sigma=\{x / a, y / w\}$. A unification $\tau=\{x / a, y / b, w / b\}$ is obtained as $\sigma \lambda$ for $\lambda=\{w / b\} . \tau$ is not mgu, it cannot give us $\varrho=\{x / a, y / c, w / c\}$.

Observation If σ, τ are two most general unifications of S, they differ only in renaming of variables.

Unification algorithm

Let S be a (finite) nonempty set of expressions and p be the leftmost position in which some expressions of S differ. Then the difference in S is the set $D(S)$ of subexpressions of all expressions from S starting at the position p.

For example, $S=\{P(x, y), P(f(x), z), P(z, f(x))\}$ has $D(S)=\{x, f(x), z\}$.
Input Nonempty (finite) set of expressions S.
Output A most general unification σ of S or " S is not unifiable".
(0) Let $S_{0}:=S, \sigma_{0}:=\emptyset, k:=0$.
(initialization)
(1) If S_{k} is a singleton, output the substitution $\sigma=\sigma_{0} \sigma_{1} \cdots \sigma_{k}$. (mgu of S)
(2) Find if $D\left(S_{k}\right)$ contains a variable x and a term t with no occurrence of x.
(3) If not, output "S is not unifiable".
(4) Otherwise, let $\sigma_{k+1}:=\{x / t\}, S_{k+1}:=S_{k} \sigma_{k+1}, k:=k+1$ and go to (1).

Remark The occurrence check of x in t in step (2) can be "expensive".

Unification algorithm - an example

$$
S=\{P(f(y, g(z)), h(b)), P(f(h(w), g(a)), t), P(f(h(b), g(z)), y)\}
$$

1) $S_{0}=S$ is not a singleton and $D\left(S_{0}\right)=\{y, h(w), h(b)\}$ has a term $h(w)$ and a variable y not occurring in $h(w)$. Let $\sigma_{1}=\{y / h(w)\}, S_{1}=S_{0} \sigma_{1}$, i.e.
$S_{1}=\{P(f(h(w), g(z)), h(b)), P(f(h(w), g(a)), t), P(f(h(b), g(z)), h(w))\}$.
2) $D\left(S_{1}\right)=\{w, b\}, \sigma_{2}=\{w / b\}, S_{2}=S_{1} \sigma_{2}$, i.e.

$$
S_{2}=\{P(f(h(b), g(z)), h(b)), P(f(h(b), g(a)), t)\} .
$$

3) $D\left(S_{2}\right)=\{z, a\}, \sigma_{3}=\{z / a\}, S_{3}=S_{2} \sigma_{3}$, i.e.

$$
S_{3}=\{P(f(h(b), g(a)), h(b)), P(f(h(b), g(a)), t)\} .
$$

4) $D\left(S_{3}\right)=\{h(b), t\}, \sigma_{4}=\{t / h(b)\}, S_{4}=S_{3} \sigma_{4}$, i.e.

$$
S_{4}=\{P(f(h(b), g(a)), h(b))\}
$$

5) S_{4} is a singleton and a most general unification of S is

$$
\sigma=\{y / h(w)\}\{w / b\}\{z / a\}\{t / h(b)\}=\{y / h(b), w / b, z / a, t / h(b)\} .
$$

Unification algorithm - correctness

Proposition The unification algorithm outputs a correct answer in finite time for any input S, i.e. a most general unification σ of S or it detects that S is not unifiable. (*) Moreover, for every unification τ of S it holds that $\tau=\sigma \tau$.

Proof It eliminates one variable in each round, so it ends in finite time.

- If it ends negatively after k rounds, $D\left(S_{k}\right)$ is not unifiable, thus also S.
- If it outputs $\sigma=\sigma_{0} \sigma_{1} \cdots \sigma_{k}$, clearly σ is a unification of S.
- If we show the property $(*)$ for σ, then σ is a most general unification of S.
(1) Let τ be a unification of S. We show that $\tau=\sigma_{0} \sigma_{1} \cdots \sigma_{i} \tau$ for all $i \leq k$.
(2) For $i=0$ it holds. Let $\sigma_{i+1}=\{x / t\}$ and assume that $\tau=\sigma_{0} \sigma_{1} \cdots \sigma_{i} \tau$.
(3) It suffices to show that $v \sigma_{i+1} \tau=\nu \tau$ for every variable v.
(4) If $v \neq x, v \sigma_{i+1}=v$, so (3) holds. Otherwise $v=x$ and $v \sigma_{i+1}=x \sigma_{i+1}=t$.
(5) Since τ unifies $S_{i}=S \sigma_{0} \sigma_{1} \cdots \sigma_{i}$ and both the variable x and the term t are in $D\left(S_{i}\right), \tau$ has to unify x and t, i.e. $t \tau=x \tau$, as required for (3).

The general resolution rule

Let C_{1}, C_{2} be clauses with distinct variables such that

$$
C_{1}=C_{1}^{\prime} \sqcup\left\{A_{1}, \ldots, A_{n}\right\}, \quad C_{2}=C_{2}^{\prime} \sqcup\left\{\neg B_{1}, \ldots, \neg B_{m}\right\},
$$

where $S=\left\{A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}\right\}$ is unifiable and $n, m \geq 1$. Then the clause

$$
C=C_{1}^{\prime} \sigma \cup C_{2}^{\prime} \sigma,
$$

where σ is a most general unification of S, is the resolvent of C_{1} and C_{2}.
For example, in clauses $\{P(x), Q(x, z)\}$ and $\{\neg P(y), \neg Q(f(y), y)\}$ we can unify $S=\{Q(x, z), Q(f(y), y)\}$ applying a most general unification $\sigma=\{x / f(y), z / y\}$, and then resolve to a clause $\{P(f(y)), \neg P(y)\}$.

Remark The condition on distinct variables can be satisfied by renaming variables apart. This is sometimes necessary, e.g. from $\{\{P(x)\},\{\neg P(f(x))\}\}$ after renaming we can get \square, but $\{P(x), P(f(x))\}$ is not unifiable.

Resolution proof

We have the same notions as in propositional logic, up to renaming variables.

- Resolution proof (deduction) of a clause C from a formula S is a finite sequence $C_{0}, \ldots, C_{n}=C$ such that for every $i \leq n$, we have $C_{i}=C_{i}^{\prime} \sigma$ for some $C_{i}^{\prime} \in S$ and a renaming of variables σ, or C_{i} is a resolvent of some previous clauses.
- A clause C is (resolution) provable from S, denoted by $S \vdash_{R} C$, if it has a resolution proof from S.
- A (resolution) refutation of a formula S is a resolution proof of \square from S.
- S is (resolution) refutable if $S \vdash_{R} \square$.

Remark Elimination of several literals at once is sometimes necessary, e.g. $S=\{\{P(x), P(y)\},\{\neg P(x), \neg P(y)\}\}$ is resolution refutable, but it has no refutation that eliminates only a single literal in each resolution step.

Resolution in predicate logic - an example

Consider $T=\{\neg P(x, x), P(x, y) \rightarrow P(y, x), P(x, y) \wedge P(y, z) \rightarrow P(x, z)\}$. Is $T \models(\exists x) \neg P(x, f(x))$? Equivalently, is the following T^{\prime} unsatisfiable? $T^{\prime}=\{\{\neg P(x, x)\},\{\neg P(x, y), P(y, x)\},\{\neg P(x, y), \neg P(y, z), P(x, z)\},\{P(x, f(x))\}\}$

$$
T^{\prime} \vdash_{R} \square
$$

$$
x^{\prime} / x
$$

$\{\neg P(f(x), z), P(x, z)\}$

$\left\{P\left(x^{\prime}, f\left(x^{\prime}\right)\right)\right\}$
$\{\neg P(x, y), P(y, x)\}$
$\left\{P\left(x^{\prime}, f\left(x^{\prime}\right)\right)\right\}$

Soundness of resolution

First we show soundness of the general resolution rule.
Proposition Let C be a resolvent of clauses C_{1}, C_{2}. For every L-structure \mathcal{A},

$$
\mathcal{A} \models C_{1} \text { and } \mathcal{A} \models C_{2} \quad \Rightarrow \quad \mathcal{A} \models C .
$$

Proof Let $C_{1}=C_{1}^{\prime} \sqcup\left\{A_{1}, \ldots, A_{n}\right\}, C_{2}=C_{2}^{\prime} \sqcup\left\{\neg B_{1}, \ldots, \neg B_{m}\right\}, \sigma$ be a most general unification for $S=\left\{A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}\right\}$, and $C=C_{1}^{\prime} \sigma \cup C_{2}^{\prime} \sigma$.

- Since C_{1}, C_{2} are open, it holds also $\mathcal{A} \vDash C_{1} \sigma$ and $\mathcal{A} \models C_{2} \sigma$.
- We have $C_{1} \sigma=C_{1}^{\prime} \sigma \cup\{S \sigma\}$ and $C_{2} \sigma=C_{2}^{\prime} \sigma \cup\{\neg(S \sigma)\}$.
- We show $\mathcal{A} \models C[e]$ for every e. If $\mathcal{A} \models S \sigma[e]$, then $\mathcal{A} \models C_{2}^{\prime} \sigma[e]$, and thus $\mathcal{A} \models C[e]$. Otherwise $\mathcal{A} \not \models S \sigma[e]$, so $\mathcal{A} \models C_{1}^{\prime} \sigma[e]$, and thus $\mathcal{A} \models C[e]$. \square

Theorem (soundness) If S is resolution refutable, then S is unsatisfiable. Proof Let $S \vdash_{R} \square$. Suppose $\mathcal{A} \models S$ for some structure \mathcal{A}. By soundness of the general resolution rule we have $\mathcal{A} \models \square$, which is impossible.

Lifting lemma

A resolution proof on propositional level can be "lifted" to predicate level.
Lemma Let $C_{1}^{*}=C_{1} \tau_{1}, C_{2}^{*}=C_{2} \tau_{2}$ be ground instances of clauses C_{1}, C_{2} with distinct variables and C^{*} be a resolvent of C_{1}^{*} a C_{2}^{*}. Then there exists a resolvent C of C_{1} and C_{2} such that $C^{*}=C \tau_{1} \tau_{2}$ is a ground instance of C.
Proof Assume that C^{*} is a resolvent of C_{1}^{*}, C_{2}^{*} through a literal $P\left(t_{1}, \ldots, t_{k}\right)$.

- We have $C_{1}=C_{1}^{\prime} \sqcup\left\{A_{1}, \ldots, A_{n}\right\}$ and $C_{2}=C_{2}^{\prime} \sqcup\left\{\neg B_{1}, \ldots, \neg B_{m}\right\}$, where $\left\{A_{1}, \ldots, A_{n}\right\} \tau_{1}=\left\{P\left(t_{1}, \ldots, t_{k}\right)\right\}$ and $\left\{\neg B_{1}, \ldots, \neg B_{m}\right\} \tau_{2}=\left\{\neg P\left(t_{1}, \ldots, t_{k}\right)\right\}$
- Thus $\left(\tau_{1} \tau_{2}\right)$ unifies $S=\left\{A_{1}, \ldots, A_{n}, B_{1}, \ldots, B_{m}\right\}$ and if σ is mgu of S from the unification algorithm, then $C=C_{1}^{\prime} \sigma \cup C_{2}^{\prime} \sigma$ is a resolvent of C_{1}, C_{2}.
- Moreover, $\left(\tau_{1} \tau_{2}\right)=\sigma\left(\tau_{1} \tau_{2}\right)$ by the property $(*)$ for σ, and hence

$$
\begin{aligned}
C \tau_{1} \tau_{2} & =\left(C_{1}^{\prime} \sigma \cup C_{2}^{\prime} \sigma\right) \tau_{1} \tau_{2}=C_{1}^{\prime} \sigma \tau_{1} \tau_{2} \cup C_{2}^{\prime} \sigma \tau_{1} \tau_{2}=C_{1}^{\prime} \tau_{1} \cup C_{2}^{\prime} \tau_{2} \\
& =\left(C_{1} \backslash\left\{A_{1}, \ldots, A_{n}\right\}\right) \tau_{1} \cup\left(C_{2} \backslash\left\{\neg B_{1}, \ldots, \neg B_{m}\right\}\right) \tau_{2} \\
& =\left(C_{1}^{*} \backslash\left\{P\left(t_{1}, \ldots, t_{k}\right)\right\}\right) \cup\left(C_{2}^{*} \backslash\left\{\neg P\left(t_{1}, \ldots, t_{k}\right)\right\}\right)=C^{*} .
\end{aligned}
$$

Completeness

Corollary Let S^{\prime} be the set of all ground instances of clauses of formula S. If $S^{\prime} \vdash_{R} C^{\prime}$ (on prop. level) where C^{\prime} is a ground clause, then $C^{\prime}=C \sigma$ for some clause C and a ground substitution σ such that $S \vdash_{R} C$ (on pred. level).

Proof By induction on the length of resolution proof using lifting lemma.
Theorem (completeness) If S is unsatisfiable, then $S \vdash_{R} \square$.
Proof If S is unsatisfiable, then by the (corollary of) Herbrand's theorem, also the set S^{\prime} of all ground instances of clauses of S is unsatisfiable.

- By completeness of resolution in prop. logic, $S^{\prime} \vdash_{R} \square$ (on prop. level).
- By the above corollary, there is a clause C and a ground substitution σ such that $\square=C \sigma$ and $S \vdash_{R} C$ (on pred. level).
- The only clause that has \square as a ground instance is the clause $C=\square$.

Linear resolution

Resolution can be significantly refined (without loss of completeness).

- A linear proof of a clause C from a formula S is a finite sequence of pairs $\left(C_{0}, B_{0}\right), \ldots,\left(C_{n}, B_{n}\right)$ s.t. C_{0} is a variant of a clause from S and for $i \leq n$
i) B_{i} is a variant of a clause from S or $B_{i}=C_{j}$ for some $j<i$,
ii) C_{i+1} is a resolvent of C_{i} and B_{i}, and $C_{n+1}=C$.
- C is linearly provable from $S, S \vdash_{L} C$, if it has a linear proof from S,
- a linear refutation of S is a linear proof of \square from S,
- S is linearly refutable if $S \vdash_{L} \square$.

Theorem S is linearly refutable if and only if S is unsatisfiable.
Proof (\Rightarrow) Every linear proof can be transformed to a resolution proof. (\Leftarrow) Follows from completeness of linear resolution in prop. logic (omitted) since the lifting lemma preserves linearity of resolution proofs.

LI-resolution

For Horn formulas we can refine the linear resolution further.

- LI-resolution ("linear input") from a formula S is a linear resolution where each side clause B_{i} is a variant of a clause from the (input) formula S,
- $S \vdash_{L I} C$ denotes that C is provable by LI-resolution from S,
- a Horn formula is a set (possibly infinite) of Horn clauses,
- a Horn clause is a clause containing at most one positive literal,
- a fact is a (Horn) clause with exactly one positive and no negative literal,
- a rule is a (Horn) clause with exactly one positive and at least one negative literal, rules and facts are called program clauses,
- a goal is a nonempty (Horn) clause without positive literals.

Theorem If a Horn formula T is satisfiable and $T \cup\{G\}$ is unsatisfiable for a goal G, then $T \cup\{G\}$ can be refuted by LI-resolution starting with clause G.

Proof Follows by Herbrand's theorem, the same statement in prop. logic and the lifting lemma.

Program in Prolog

A program (in Prolog) is a Horn formula containing only program clauses, i.e. only facts or rules.

```
son (X,Y) :- father (Y,X),\operatorname{man}(X).\quad{\operatorname{son}(X,Y),\negfather (Y,X),\neg\operatorname{man}(X)}
son (X,Y) :- mother (Y,X),\operatorname{man}(X).\quad{\operatorname{son}(X,Y),\neg\operatorname{mother }(Y,X),\neg\operatorname{man}(X)}
man(jan).
father(jiri,jan). {father(jiri,jan)}
mother(julie,jan). {mother(julie,jan)}
?- son (jan, X) P}\models(\existsX)\operatorname{son}(jan,X)?\quad{\neg\operatorname{son}(jan,X)
```

We are interested whether a given existential query holds in a given program. Corollary For a program P and a goal $G=\left\{\neg A_{1}, \ldots, \neg A_{n}\right\}$ in var. X_{1}, \ldots, X_{m}
(1) $P \models\left(\exists X_{1}\right) \ldots\left(\exists X_{m}\right)\left(A_{1} \wedge \ldots \wedge A_{n}\right)$, if and only if
(2) $P \cup\{G\}$ can be refuted by LI-resolution starting with (a variant of) G.

LI-resolution over a program

If the answer is positive, we want to know the output substitution.
The output substitution σ of a LI-refutation from $P \cup\{G\}$ starting with a goal $G=\left\{\neg A_{1}, \ldots, \neg A_{n}\right\}$ is a composition of mgu's in all steps (restricted only to variables in G). It holds that

$$
P \models\left(A_{1} \wedge \ldots \wedge A_{n}\right) \sigma .
$$

The output substitutions a) $X=$ jiri, b) $X=$ julie.

Hilbert's calculus in predicate logic

- basic connectives and quantifier: $\neg, \rightarrow,(\forall x)$ (others are derived)
- allows to prove any formula (not just sentences)
- logical axioms (schemes of axioms):
(i)

$$
\varphi \rightarrow(\psi \rightarrow \varphi)
$$

(ii) $\quad(\varphi \rightarrow(\psi \rightarrow \chi)) \rightarrow((\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow \chi))$
(iii) $\quad(\neg \varphi \rightarrow \neg \psi) \rightarrow(\psi \rightarrow \varphi)$
(iv) $\quad(\forall x) \varphi \rightarrow \varphi(x / t) \quad$ if t is substitutable for x to φ
(v) $\quad(\forall x)(\varphi \rightarrow \psi) \rightarrow(\varphi \rightarrow(\forall x) \psi) \quad$ if x is not free in φ
where φ, ψ, χ are any formulas (of a given language), t is any term, and x is any variable

- in a language with equality we include also the axioms of equality
- rules of inference

$$
\frac{\varphi, \varphi \rightarrow \psi}{\psi} \quad \text { (modus ponens), } \quad \frac{\varphi}{(\forall x) \varphi} \quad \text { (generalization) }
$$

Hilbert-style proofs

A proof (in Hilbert-style) of a formula φ from a theory T is a finite sequence $\varphi_{0}, \ldots, \varphi_{n}=\varphi$ of formulas such that for every $i \leq n$

- φ_{i} is a logical axiom or $\varphi_{i} \in T$ (an axiom of the theory), or
- φ_{i} can be inferred from the previous formulas applying a rule of inference.

A formula φ is provable from T if it has a proof from T, denoted by $T \vdash_{H} \varphi$.
Theorem (soundness) For every theory T and formula $\varphi, T \vdash_{H} \varphi \Rightarrow T \models \varphi$.
Proof

- If φ is an axiom (logical or from T), then $T \models \varphi$ (I. axioms are tautologies),
- if $T \models \varphi$ and $T \models \varphi \rightarrow \psi$, then $T \models \psi$, i.e. modus ponens is sound,
- if $T \models \varphi$, then $T \models(\forall x) \varphi$, i.e. generalization is sound,
- thus every formula in a proof from T is valid in T. \square

Remark The completeness holds as well, i.e. $T \models \varphi \Rightarrow T \vdash_{H} \varphi$.

