Propositional and Predicate Logic - XII

Petr Gregor

KTIML MFF UK

WS 2022/2023

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - XII

イロト イヨト イヨト

Linear resolution

Resolution can be significantly refined (without loss of completeness).

- A *linear proof* of a clause *C* from a formula *S* is a finite sequence of pairs $(C_0, B_0), \ldots, (C_n, B_n)$ s.t. C_0 is a variant of a clause from *S* and for $i \le n$
 - *i*) B_i is a variant of a clause from *S* or $B_i = C_j$ for some j < i,
 - *ii*) C_{i+1} is a resolvent of C_i and B_i , and $C_{n+1} = C$.
- *C* is *linearly provable* from *S*, $S \vdash_L C$, if it has a linear proof from *S*,
- a *linear refutation* of S is a linear proof of \Box from S,
- *S* is *linearly refutable* if $S \vdash_L \Box$.

Theorem *S* is linearly refutable if and only if *S* is unsatisfiable.

Proof (\Rightarrow) Every linear proof can be transformed to a resolution proof. (\Leftarrow) Follows from completeness of linear resolution in prop. logic (omitted)since the lifting lemma preserves linearity of resolution proofs.

・ロン ・四 と ・ 回 と ・ 日 と

э.

LI-resolution

For Horn formulas we can refine the linear resolution further.

- *LI-resolution ("linear input")* from a formula *S* is a linear resolution where each side clause *B_i* is a variant of a clause from the (input) formula *S*,
- $S \vdash_{LI} C$ denotes that C is provable by LI-resolution from S,
- a Horn formula is a set (possibly infinite) of Horn clauses,
- a *Horn clause* is a clause containing at most one positive literal,
- a fact is a (Horn) clause with exactly one positive and no negative literal,
- a *rule* is a (Horn) clause with exactly one positive and at least one negative literal, rules and facts are called *program clauses*,
- a *goal* is a nonempty (Horn) clause without positive literals.

Theorem If a Horn formula *T* is satisfiable and $T \cup \{G\}$ is unsatisfiable for a goal *G*, then $T \cup \{G\}$ can be refuted by LI-resolution starting with clause *G*.

Proof Follows by Herbrand's theorem, the same statement in prop. logic and the lifting lemma.

Program in Prolog

A *program* (in Prolog) is a Horn formula containing only program clauses, i.e. only facts or rules.

son(X, Y) := father(Y, X), man(X).	$\{son(X,Y), \neg father(Y,X), \neg man(X)\}$
son(X, Y) := mother(Y, X), man(X).	$\{son(X,Y),\neg mother(Y,X),\neg man(X)\}$
man(jan).	$\{man(jan)\}$
father(jiri, jan).	${father(jiri, jan)}$
mother(julie, jan).	$\{mother(julie, jan)\}$
$P \models (\exists X) son(jan, X)$?	$\{\neg son(jan, X)\}$

We are interested whether a given existential query holds in a given program. **Corollary** For a program *P* and a goal $G = \{\neg A_1, \ldots, \neg A_n\}$ in var. X_1, \ldots, X_m (1) $P \models (\exists X_1) \ldots (\exists X_m)(A_1 \land \ldots \land A_n)$, if and only if (2) $P \vdash (G)$ can be refined by I recelution starting with (a variant of) *C*.

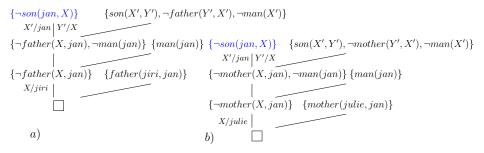
(2) $P \cup \{G\}$ can be refuted by LI-resolution starting with (a variant of) *G*.

LI-resolution over a program

If the answer is positive, we want to know the output substitution.

The *output substitution* σ of a LI-refutation from $P \cup \{G\}$ starting with a goal $G = \{\neg A_1, \ldots, \neg A_n\}$ is a composition of mgu's in all steps (restricted only to variables in *G*). It holds that

 $P \models (A_1 \land \ldots \land A_n) \sigma.$



The output substitutions *a*) X = jiri, *b*) X = julie.

Hilbert's calculus in predicate logic

- basic connectives and quantifier: \neg , \rightarrow , $(\forall x)$ (others are derived)
- allows to prove any formula (not just sentences)
- logical axioms (schemes of axioms):

 $\begin{array}{ll} (i) & \varphi \to (\psi \to \varphi) \\ (ii) & (\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi)) \\ (iii) & (\neg \varphi \to \neg \psi) \to (\psi \to \varphi) \\ (iv) & (\forall x) \varphi \to \varphi(x/t) & \text{if } t \text{ is substitutable for } x \text{ to } \varphi \\ (v) & (\forall x) (\varphi \to \psi) \to (\varphi \to (\forall x) \psi) & \text{if } x \text{ is not free in } \varphi \\ \end{array}$ where φ, ψ, χ are any formulas (of a given language), t is any term,

and x is any variable

- in a language with equality we include also the axioms of equality
- rules of inference

$$\frac{\varphi, \ \varphi \rightarrow \psi}{\psi} \quad \text{(modus ponens),}$$

$$\frac{\varphi}{(\forall x)\varphi}$$
 (generalization)

・ロン ・四 と ・ 回 と ・ 日 と

Hilbert-style proofs

A *proof* (in *Hilbert-style*) of a formula φ from a theory *T* is a finite sequence $\varphi_0, \ldots, \varphi_n = \varphi$ of formulas such that for every $i \leq n$

- φ_i is a logical axiom or $\varphi_i \in T$ (an axiom of the theory), or
- φ_i can be inferred from the previous formulas applying a rule of inference.

A formula φ is *provable* from *T* if it has a proof from *T*, denoted by $T \vdash_H \varphi$.

Theorem (soundness) For every theory *T* and formula φ , $T \vdash_H \varphi \Rightarrow T \models \varphi$. *Proof*

- If φ is an axiom (logical or from *T*), then $T \models \varphi$ (I. axioms are tautologies),
- if $T \models \varphi$ and $T \models \varphi \rightarrow \psi$, then $T \models \psi$, i.e. modus ponens is sound,
- if $T \models \varphi$, then $T \models (\forall x)\varphi$, i.e. generalization is sound,
- thus every formula in a proof from T is valid in T.

Remark The completeness holds as well, i.e. $T \models \varphi \Rightarrow T \vdash_H \varphi$.

イロン イボン イヨン 一日

Theories of structures

What holds in particular structures?

The *theory of a structure* \mathcal{A} is the set $Th(\mathcal{A})$ of all sentences (of the same language) that are valid in \mathcal{A} .

Observation For every structure A and a theory T of a language L,

- (*i*) $\operatorname{Th}(\mathcal{A})$ is a complete theory,
- (*ii*) if $A \models T$, then Th(A) is a simple (complete) extension of T,
- (*iii*) if $\mathcal{A} \models T$ and T is complete, then $\operatorname{Th}(\mathcal{A})$ is equivalent with T, *i.e.* $\theta^L(T) = \operatorname{Th}(\mathcal{A}).$

E.g. Th(\mathbb{N}) where $\mathbb{N} = \langle \mathbb{N}, S, +, \cdot, 0, < \rangle$ is the arithmetics of natural numbers.

Remark Later, we will see that $Th(\mathbb{N})$ is (algorithmically) undecidable although it is complete.

Elementary equivalence

- Structures A and B of a language L are *elementarily equivalent*, denoted A ≡ B, if they satisfy the same sentences (of L), i.e. Th(A) = Th(B).
 For example, ⟨ℝ, ≤⟩ ≡ ⟨ℚ, ≤⟩ and ⟨ℚ, ≤⟩ ≢ ⟨ℤ, ≤⟩ since every element has an immediate successor in ⟨ℤ, ≤⟩ but not in ⟨ℚ, ≤⟩.
- *T* is complete iff it has a single model, up to elementary equivalence. For example, the theory of dense linear orders without ends (DeLO).

How to describe models of a given theory (up to elementary equivalence)? *Observation* For every models A, B of a theory T, $A \equiv B$ if and only if Th(A), Th(B) are equivalent (simple complete extensions of T).

Remark If we can describe effectively (recursively) for a given theory *T* all simple complete extensions of *T*, then *T* is (algorithmically) decidable.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Simple complete extensions - an example

The theory *DeLO*^{*} of dense linear orders of $L = \langle \leq \rangle$ with equality has axioms

$x \leq x$	(reflexivity)
$x \leq y \land y \leq x \rightarrow x = y$	(antisymmetry)
$x \leq y ~\wedge~ y \leq z ~ ightarrow~ x \leq z$	(transitivity)
$x \leq y \lor y \leq x$	(dichotomy)
$x < y \rightarrow (\exists z) \ (x < z \land z < y)$	(density)
$(\exists x)(\exists y)(x \neq y)$	(nontriviality)

where 'x < y' is a shortcut for ' $x \le y \land x \ne y$ '.

Let φ , ψ be the sentences $(\exists x)(\forall y)(x \leq y)$, resp. $(\exists x)(\forall y)(y \leq x)$. We will see

$$\begin{split} DeLO &= DeLO^* \cup \{\neg \varphi, \neg \psi\}, \qquad DeLO^{\pm} = DeLO^* \cup \{\varphi, \psi\}, \\ DeLO^+ &= DeLO^* \cup \{\neg \varphi, \psi\}, \qquad DeLO^- = DeLO^* \cup \{\varphi, \neg \psi\} \end{split}$$

are the all (nonequivalent) simple complete extensions of the theory DeLO*.

・ロン ・四 と ・ 回 と ・ 日 と

Corollary of the Löwenheim-Skolem theorem

We already know the following theorem, by a canonical model (with equality). **Theorem** Let *T* be a consistent theory of a countable language *L*. If *L* is without equality, then *T* has a countably infinite model. If *L* is with equality, then *T* has a model that is countable (finite or countably infinite).

Corollary For every structure A of a countable language without equality there exists a countably infinite structure B with $A \equiv B$.

Proof $\operatorname{Th}(\mathcal{A})$ is consistent since it has a model \mathcal{A} . By the previous theorem, it has a countably inf. model \mathcal{B} . Since $\operatorname{Th}(\mathcal{A})$ is complete, we have $\mathcal{A} \equiv \mathcal{B}$.

Corollary For every infinite structure A of a countable language with equality there exists a countably infinite structure B with $A \equiv B$.

Proof Similarly as above. Since the sentence *"there is exactly n elements"* is false in A for all *n* and $A \equiv B$, it follows that *B* is infinite.

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

э

A countable algebraically closed field

We say that a field A is *algebraically closed* if every polynomial (of nonzero degree) has a root in A; that is, for every n > 1 we have

 $\mathcal{A} \models (\forall x_{n-1}) \dots (\forall x_0) (\exists y) (y^n + x_{n-1} \cdot y^{n-1} + \dots + x_1 \cdot y + x_0 = 0)$

where y^k is a shortcut for the term $y \cdot y \cdot \cdots \cdot y$ (\cdot applied (k-1)-times).

For example, the field $\underline{\mathbb{C}} = \langle \mathbb{C}, +, -, \cdot, 0, 1 \rangle$ is algebraically closed, whereas the fields \mathbb{R} and \mathbb{Q} are not (since the polynomial $x^2 + 1$ has no root in them).

Corollary There exists a countable algebraically closed field.

Proof By the previous corollary, there is a countable structure elementarily equivalent with the field \mathbb{C} . Hence it is algebraically closed as well.

Isomorphisms of structures

Let \mathcal{A} and \mathcal{B} be structures of a language $L = \langle \mathcal{F}, \mathcal{R} \rangle$.

- A bijection $h: A \rightarrow B$ is an *isomorphism* of structures \mathcal{A} and \mathcal{B} if both
 - (*i*) $h(f^A(a_1,...,a_n)) = f^B(h(a_1),...,h(a_n))$

 $\begin{array}{ll} \text{for every }n\text{-ary function symbol }f\in\mathcal{F}\text{ and every }a_1,\ldots,a_n\in A,\\ (\textit{ii}) \quad R^A(a_1,\ldots,a_n) \ \Leftrightarrow \ R^B(h(a_1),\ldots,h(a_n)) \end{array}$

for every *n*-ary relation symbol $R \in \mathcal{R}$ and every $a_1, \ldots, a_n \in A$.

- A and B are *isomorphic* (via h), denoted A ≃ B (A ≃_h B), if there is an isomorphism h of A and B. We also say that A is *isomorphic with* B.
- An *automorphism* of a structure A is an isomorphism of A with A.

For example, the power set algebra $\underline{\mathcal{P}}(X) = \langle \mathcal{P}(X), -, \cap, \cup, \emptyset, X \rangle$ with X = n is isomorphic to the Boolean algebra $\langle \{0, 1\}^n, -n, \wedge_n, \vee_n, 0_n, 1_n \rangle$ via $h : A \mapsto \chi_A$ where χ_A is the characteristic function of the set $A \subseteq X$.

э.

・ロン ・四 と ・ 回 と ・ 日 と

Isomorphisms and semantics

We will see that isomorphism preserves semantics.

Proposition Let A and B be structures of a language $L = \langle \mathcal{F}, \mathcal{R} \rangle$. A bijection $h: A \to B$ is an isomorphism of \mathcal{A} and \mathcal{B} if and only if both

(*i*) $h(t^{A}[e]) = t^{B}[e \circ h]$ for every term t and $e: Var \rightarrow A$, and (*ii*) $\mathcal{A} \models \varphi[e] \Leftrightarrow \mathcal{B} \models \varphi[e \circ h]$ for every formula φ and $e: \operatorname{Var} \to A$.

Proof (\Rightarrow) By induction on the structure of the term t, resp. the formula φ . (\Leftarrow) By applying (i) for each term $f(x_1, \ldots, x_n)$ or (ii) for each atomic formula $R(x_1, \ldots, x_n)$ and assigning $e(x_i) = a_i$ we verify that h is an isomorphism.

Corollary For every structures \mathcal{A} and \mathcal{B} of the same language,

 $A \sim B \Rightarrow A = B$

Remark The other implication (\leftarrow) does not hold in general. For example, $\langle \mathbb{Q}, \leq \rangle \equiv \langle \mathbb{R}, \leq \rangle$ but $\langle \mathbb{Q}, \leq \rangle \not\simeq \langle \mathbb{R}, \leq \rangle$ since $|\mathbb{Q}| = \omega$ and $|\mathbb{R}| = 2^{\omega}$.

Definability and automorphisms

We show that definable sets are invariant under automorphisms.

Proposition Let $D \subseteq A^n$ be a set definable in a structure A from parameters \overline{b} and h be an automorphism of A that pointwise preserves \overline{b} . Then h[D] = D.

$$\begin{array}{l} \text{Proof Let } D = \varphi^{\mathcal{A},\overline{b}}(\overline{x},\overline{y}). \text{ Then for every } \overline{a} \in A^{|\overline{x}|} \\ \overline{a} \in D \iff \mathcal{A} \models \varphi[e(\overline{x}/\overline{a},\overline{y}/\overline{b})] \iff \mathcal{A} \models \varphi[(e \circ h)(\overline{x}/\overline{a},\overline{y}/\overline{b})] \\ \Leftrightarrow \mathcal{A} \models \varphi[e(\overline{x}/h(\overline{a}),\overline{y}/h(\overline{b}))] \iff \mathcal{A} \models \varphi[e(\overline{x}/h(\overline{a}),\overline{y}/\overline{b})] \iff h(\overline{a}) \in D. \end{array}$$

Ex.: the graph G has exactly one nontrivial automorphism h that preserves 0.

$$0 \underbrace{\begin{array}{c}1 \\ 4 \\ 4\end{array}}_{4} h(0) = 0, \ h(1) = 4, \ h(2) = 3, \ h(3) = 2, \ h(4) = 1 \\ \{0\} = (x = y)^{\mathcal{G},0}, \ \{1,4\} = (E(x,y))^{\mathcal{G},0}, \ \{2,3\} = (x \neq y \land \neg E(x,y))^{\mathcal{G},0}$$

$$\label{eq:moreover} \begin{split} & \textit{Moreover, the sets } \{0\}, \, \{1,4\}, \, \{2,3\} \textit{ are definable with parameter } 0. \textit{ Thus} \\ & Df^1(\mathcal{G}, \{0\}) = \{ \emptyset, \{0\}, \{1,4\}, \{2,3\}, \{0,1,4\}, \{0,2,3\}, \{1,4,2,3\}, \{0,1,2,3,4\} \}. \end{split}$$

Finite models in language with equality

Proposition For every finite structures A, B of a language with equality,

 $\mathcal{A} \equiv \mathcal{B} \ \Rightarrow \ \mathcal{A} \simeq \mathcal{B}.$

Proof It holds |A| = |B| since we can express *"there are exactly n elements"*.

- Let \mathcal{A}' be expansion of \mathcal{A} to $L' = L \cup \{c_a\}_{a \in A}$ by names of elements of A.
- We show that \mathcal{B} has an expansion \mathcal{B}' to L' such that $\mathcal{A}' \equiv \mathcal{B}'$. Then clearly $h: a \mapsto c_a^{\mathcal{B}'}$ is an isomorfism of \mathcal{A}' to \mathcal{B}' , and thus also of \mathcal{A} to \mathcal{B} .
- If suffices to find $b \in B$ for every $c_a^{A'} = a \in A$ such that $\langle \mathcal{A}, a \rangle \equiv \langle \mathcal{B}, b \rangle$.
- Let Ω be set of all formulas $\varphi(x)$ s.t. $\langle \mathcal{A}, a \rangle \models \varphi(x/c_a)$, i.e. $\mathcal{A} \models \varphi[e(x/a)]$
- Since A is finite, there are finitely many formulas φ₀(x),...,φ_m(x) such that for every φ ∈ Ω it holds A ⊨ φ ↔ φ_i for some i.
- Since $\mathcal{B} \equiv \mathcal{A} \models (\exists x) \bigwedge_{i \leq m} \varphi_i$, there exists $b \in B$ s.t. $\mathcal{B} \models \bigwedge_{i \leq m} \varphi_i[e(x/b)]$.
- Hence for every $\varphi \in \Omega$ it holds $\mathcal{B} \models \varphi[e(x/b)]$, i.e. $\langle \mathcal{B}, b \rangle \models \varphi(x/c_a)$. \Box

Corollary If a complete theory *T* in a language with equality has a finite model, then all models of *T* are isomorphic.

A D A A B A A B A A B A

Categoricity

- An (isomorphism) *spectrum* of a theory *T* is given by the number $I(\kappa, T)$ of mutually nonisomorphic models of *T* for every cardinality κ .
- A theory T is κ-categorical if it has exactly one (up to isomorphism) model of cardinality κ, i.e. I(κ, T) = 1.

Proposition The theory DeLO (i.e. "without ends") is ω -categorical.

Proof Let $\mathcal{A}, \mathcal{B} \models DeLO$ with $A = \{a_i\}_{i \in \mathbb{N}}, B = \{b_i\}_{i \in \mathbb{N}}$. By induction on n we can find injective partial functions $h_n \subseteq h_{n+1} \subset A \times B$ preserving the ordering s.t. $\{a_i\}_{i < n} \subseteq \operatorname{dom}(h_n)$ and $\{b_i\}_{i < n} \subseteq \operatorname{rng}(h_n)$. Then $\mathcal{A} \simeq \mathcal{B}$ via $h = \cup h_n$.

Similarly we obtain that (e.g.) $\mathcal{A} = \langle \mathbb{Q}, \leq \rangle$, $\mathcal{A} \upharpoonright (0,1]$, $\mathcal{A} \upharpoonright [0,1)$, $\mathcal{A} \upharpoonright [0,1]$ are (up to isomorphism) all countable models of DeLO^{*}. Then

$$I(\kappa, \textit{DeLO}^*) = \begin{cases} 0 & \text{for } \kappa \in \mathbb{N}, \\ 4 & \text{for } \kappa = \omega. \end{cases}$$

Categoricity

$\omega\text{-}categorical criterium of completeness}$

Theorem Let *L* be at most countable language.

- (*i*) If a theory T in L without equality is ω -categorical, then it is complete.
- (*ii*) If a theory T in L with equality is ω -categorical and without finite models, then it is complete.

Proof Every model of T is elementarily equivalent with some countably infinite model of T, but such model is unique up to isomorphism. Thus all models of T are elementarily equivalent, i.e. T is complete.

For example, DeLO, $DeLO^+$, $DeLO^-$, $DeLO^\pm$ are complete and they are the all (mutually nonequivalent) simple complete extensions of $DeLO^*$.

Remark A similar criterium holds also for cardinalities bigger than ω .

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Axiomatizability

We are interested if we can describe a class of models by given means.

Let $K \subseteq M(L)$ be a class of structures of a language *L*. We say that *K* is

- *axiomatizable* if there is a theory T of language L with M(T) = K,
- *finitely axiomatizable* if K is axiomatizable by a finite theory,
- openly axiomatizable if K is axiomatizable by an open theory,
- a theory *T* if finitely (openly) axiomatizable if *T* is equivalent to a finite (resp. open) theory.

Observation If *K* is axiomatizable, then it is closed under elem. equivalence. For example,

- *a*) linear orderings are both finitely and openly axiomatizable,
- b) fields are finitely axiomatizable, but not openly,
- c) infinite groups are axiomatizable, but not finitely.

イロト イポト イヨト イヨト

Application of compactenss

Theorem If a theory *T* has at least an *n*-element model for every $n \in \mathbb{N}$, then it also has an infinite model.

Proof In a language without equality apply L.-S. theorem. Now assume we have a language with equality.

- Let $T' = T \cup \{c_i \neq c_j \mid \text{for } i \neq j\}$ be an extension of T in a language with additional countably infinitely many new constant symbols c_i .
- By the assumption, every finite part of T' has a model.
- By compactness, T' has a model, which clearly is infinite.
- Its reduct to the original language is an infinite model of T. \Box

Corollary If a theory *T* has at least an *n*-element model for each $n \in \mathbb{N}$, the class of all its finite models is not axiomatizable.

For example, finite groups, finite fields, etc. are not axiomatizable. But infinite models of a theory T in language with equality are axiomatizable.

イロン イヨン イヨン

Finite axiomatizability

Theorem Let $K \subseteq M(L)$ and $\overline{K} = M(L) \setminus K$ where *L* is a language. Then *K* is finitely axiomatizable if and only if both *K* and \overline{K} are axiomatizable.

Proof (\Rightarrow) If *T* is a finite axiomatization of *K* is a closed form, then the theory with the only axiom $\bigvee_{\varphi \in T} \neg \varphi$ axiomatizes \overline{K} . Now we show (\Leftarrow).

- Let *T*, *S* be theories of language *L* such that M(T) = K, $M(S) = \overline{K}$.
- Then $M(T \cup S) = M(T) \cap M(S) = \emptyset$ and by the compactness there exist finite $T' \subseteq T$ and $S' \subseteq S$ such that $\emptyset = M(T' \cup S') = M(T') \cap M(S')$.
- Since

$$M(T)\subseteq M(T')\subseteq \overline{M(S')}\subseteq \overline{M(S)}=M(T),$$

we have M(T) = M(T'), i.e. a finite T' axiomatizes K. \Box

・ロン ・四 と ・ 回 と ・ 日 と

Finite axiomatizability - example

- Let T be the theory of fields. We say that a field $\mathcal{A} = \langle A, +, -, \cdot, 0, 1 \rangle$ has
 - characteristic 0 if there is no p ∈ N⁺ such that A ⊨ p1 = 0, where p1 denotes the term 1 + 1 + · · · + 1 (+ applied (p − 1)-times).
 - *characteristic* p where p is prime, if p is the smallest s.t. $A \models p1 = 0$.
 - The class of fields of characteristic *p* for prime *p* is finitely axiomatized by the theory *T* ∪ {*p*1 = 0}.
 - The class K of fields of characteristic 0 is axiomatized by the (infinite) theory T' = T ∪ {p1 ≠ 0 | p ∈ N⁺}.

Proposition *K* is not finitely axiomatizable.

Proof It suffices to show that \overline{K} is not axiomatizable. Suppose $M(S) = \overline{K}$. Then $S' = S \cup T'$ has a model \mathcal{B} since every finite $S^* \subseteq S'$ has a model (a field of prime characteristic larger than any p occurring in axioms of S^*), But then $\mathcal{B} \in M(S) = \overline{K}$ and $\mathcal{B} \in M(T') = K$, a contradiction. \Box

・ロ・・ (日・・ 日・・ 日・・

Openly axiomatizable theories

Theorem If a theory *T* is openly axiomatizable, then every substructure of a model of *T* is also a model of *T*.

Proof Let T' be open axiomatization of M(T), $\mathcal{A} \models T'$ and $\mathcal{B} \subseteq \mathcal{A}$. We know that $\mathcal{B} \models \varphi$ for every $\varphi \in T'$ since φ is open. Thus \mathcal{B} is a model of T'. \Box

Remark The other implication holds as well, i.e. if every substructure of every model of *T* is also a model of *T*, then *T* is openly axiomatizable.

For example, the theory *DeLO* is not openly axiomatizable since e.g. any finite substructure of a model of *DeLO* is not a model *DeLO*.

At most *n*-element groups for a fixed n > 1 are openly axiomatized by

$$T \cup \{\bigvee_{\substack{i,j \le n \\ i \neq j}} x_i = x_j\},\$$

where T is the (open) theory of groups.

イロト イポト イヨト イヨト