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Resolution in method in predicate logic Linear resolution and LI-resolution

Linear resolution

Resolution can be significantly refined (without loss of completeness).
@ A linear proof of a clause C from a formula S is a finite sequence of pairs
(Co, Bo), ..., (Cy,By) s.t. Gy is avariant of a clause from Sandfori < n
i) B;is avariant of a clause from S or B; = C; for some j < i,
ii) Ciy1 is aresolvent of C; and B;, and C,,, = C.
@ Ciis linearly provable from S, S+ C, if it has a linear proof from S,
@ a linear refutation of S is a linear proof of (I from S,

@ Sis linearly refutable if S - [J.

Theorem S is linearly refutable if and only if S is unsatisfiable.

Proof (=) Every linear proof can be transformed to a resolution proof.
(<) Follows from completeness of linear resolution in prop. logic (omitted)
since the lifting lemma preserves linearity of resolution proofs. [
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LI-resolution

For Horn formulas we can refine the linear resolution further.

@ Ll-resolution (“linear input”) from a formula S is a linear resolution where
each side clause B; is a variant of a clause from the (input) formula S,
S 1 C denotes that C is provable by Ll-resolution from S,
a Horn formula is a set (possibly infinite) of Horn clauses,
a Horn clause is a clause containing at most one positive literal,
a factis a (Horn) clause with exactly one positive and no negative literal,
a rule is a (Horn) clause with exactly one positive and at least one
negative literal, rules and facts are called program clauses,
@ a goalis a nonempty (Horn) clause without positive literals.

Theorem If a Horn formula T is satisfiable and T U { G} is unsatisfiable for
a goal G, then T U {G} can be refuted by LI-resolution starting with clause G.

Proof Follows by Herbrand’s theorem, the same statement in prop. logic and
the lifting lemma. O
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Program in Prolog

A program (in Prolog) is a Horn formula containing only program clauses,
i.e. only facts or rules.

son(X,Y) :— father(Y, X),man(X). {son(X,Y), = father(Y, X),~man(X)}
son(X,Y) :— mother(Y, X), man(X). {son(X,Y), -mother(Y, X), ~man(X)}
man(jan). {man(jan)}

father(jiri, jan). {father(jiri, jan)}

mother(julie, jan). {mother(julie, jan)}

?— son(jan, X) P (3X)son(jan, X) ? {=son(jan, X)}

We are interested whether a given existential query holds in a given program.

Corollary Foraprogram P and a goal G = {—A;,...,~A,} invar. Xy,..., Xn
(1) PE(3X)... 3Xn) (AL A ... ANAy), ifand only if
(2) PU{G} can be refuted by Li-resolution starting with (a variant of) G.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XII WS 2022/2023 4/23



Resolution in method in predicate logic Linear resolution and LI-resolution

LI-resolution over a program
If the answer is positive, we want to know the output substitution.

The output substitution o of a Ll-refutation from P U { G} starting with a goal
G ={-4,...,~A,} is a composition of mgu’s in all steps (restricted only to
variables in G). It holds that

PE (AL N...NAy)o.

{=son(jan, X)} {son(X",Y"), =~ father(Y', X"), =man(X')}
X'/jan|Y'/X
{—father(X,jan), ~man(jan)} {man(jan)} {—son(jan,X)} {son(X',Y’),—~mother(Y’', X"),~man(X')}

/ X'/jan|Y'/X

{—~father(X,jan)} {father(jiri,jan)} {—mother(X, jan), ~man(jan)} {man(jan)}

X/jiri ‘ / ‘

] {—=mother(X,jan)} {mother(julie, jan)}

X/julie ‘ /
a) b) H

The output substitutions a) X = jiri, b) X = julie.
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Hilbert’s calculus in predicate logic

@ basic connectives and quantifier: -, —, (Vx) (others are derived)
@ allows to prove any formula (not just sentences)
@ /logical axioms (schemes of axioms):

() = (¥ —=9)
(it) (p—= W —=x) = ((p—=9) = (¢ —=X)
(i) (o= ) = (¥ = ¢)
(iv) (Vx)p = p(x/1) if ¢ is substitutable for x to ¢

(v) (Vx)(p = ) = (p — (Vx)y) if xis notfreein ¢
where ¢, 1, x are any formulas (of a given language), ¢ is any term,
and x is any variable

@ in a language with equality we include also the axioms of equality
@ rules of inference
0, =Y
(G

(modus ponens), v (generalization)

(Vx)p
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Hilbert-style proofs

A proof (in Hilbert-style) of a formula ¢ from a theory T is a finite sequence
©o, - - -, pn =  of formulas such that for every i < n

@ ¢; is alogical axiom or ¢; € T (an axiom of the theory), or

@ ¢; can be inferred from the previous formulas applying a rule of inference.

A formula ¢ is provable from T if it has a proof from T, denoted by T g .

Theorem (soundness) Forevery theory T and formula o, Tty ¢ = T |E .
Proof
@ If pis an axiom (logical or from T), then T = ¢ (l. axioms are tautologies),
oifTEypand T = ¢ — ¢, then T =1, i.e. modus ponens is sound,
o if T |= ¢, then T |= (Vx)y, i.e. generalization is sound,
@ thus every formula in a proof from T isvalidin T. [

Remark The completeness holds as well, i.e. T = ¢ = T by .
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Theories of structures

What holds in particular structures?

The theory of a structure A is the set Th(.A) of all sentences (of the same
language) that are valid in A.

Observation For every structure A and a theory T of a language L,
(i) Th(.A) is a complete theory,
(ii) if A= T, then Th(A) is a simple (complete) extension of T,
(iii) if A= T and T is complete, then Th(.A) is equivalent with T,
i.e. 0%(T) = Th(A).
E.g. Th(N) whereN = (N, S, +, -,0, <) is the arithmetics of natural numbers.

Remark Later, we will see that Th(N) is (algorithmically) undecidable
although it is complete.
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Elementary equivalence

@ Structures A and B of a language L are elementarily equivalent, denoted
A = B, if they satisfy the same sentences (of L), i.e. Th(.A) = Th(B).

For example, (R, <) = (Q, <) and (Q, <) # (Z, <) since every element
has an immediate successor in (Z,<) but not in (Q, <).
@ T is complete iff it has a single model, up to elementary equivalence.

For example, the theory of dense linear orders without ends (DeLO).

How to describe models of a given theory (up to elementary equivalence)?

Observation For every models A, B of a theory T, A = B if and only if
Th(A), Th(B) are equivalent (simple complete extensions of T).

Remark If we can describe effectively (recursively) for a given theory T
all simple complete extensions of T, then T is (algorithmically) decidable.
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Simple complete extensions - an example

The theory DeLO* of dense linear orders of L = (<) with equality has axioms

x<x (reflexivity)
x<y AN y<x — x=Yy (antisymmetry)
x<y Ny<z —- x<z (transitivity)
x<y VvV y<x (dichotomy)
x<y — (Fz)(x<z AN z<y) (density)
3x)3y)(x #£y) (nontriviality)

where ‘x < y’is a shortcutfor 'x <y A x # y.

Let ¢, v be the sentences (3x)(Vy)(x < y), resp. (3x)(Vy)(y < x). We will see
DelO = DeLO* U {~y, -1}, DeLO* = DeLO* U {¢, v},
DeLO" = DeLO* U {~y, 1}, DeLO™ = DeLO* U {p, )}

are the all (nonequivalent) simple complete extensions of the theory DeLO*.
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Corollary of the Lowenheim-Skolem theorem

We already know the following theorem, by a canonical model (with equality).

Theorem Let T be a consistent theory of a countable language L. If L is
without equality, then T has a countably infinite model. If L is with equality,
then T has a model that is countable (finite or countably infinite).

Corollary For every structure A of a countable language without equality
there exists a countably infinite structure B with A = 1.

Proof Th(.A) is consistent since it has a model .A. By the previous theorem,
it has a countably inf. model 5. Since Th(.A) is complete, we have A= B. [

Corollary For every infinite structure A of a countable language with equality
there exists a countably infinite structure B with A = 1.

Proof Similarly as above. Since the sentence “there is exactly n elements”is
false in A for all n and A = B, it follows that B is infinite. ]
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A countable algebraically closed field

We say that a field A is algebraically closed if every polynomial (of nonzero
degree) has a root in A; that is, for every n > 1 we have

Al (V1) ... (V)3 4+ X1 - Y 4+ Xy + X = 0)
where y* is a shortcut for thetermy -y - --- -y (- applied (k — 1)-times).

For example, the field C = (C,+, —,-,0, 1) is algebraically closed, whereas
the fields R and Q are not (since the polynomial x* + 1 has no root in them).

Corollary There exists a countable algebraically closed field.

Proof By the previous corollary, there is a countable structure elementarily
equivalent with the field C. Hence it is algebraically closed as well. [

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XII WS 2022/2023 12/23



Isomorphisms of structures

Let A and B be structures of a language L = (F,R).
@ A bijection h: A — Bis an isomorphism of structures .4 and B if both
(i) h(fa,....an) = fP(h(a), ..., h(ay))
for every n-ary function symbol f € F and every ai, ..., a, € A,
(ll) RA(ala"'7aﬂ) ~ RB(h(al)a"",h(aﬂ))
for every n-ary relation symbol R € R and every ay, ..., a, € A.

@ A and B are isomorphic (via h), denoted A ~ B (A ~;, B), if there is
an isomorphism h of A and B. We also say that A is isomorphic with B.

@ An automorphism of a structure A is an isomorphism of .4 with A.

For example, the power set algebra P(X) = (P(X),—,N,U,0,X) withX = n is

isomorphic to the Boolean algebra ({0,1}", —,, An, Vi, Ony 1) Viah: A — xa
where x4 is the characteristic function of the set A C X.
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Isomorphisms and semantics

We will see that isomorphism preserves semantics.
Proposition Let A and B be structures of a language L = (F,R). A bijection
h: A — B is an isomorphism of A and B if and only if both

(i) h(t'[e]) = tBleo N for every term t and e: Var — A, and
(if) AEyple] & Bl yleoh] for every formula ¢ and e: Var — A.

Proof (=) By induction on the structure of the term t, resp. the formula .
(<) By applying (i) for each term f(xi, ..., x,) or (ii) for each atomic formula
R(x1,...,xp) and assigning e(x;) = a; we verify that & is an isomorphism. [J

Corollary For every structures A and B of the same language,

A~B = A=B.
Remark The other implication (<) does not hold in general. For example,
(Q,<) = (R, <) but (Q, <) # (R, <) since |Q| =w and |R| = 2%,
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Model theory Isomorphism

Definability and automorphisms
We show that definable sets are invariant under automorphisms.

Proposition Let D C A" be a set definable in a structure A from parameters
b and h be an automorphism of A that pointwise preserves b. Then h|D] = D.

Proof Let D = oAb(%, 7). Then for every @ € A™

acD < AEyle(X/a,y/b)] < Ak ¢l(ec h)(X/a,7/b)]
& Al gle(X/h(a),y/h(b))] < A= ple(X/h(a),y/b)] < h(a) € D.

Ex.: the graph G has exactly one nontrivial automorphism h that preserves 0.

h(0) =0, h(l)=4, h(2)=3, h(3)=2, h(4) =1

{0} = (2 =9)9° {14} = (E(z,9))7°, {2,3} = (z £y A ~E(x,9))7°

Moreover, the sets {0}, {1,4}, {2,3} are definable with parameter 0. Thus
Df' (G, {0}) = {0, {0}, {1,4},{2,3},{0,1,4},{0,2,3},{1,4,2,3},{0,1,2,3,4}}.
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Finite models in language with equality

Proposition For every finite structures A, B of a language with equality,
A=B = A~B.
Proof It holds |A| = |B| since we can express ‘there are exactly n elements”.
@ Let A’ be expansion of Ato L' = LU {c,}4ca by names of elements of A.

@ We show that B has an expansion B’ to L’ such that A’ = B’. Then
clearly h: a — ¢ is an isomorfism of A’ to B/, and thus also of A to .

e If suffices to find b € B for every ¢/’ = a € A such that (A, a) = (B, b).

@ Let Q be set of all formulas ¢(x) s.t. (A, a) = v(x/ca), i.e. A= ple(x/a)]

@ Since A is finite, there are finitely many formulas ¢o(x),. .., ©m(x) such
that for every ¢ € Q it holds A = ¢ <> ¢; for some i.

@ Since B=A = (3x) A<, pis there exists b € Bs.t. B = A, pile(x/D)].
@ Hence for every ¢ € Q it holds B |= ¢le(x/D)], i.e. (B,b) = ¢(x/cs). O

Corollary If a complete theory T in a language with equality has a finite
model, then all models of T are isomorphic.
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Categoricity

@ An (isomorphism) spectrum of a theory T is given by the number I(x, T)
of mutually nonisomorphic models of T for every cardinality .

@ Atheory T is k-categorical if it has exactly one (up to isomorphism)
model of cardinality x, i.e. I(k, T) = 1.

Proposition The theory DelO (i.e. “without ends”) is w-categorical.

Proof Let A, B = DeLO with A = {a;};cn, B = {b;}ien. By induction on n we
can find injective partial functions h;, C h,11 C A x B preserving the ordering
s.t. {a;}icn € dom(hy,) and {b;};<, C rng(hy,). Then A~ Bvia h=Uh,. O

Similarly we obtain that (e.g.) A= (Q, <), A1 (0,1], A11[0,1), .4 ][0,1]

are (up to isomorphism) all countable models of DeLO*. Then

0 fork €N,

I(x, DeLO") = {4 for k = w
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w-categorical criterium of completeness

Theorem Let L be at most countable language.
(i) Ifatheory T in L without equality is w-categorical, then it is complete.
(ii) Ifatheory T in L with equality is w-categorical and without finite
models, then it is complete.

Proof Every model of T is elementarily equivalent with some countably
infinite model of T, but such model is unique up to isomorphism. Thus all
models of T are elementarily equivalent, i.e. T is complete. [

For example, DeLO, DeLO", DeLO~, DeLO* are complete and they are
the all (mutually nonequivalent) simple complete extensions of DeLO*.

Remark A similar criterium holds also for cardinalities bigger than w.
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Axiomatizability

We are interested if we can describe a class of models by given means.

Let K C M(L) be a class of structures of a language L. We say that K is
@ axiomatizable if there is a theory T of language L with M(T) = K,

@ finitely axiomatizable if K is axiomatizable by a finite theory,
@ openly axiomatizable if K is axiomatizable by an open theory,
@ atheory T if finitely (openly) axiomatizable if T is equivalent to a finite
(resp. open) theory.
Observation If K is axiomatizable, then it is closed under elem. equivalence.

For example,
a) linear orderings are both finitely and openly axiomatizable,

b) fields are finitely axiomatizable, but not openly,

¢) infinite groups are axiomatizable, but not finitely.
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Application of compactenss

Theorem If atheory T has at least an n-element model for every n € N, then
it also has an infinite model.

Proof In a language without equality apply L.-S. theorem. Now assume we
have a language with equality.

@ Let 7" = TU{c; # ¢j | for i # j} be an extension of T in a language
with additional countably infinitely many new constant symbols c;.

@ By the assumption, every finite part of T’ has a model.

@ By compactness, T’ has a model, which clearly is infinite.

@ Its reduct to the original language is an infinite model of T. [
Corollary Ifatheory T has at least an n-element model for each n € N,
the class of all its finite models is not axiomatizable.
For example, finite groups, finite fields, etc. are not axiomatizable. But infinite

models of a theory T in language with equality are axiomatizable.
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Finite axiomatizability

Theorem Let K C M(L) and K = M(L)\ K where L is a language. Then K is
finitely axiomatizable if and only if both K and K are axiomatizable.

Proof (=) If T is a finite axiomatization of K is a closed form, then the theory
with the only axiom \/ ., - axiomatizes K. Now we show (<).
@ Let T, S be theories of language L such that M(T) = K, M(S) = K.

@ Then M(TUS) = M(T)nM(S) =0 and by the compactness there exist
finite 7" C Tand §' C Ssuchthat ) = M(T"US') = M(T") n M(S").
@ Since

M(T) C M(T'") € M(S') € M(S) = M(T),

we have M(T) = M(T’), i.e. afinite T axiomatizes K. [
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Finite axiomatizability - example

Let T be the theory of fields. We say that a field A = (A, +,—,-,0,1) has
@ characteristic 0 if there is no p € N* such that A = pl = 0,
where pl denotes theterm 1+ 1+ --- 4+ 1 (+ applied (p — 1)-times).
@ characteristic p where p is prime, if p is the smallest s.t. A = p1 = 0.
@ The class of fields of characteristic p for prime p is finitely axiomatized
by the theory T U {p1 = 0}.
@ The class K of fields of characteristic 0 is axiomatized by the (infinite)
theory 7" = TU{pl #0 | pe NT}.
Proposition K is not finitely axiomatizable.
Proof It suffices to show that K is not axiomatizable. Suppose M(S) = K.
Then &' = SU T’ has a model B since every finite S* C S’ has a model

(a field of prime characteristic larger than any p occurring in axioms of S*),
But then B € M(S) = K and B € M(T’) = K, a contradiction. [
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Openly axiomatizable theories
Theorem If a theory T is openly axiomatizable, then every substructure of
a model of T is also a model of T.

Proof Let T' be open axiomatization of M(T), A = T’ and B C A. We know
that B |= ¢ for every ¢ € T’ since ¢ is open. Thus B is a model of T". [J

Remark The other implication holds as well, i.e. if every substructure of every
model of T is also a model of T, then T is openly axiomatizable.

For example, the theory DeLO is not openly axiomatizable since e.g. any finite
substructure of a model of DeLO is not a model DeLO.

At most n-element groups for a fixed n > 1 are openly axiomatized by

TU { \/ X; = Xj},
i,j<n
i#]
where T is the (open) theory of groups.
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