Predicate and Propositional Logic - Tutorial 4

Oct 25, 2022

- 1. Find tableau proofs of the following tautologies.
 - (a) $(p \to (q \to q))$
 - (b) $p \leftrightarrow \neg \neg p$
 - (c) $\neg (p \lor q) \leftrightarrow (\neg p \land \neg q)$
 - (d) $(p \to q) \leftrightarrow (\neg q \to \neg p)$
 - (e) $(p \to (q \to r)) \to ((p \to q) \to (p \to r))$

Are the constructed tableaux systematic?

- 2. Applying tableau method prove the following propositions or find counterexamples
 - (a) $\{\neg q, p \lor q\} \models p$,
 - (b) $\{q \to p, r \to q, (r \to p) \to s\} \models s$,
 - (c) $\{p \to r, p \lor q, \neg s \to \neg q\} \models r \to s.$
- 3. Applying tableau method determine all models of the following theories.
 - (a) $\{(\neg p \lor q) \to (\neg q \land r)\}$
 - (b) $\{\neg q \to (\neg p \lor q), \neg p \to q, r \to q\}$
 - (c) $\{q \to p, r \to q, (r \to p) \to s\}$
- 4. Propose suitable atomic tableaux for Peirce arrow \downarrow (NOR) and for Sheffer stroke \uparrow (NAND).
- 5. Prove directly (by tableau tranformations) the deduction theorem, i.e. for every theory T and propositions φ , ψ ,

 $T \vdash \varphi \rightarrow \psi$ if and only if $T, \varphi \vdash \psi$.

6. Let S be a countable nonempty family of nonempty finite sets. We say that S has a selector if there exists an injective $f: S \to \bigcup S$ such that $f(S) \in S$ for every $S \in S$. Prove that S has a selector if and only if every nonempty finite part of S has a selector.