Predicate and Propositional Logic - Tutorial 6

Nov 8, 2022

- 1. Let S be a countable nonempty family of nonempty finite sets. We say that S has a selector if there exists an injective $f: S \to \bigcup S$ such that $f(S) \in S$ for every $S \in S$. Prove that S has a selector if and only if every nonempty finite part of S has a selector.
- 2. Let φ be the proposition $\neg(p \lor q) \to (\neg p \land \neg q)$.
 - (a) Transform $\neg \varphi$ into CNF and into set representation (clausal form).
 - (b) Find a resolution refutation of $\neg \varphi$; that is, a proof of φ .
- 3. Find resolution closures $\mathcal{R}(S)$ of the following formulas S.
 - (a) $\{\{p,q\},\{\neg p,\neg q\},\{\neg p,q\}\}$
 - (b) $\{\{p,q\},\{p,\neg q\},\{p,\neg q\}\}$
 - (c) $\{\{p, \neg q, r\}, \{q, r\}, \{\neg p, r\}, \{q, \neg r\}, \{\neg q\}\}$
- 4. Find resolution refutations of the following propositions.
 - (a) $(p \leftrightarrow (q \rightarrow r)) \land ((p \leftrightarrow q) \land (p \leftrightarrow \neg r))$ (b) $\neg (((p \rightarrow q) \rightarrow \neg q) \rightarrow \neg q)$
- 5. Prove by resolution that s is valid in a theory $T = \{\neg p \rightarrow \neg q, \neg q \rightarrow \neg r, (r \rightarrow p) \rightarrow s\}$.
- 6. Show that if $S = \{C_1, C_2\}$ is satisfiable and C is a resolvent of C_1 and C_2 , then C is satisfiable as well.
- 7. Find the tree of reductions of a formula $S = \{\{p, r\}, \{q, \neg r\}, \{\neg q\}, \{\neg p, t\}, \{\neg s\}, \{s, \neg t\}\}$.
- 8. Assume that we have available MgO, H₂, O₂, C and we can perform the following chemical reactions.

(1) MgO + H₂
$$\rightarrow$$
 Mg + H₂O
(2) C + O₂ \rightarrow CO₂
(3) CO₂ + H₂O \rightarrow H₂CO₃

- (a) Represent the state of affairs as a proposition in a suitable language and transform it into a set representation.
- (b) Prove by (linear input) resolution that we can produce H_2CO_3 .
- 9. Show that in Hilbert's calculus the following is provable for every formulas φ, ψ, χ .
 - (a) $\vdash_H \varphi \to \varphi$
 - (b) $T \vdash_H \varphi \to \chi$ where $T = \{\varphi \to \psi, \psi \to \chi\}$
 - (c) $T \vdash_H \psi \to \chi$ where $T = \{\varphi, \psi \to (\varphi \to \chi)\}$

Examples of questions for the midterm test on Nov 15.

- 1. In the presidental elections we have two candidates, Mr. A and Mr. B.
 - (i) Mr. A says: "I will be elected or Mr. B lies."
 - (ii) Mr. B says: "Mr. A will not be elected or I lie."
 - (iii) Exactly one candidate will be elected.

Let the propositional atoms e_A , e_B represent that Mr. A (resp. Mr. B) will be elected and let t_A , t_B represent that Mr. A (resp. Mr. B) speaks the truth. Let us denote $\mathbb{P} = \{e_A, e_B, t_A, t_B\}$.

- (a) Write propositions φ_1 , φ_2 in the form of equivalence and a proposition φ_3 in CNF expressing (in this order) (i), (ii), (iii), all over the language \mathbb{P} . (20p)
- (b) Let $T = \{\varphi_1, \varphi_2, \varphi_3\}$. Prove by tableau method that $T \models e_B$. (40p).
- (c) Give an example of a proposition over \mathbb{P} that is independent in theory T, or show that such proposition does not exist. (20p).
- (d) Find a theory S over $\{e_A, e_B\}$ such that T is a conservative extension of S. (20p)
- 2. (Pigeonhole principle). Let $n \ge 2$ be a fixed natural number. Assume that we have n pigeons and n-1 pigeonholes. We want to show (by resolution) that the following two statements cannot both be true:
 - (i) Every pigeon sits in some pigeonhole,
 - (ii) there is no pigeonhole with more than one pigeon sitting in it.

Let $\mathbb{P} = \{p_j^i \mid 1 \leq i \leq n, 1 \leq j \leq n-1\}$ be a set of propositional variables, where p_j^i represents that "the *i*-th pigeon sits in the *j*-th pigeonhole".

- (a) Write propositions φ_i and ψ_j over \mathbb{P} expressing that "the *i*-th pigeon sits in some pigeonhole" and "in the *j*-th pigeonhole sits not more than one pigeon", respectively, where $1 \leq i \leq n, 1 \leq j \leq n-1$. Using the propositions φ_i and ψ_j construct a theory T_n expressing (i) and (ii). (20p)
- (b) Now let n = 3 and $T' = T_3 \cup \{p_1^1\}$, that is, we additionally assume that "the 1st pigeon sits in the 1st pigeonhole". Convert T' to set representation. (20p)
- (c) Show that $T' \vdash_R \Box$. Draw the resolution refutation in the form of a resolution tree. (40p)
- (d) Let $T^* = T' \setminus \{\psi_2\}$ be a theory over \mathbb{P} . Is the theory T' a conservative extension of the theory T^* ? Justify your answer. (20p)
- 3. Let $T = \{(\neg p \land q) \rightarrow r, (q \rightarrow r) \leftrightarrow p\}$ be a theory over the language $\mathbb{P} = \{p, q, r\}$.
 - (a) Use the tableau method to find all models of the theory T. (40p)
 - (b) Axiomatize $M^{\mathbb{P}}(T)$ by a proposition in DNF and also by a proposition in CNF. (20p)
 - (c) Is T an extension of the theory $S = \{q \to p\}$ over the language $\{p, q\}$? Is T a conservative extension of S? Justify your answers. (20p)
 - (d) Determine the number of mutually inequivalent propositions over \mathbb{P} that are independent in both S and T. Justify your answer. (20p)