Predicate and Propositional Logic - Tutorial 6

Nov 8, 2022

1. Let \mathcal{S} be a countable nonempty family of nonempty finite sets. We say that \mathcal{S} has a selector if there exists an injective $f: \mathcal{S} \rightarrow \bigcup \mathcal{S}$ such that $f(S) \in S$ for every $S \in \mathcal{S}$. Prove that \mathcal{S} has a selector if and only if every nonempty finite part of \mathcal{S} has a selector.
2. Let φ be the proposition $\neg(p \vee q) \rightarrow(\neg p \wedge \neg q)$.
(a) Transform $\neg \varphi$ into CNF and into set representation (clausal form).
(b) Find a resolution refutation of $\neg \varphi$; that is, a proof of φ.
3. Find resolution closures $\mathcal{R}(S)$ of the following formulas S.
(a) $\{\{p, q\},\{\neg p, \neg q\},\{\neg p, q\}\}$
(b) $\{\{p, q\},\{p, \neg q\},\{p, \neg q\}\}$
(c) $\{\{p, \neg q, r\},\{q, r\},\{\neg p, r\},\{q, \neg r\},\{\neg q\}\}$
4. Find resolution refutations of the following propositions.
(a) $(p \leftrightarrow(q \rightarrow r)) \wedge((p \leftrightarrow q) \wedge(p \leftrightarrow \neg r))$
(b) $\neg(((p \rightarrow q) \rightarrow \neg q) \rightarrow \neg q)$
5. Prove by resolution that s is valid in a theory $T=\{\neg p \rightarrow \neg q, \neg q \rightarrow \neg r,(r \rightarrow p) \rightarrow s\}$.
6. Show that if $S=\left\{C_{1}, C_{2}\right\}$ is satisfiable and C is a resolvent of C_{1} and C_{2}, then C is satisfiable as well.
7. Find the tree of reductions of a formula $S=\{\{p, r\},\{q, \neg r\},\{\neg q\},\{\neg p, t\},\{\neg s\},\{s, \neg t\}\}$.
8. Assume that we have available $\mathrm{MgO}, \mathrm{H}_{2}, \mathrm{O}_{2}, \mathrm{C}$ and we can perform the following chemical reactions.

$$
\begin{aligned}
& \text { (1) } \mathrm{MgO}+\mathrm{H}_{2} \rightarrow \mathrm{Mg}+\mathrm{H}_{2} \mathrm{O} \\
& \text { (2) } \mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \\
& \text { (3) } \mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{H}_{2} \mathrm{CO}_{3}
\end{aligned}
$$

(a) Represent the state of affairs as a proposition in a suitable language and transform it into a set representation.
(b) Prove by (linear input) resolution that we can produce $\mathrm{H}_{2} \mathrm{CO}_{3}$.
9. Show that in Hilbert's calculus the following is provable for every formulas φ, ψ, χ.
(a) $\vdash_{H} \varphi \rightarrow \varphi$
(b) $T \vdash_{H} \varphi \rightarrow \chi$ where $T=\{\varphi \rightarrow \psi, \psi \rightarrow \chi\}$
(c) $T \vdash_{H} \psi \rightarrow \chi$ where $T=\{\varphi, \psi \rightarrow(\varphi \rightarrow \chi)\}$

Examples of questions for the midterm test on Nov 15.

1. In the presidental elections we have two candidates, Mr. A and Mr. B.
(i) Mr. A says: "I will be elected or Mr. B lies."
(ii) Mr. B says: "Mr. A will not be elected or I lie."
(iii) Exactly one candidate will be elected.

Let the propositional atoms e_{A}, e_{B} represent that $M r$. A (resp. Mr. B) will be elected and let t_{A}, t_{B} represent that Mr. A (resp. Mr. B) speaks the truth. Let us denote $\mathbb{P}=\left\{e_{A}, e_{B}, t_{A}, t_{B}\right\}$.
(a) Write propositions φ_{1}, φ_{2} in the form of equivalence and a proposition φ_{3} in CNF expressing (in this order) (i), (ii), (iii), all over the language \mathbb{P}. (20p)
(b) Let $T=\left\{\varphi_{1}, \varphi_{2}, \varphi_{3}\right\}$. Prove by tableau method that $T \models e_{B}$. (40p).
(c) Give an example of a proposition over \mathbb{P} that is independent in theory T, or show that such proposition does not exist. (20p).
(d) Find a theory S over $\left\{e_{A}, e_{B}\right\}$ such that T is a conservative extension of S. (20p)
2. (Pigeonhole principle). Let $n \geq 2$ be a fixed natural number. Assume that we have n pigeons and $n-1$ pigeonholes. We want to show (by resolution) that the following two statements cannot both be true:
(i) Every pigeon sits in some pigeonhole,
(ii) there is no pigeonhole with more than one pigeon sitting in it.

Let $\mathbb{P}=\left\{p_{j}^{i} \mid 1 \leq i \leq n, 1 \leq j \leq n-1\right\}$ be a set of propositional variables, where p_{j}^{i} represents that "the i-th pigeon sits in the j-th pigeonhole".
(a) Write propositions φ_{i} and ψ_{j} over \mathbb{P} expressing that "the i-th pigeon sits in some pigeonhole" and "in the j-th pigeonhole sits not more than one pigeon", respectively, where $1 \leq i \leq n, 1 \leq j \leq n-1$. Using the propositions φ_{i} and ψ_{j} construct a theory T_{n} expressing (i) and (ii). (20p)
(b) Now let $n=3$ and $T^{\prime}=T_{3} \cup\left\{p_{1}^{1}\right\}$, that is, we additionally assume that "the 1 st pigeon sits in the 1 st pigeonhole". Convert T^{\prime} to set representation. (20p)
(c) Show that $T^{\prime} \vdash_{R} \square$. Draw the resolution refutation in the form of a resolution tree. (40p)
(d) Let $T^{*}=T^{\prime} \backslash\left\{\psi_{2}\right\}$ be a theory over \mathbb{P}. Is the theory T^{\prime} a conservative extension of the theory T^{*} ? Justify your answer. (20p)
3. Let $T=\{(\neg p \wedge q) \rightarrow r,(q \rightarrow r) \leftrightarrow p\}$ be a theory over the language $\mathbb{P}=\{p, q, r\}$.
(a) Use the tableau method to find all models of the theory T. (40p)
(b) Axiomatize $M^{\mathbb{P}}(T)$ by a proposition in DNF and also by a proposition in CNF. (20p)
(c) Is T an extension of the theory $S=\{q \rightarrow p\}$ over the language $\{p, q\}$? Is T a conservative extension of S ? Justify your answers. (20p)
(d) Determine the number of mutually inequivalent propositions over \mathbb{P} that are independent in both S and T. Justify your answer. (20p)

