Predicate and Propositional Logic - Seminar 8

Nov 22, 2022

- 1. Determine whether the following holds for every formula φ .
 - (a) $\varphi \models (\forall x)\varphi$
 - (b) $\models \varphi \to (\forall x)\varphi$
 - (c) $\varphi \models (\exists x)\varphi$
 - (d) $\models \varphi \rightarrow (\exists x)\varphi$
- 2. The theory of groups T is of language $L = \langle +, -, 0 \rangle$ with equality where + is a binary function symbol, is a unary function symbol, 0 is a constant symbol, and has it axioms

$$x + (y + z) = (x + y) + z$$

0 + x = x = x + 0
x + (-x) = 0 = (-x) + x

Are the following formulas valid / contradictory / independent in T?

- (a) x + y = y + x
- (b) $x + y = x \rightarrow y = 0$
- (c) $x + y = 0 \rightarrow y = -x$
- (d) -(x+y) = (-y) + (-x)
- 3. Consider a structure $\underline{\mathbb{Z}}_4 = \langle \{0, 1, 2, 3\}, +, -, 0 \rangle$ where + is the binary addition modulo 4 and is the unary function for the *inverse* element of + with respect to the *neutral* element 0.
 - (a) Is \mathbb{Z}_4 a model of the theory T from the previous example (i.e. is it a group)?
 - (b) Determine all substructures $\underline{\mathbb{Z}}_4 \langle a \rangle$ generated by some $a \in \mathbb{Z}_4$.
 - (c) Does $\underline{\mathbb{Z}}_4$ contain also other substructures?
 - (d) Is every substructure of $\underline{\mathbb{Z}}_4$ a model of T?
 - (e) Is every substructure of $\underline{\mathbb{Z}}_4$ elementarily equivalent to $\underline{\mathbb{Z}}_4$?
 - (f) Is every substructure of a *commutative* group (i.e. a group that satisfies also 2(a)) again a commutative group?
- 4. Let $\underline{\mathbb{Q}} = \langle \mathbb{Q}, +, -, \cdot, 0, 1 \rangle$ be the structure of rational numbers with standard operations (thus forming a *field*).
 - (a) Is there a reduct of \mathbb{Q} that is a model of T from the previous exercises?
 - (b) Can we expand the reduct $\langle \mathbb{Q}, \cdot, 1 \rangle$ to a model of T?
 - (c) Does \mathbb{Q} contain a substructure that is not elementary equivalent to \mathbb{Q} ?
 - (d) Let $Th(\underline{\mathbb{Q}})$ denote the set of all sentences that are valid in $\underline{\mathbb{Q}}$. Is $Th(\underline{\mathbb{Q}})$ a complete theory?
- 5. Let $T = \{x = c_1 \lor x = c_2 \lor x = c_3\}$ be a theory of $L = \langle c_1, c_2, c_3 \rangle$ with equality.
 - (a) Is T (semantically) consistent?
 - (b) Are all models of T elementarily equivalent? That is, is T (semantically) complete?
 - (c) Find all simple complete extensions of T.
 - (d) Is a theory $T' = T \cup \{x = c_1 \lor x = c_4\}$ of the language $L = \langle c_1, c_2, c_3, c_4 \rangle$ an extension of T? Is T' a simple extension of T? Is T' a conservative extension of T?

6. Let T' be the extension of $T = \{(\exists y)(x + y = 0), (x + y = 0) \land (x + z = 0) \rightarrow y = z\}$ in $L = \langle +, 0, \leq \rangle$ with equality by definitions of \langle and unary – with axioms

$$\begin{array}{rcl} -x = y & \leftrightarrow & x + y = 0 \\ x < y & \leftrightarrow & x \le y \ \land \ \neg (x = y) \end{array}$$

Find formulas of L that are equivalent in T' to the following formulas.

- (a) x + (-x) = 0
- (b) x + (-y) < x
- (c) -(x+y) < -x
- 7. Consider the following database as a relational structure $\mathcal{D} = \langle D, Movies, Program, c^D \rangle_{c \in D}$ of language $L = \langle F, P, c \rangle_{c \in D}$ with equality where $D = \{$ 'Po strništi bos', 'J. Tříska', 'Mat', '13:15', ... $\}$ and $c^D = c$ for every $c \in D$. Write formulas that define in \mathcal{D} tables of
 - (a) movies in which a director is acting,
 - (b) cinemas and times where and when one can see a movie in which a director is acting,
 - (c) directors that act in movies that are on program in the cinema Mat,
 - (d) actors or directors whose movie is not on a program in any cinema.

Movie	name	director	actor	Program	cinema	name	time
	Lidé z Maringotek	M. Frič	J. Tříska		Světozor	Po strništi bos	13:15
	Po strništi bos	J. Svěrák	Z. Svěrák		Mat	Po strništi bos	16:15
	Po strništi bos	J. Svěrák	J. Tříska		Mat	Lidé z Maringotek	18:30
						•••	•••

- 8. Let $L = \langle F \rangle$ be a language with equality where F is a binary function symbol. Write formulas that define (without parameters) the following sets in the following structures:
 - (a) the interval $(0,\infty)$ in $\mathcal{A} = \langle \mathbb{R}, \cdot \rangle$ where \cdot is the standard multiplication of real numbers,
 - (b) the set $\{(x, 1/x) \mid x \neq 0\}$ in the same structure \mathcal{A} ,
 - (c) the set of all at most one-element subsets of \mathbb{N} in $\mathcal{B} = \langle \mathcal{P}(\mathbb{N}), \cup \rangle$.