Predicate and Propositional Logic - Seminar 8

Nov 22, 2022

1. Determine whether the following holds for every formula φ.
(a) $\varphi \models(\forall x) \varphi$
(b) $\models \varphi \rightarrow(\forall x) \varphi$
(c) $\varphi \models(\exists x) \varphi$
(d) $\models \varphi \rightarrow(\exists x) \varphi$
2. The theory of groups T is of language $L=\langle+,-, 0\rangle$ with equality where + is a binary function symbol, - is a unary function symbol, 0 is a constant symbol, and has it axioms

$$
\begin{aligned}
x+(y+z) & =(x+y)+z \\
0+x & =x=x+0 \\
x+(-x) & =0=(-x)+x
\end{aligned}
$$

Are the following formulas valid / contradictory / independent in T ?
(a) $x+y=y+x$
(b) $x+y=x \rightarrow y=0$
(c) $x+y=0 \rightarrow y=-x$
(d) $-(x+y)=(-y)+(-x)$
3. Consider a structure $\underline{\mathbb{Z}}_{4}=\langle\{0,1,2,3\},+,-, 0\rangle$ where + is the binary addition modulo 4 and - is the unary function for the inverse element of + with respect to the neutral element 0 .
(a) Is \underline{Z}_{4} a model of the theory T from the previous example (i.e. is it a group)?
(b) Determine all substructures $\underline{\mathbb{Z}}_{4}\langle a\rangle$ generated by some $a \in \mathbb{Z}_{4}$.
(c) Does \mathbb{Z}_{4} contain also other substructures?
(d) Is every substructure of $\underline{\mathbb{Z}}_{4}$ a model of T ?
(e) Is every substructure of $\underline{\mathbb{Z}}_{4}$ elementarily equivalent to $\underline{\mathbb{Z}}_{4}$?
(f) Is every substructure of a commutative group (i.e. a group that satisfies also 2(a)) again a commutative group?
4. Let $\underline{\mathbb{Q}}=\langle\mathbb{Q},+,-, \cdot, 0,1\rangle$ be the structure of rational numbers with standard operations (thus forming a field).
(a) Is there a reduct of $\underline{\mathbb{Q}}$ that is a model of T from the previous exercises?
(b) Can we expand the reduct $\langle\mathbb{Q}, \cdot, 1\rangle$ to a model of T ?
(c) Does $\underline{\mathbb{Q}}$ contain a substructure that is not elementary equivalent to $\underline{\mathbb{Q}}$?
(d) Let $\operatorname{Th}(\underline{\mathbb{Q}})$ denote the set of all sentences that are valid in $\underline{\mathbb{Q}}$. Is $T h(\underline{\mathbb{Q}})$ a complete theory?
5. Let $T=\left\{x=c_{1} \vee x=c_{2} \vee x=c_{3}\right\}$ be a theory of $L=\left\langle c_{1}, c_{2}, c_{3}\right\rangle$ with equality.
(a) Is T (semantically) consistent?
(b) Are all models of T elementarily equivalent? That is, is T (semantically) complete?
(c) Find all simple complete extensions of T.
(d) Is a theory $T^{\prime}=T \cup\left\{x=c_{1} \vee x=c_{4}\right\}$ of the language $L=\left\langle c_{1}, c_{2}, c_{3}, c_{4}\right\rangle$ an extension of T ? Is T^{\prime} a simple extension of T ? Is T^{\prime} a conservative extension of T ?
6. Let T^{\prime} be the extension of $T=\{(\exists y)(x+y=0),(x+y=0) \wedge(x+z=0) \rightarrow y=z\}$ in $L=\langle+, 0, \leq\rangle$ with equality by definitions of $<$ and unary - with axioms

$$
\begin{aligned}
-x=y & \leftrightarrow x+y=0 \\
x<y & \leftrightarrow x \leq y \wedge \neg(x=y)
\end{aligned}
$$

Find formulas of L that are equivalent in T^{\prime} to the following formulas.
(a) $x+(-x)=0$
(b) $x+(-y)<x$
(c) $-(x+y)<-x$
7. Consider the following database as a relational structure $\mathcal{D}=\left\langle D \text {, Movies, Program, } c^{D}\right\rangle_{c \in D}$
 and $c^{D}=c$ for every $c \in D$. Write formulas that define in \mathcal{D} tables of
(a) movies in which a director is acting,
(b) cinemas and times where and when one can see a movie in which a director is acting,
(c) directors that act in movies that are on program in the cinema Mat,
(d) actors or directors whose movie is not on a program in any cinema.

Movie	name	director	actor	Program	cinema	name	time
	Lidé z Maringotek	M. Frič	J. Tříska		Světozor	Po strništi bos	13:15
	Po strništi bos	J. Svěrák	Z. Svěrák		Mat	Po strništi bos	16:15
	Po strništi bos	J. Svěrák	J. Tříska		Mat	Lidé z Maringotek	18:30

8. Let $L=\langle F\rangle$ be a language with equality where F is a binary function symbol. Write formulas that define (without parameters) the following sets in the following structures:
(a) the interval $(0, \infty)$ in $\mathcal{A}=\langle\mathbb{R}, \cdot\rangle$ where \cdot is the standard multiplication of real numbers,
(b) the set $\{(x, 1 / x) \mid x \neq 0\}$ in the same structure \mathcal{A},
(c) the set of all at most one-element subsets of \mathbb{N} in $\mathcal{B}=\langle\mathcal{P}(\mathbb{N}), \cup\rangle$.
