Predicate and Propositional Logic - Tutorial 10

Dec 6, 2022

- 1. Assume that
 - (a) all guilty persons are liars,
 - (b) at least one of the accused is also a witness,
 - (c) no witness lies.

Prove by tableau method that not all accused are guilty.

- 2. Let L(x, y) represent that "there is a flight from x to y" and let S(x, y) represent that "there is a connection from x to y". Assume that
 - (a) From Prague you can flight to Bratislava, London and New York, and from New York to Paris,
 - (b) $(\forall x)(\forall y)(L(x,y) \rightarrow L(y,x)),$
 - (c) $(\forall x)(\forall y)(L(x,y) \rightarrow S(x,y)),$
 - (d) $(\forall x)(\forall y)(\forall z)(S(x,y) \land L(y,z) \to S(x,z)).$

Prove by tableau method that there is a connection from Bratislava to Paris.

- 3. Let φ , ψ be sentences or formulas in a free variable x, denoted by $\varphi(x)$, $\psi(x)$. Find tableau proofs of the following formulas.
 - (a) $(\exists x)(\varphi(x) \lor \psi(x)) \leftrightarrow (\exists x)\varphi(x) \lor (\exists x)\psi(x),$
 - (b) $(\forall x)(\varphi(x) \land \psi(x)) \leftrightarrow (\forall x)\varphi(x) \land (\forall x)\psi(x),$
 - (c) $(\varphi \lor (\forall x)\psi(x)) \to (\forall x)(\varphi \lor \psi(x))$ where x is not free in φ ,
 - (d) $(\varphi \land (\exists x)\psi(x)) \rightarrow (\exists x)(\varphi \land \psi(x))$ where x is not free in φ .
 - (e) $(\exists x)(\varphi \to \psi(x)) \to (\varphi \to (\exists x)\psi(x))$ where x is not free in φ ,
 - (f) $(\exists x)(\varphi \land \psi(x)) \to (\varphi \land (\exists x)\psi(x))$ where x is not free in φ ,
 - (g) $(\exists x)(\varphi(x) \to \psi) \to ((\forall x)\varphi(x) \to \psi)$ where x is not free in ψ ,
 - (h) $((\exists x)\varphi(x) \to \psi) \to (\forall x)(\varphi(x) \to \psi)$ where x is not free in ψ .
- 4. Let T^* be a theory with axioms of equality. Prove by tableau method that
 - (a) $T^* \models x = y \rightarrow y = x$ (symmetry of =)
 - (b) $T^* \models (x = y \land y = z) \rightarrow x = z$ (transitivity of =)

Hint: To show (a) apply the axiom of equality (*iii*) for $x_1 = x$, $x_2 = x$, $y_1 = y$ a $y_2 = x$, to show (b) apply (*iii*) for $x_1 = x$, $x_2 = y$, $y_1 = x$ a $y_2 = z$.

5. Let L be a language with equality containing a binary relation symbol \leq and let T be a theory of L such that T has an infinite model and the axioms of linear ordering are valid in T. Applying the compactness theorem show that T has a model \mathcal{A} with an *infinite decreasing chain*; that is, there are elements c_i for every $i \in \mathbb{N}$ in A such that

$$\cdots < c_{n+1} < c_n < \cdots < c_0.$$

(This show that the notion of *well-ordering* is not definable in a first-order language.)