Propositional and Predicate Logic - II

Petr Gregor

KTIML MFF UK

WS 2023/2024

Petr Gregor (KTIML MFF UK) [Propositional and Predicate Logic - II](#page-15-0) WS 2023/2024 1/16

メロメメ 倒 メメ きょくきょう

 $2Q$

画

Semantic notions

A proposition φ over $\mathbb P$ is

- *is true in (satisfied by) an assignment* $v: \mathbb{P} \to \{0, 1\}$, if $\overline{v}(\varphi) = 1$. Then *v* is a *satisfying assignment* for φ , denoted by $v \models \varphi$.
- valid (*a tautology*), if $\overline{v}(\varphi) = 1$ for every $v \colon \mathbb{P} \to \{0, 1\}$, i.e. φ is satisfied by every assignment, denoted by $\models \varphi$.
- *unsatisfiable* (*a contradiction*), if $\overline{v}(\varphi) = 0$ for every $v: \mathbb{P} \to \{0, 1\}$, i.e. $\neg \varphi$ is valid.
- *independent* (*a contingency*), if $\overline{v_1}(\varphi) = 0$ and $\overline{v_2}(\varphi) = 1$ for some $v_1, v_2 \colon \mathbb{P} \to \{0, 1\},$ i.e. φ is neither a tautology nor a contradiction.
- *satisfiable*, if $\overline{v}(\varphi) = 1$ for some $v : \mathbb{P} \to \{0, 1\}$, i.e. φ is not a contradiction.

Propositions φ and ψ are (logically) *equivalent*, denoted by $\varphi \sim \psi$, if $\overline{\nu}(\varphi) = \overline{\nu}(\psi)$ for every $\nu \colon \mathbb{P} \to \{0,1\}$, i.e. the proposition $\varphi \leftrightarrow \psi$ is valid.

KOD KARD KED KEL YOUR

Models

We reformulate these semantic notions in the terminology of models.

A *model of a language* P is a truth assignment of P. The class of all models of P is denoted by $M(\mathbb{P})$. A proposition φ over $\mathbb P$ is

- *true in a model* $v \in M(\mathbb{P})$, if $\overline{v}(\varphi) = 1$. Then *v* is a *model of* φ , denoted by $\nu \models \varphi$ and $M^{\mathbb{P}}(\varphi) = \{ \nu \in M(\mathbb{P}) \mid \nu \models \varphi \}$ is the *class of all models* of φ .
- *valid* (*a tautology*) if it is true in every model of the language, denoted by $\models \varphi$.
- *unsatisfiable* (*a contradiction*) if it does not have a model.
- *independent* (*a contingency*) if it is true in some model and false in other.
- *satisfiable* if it has a model.

Propositions φ and ψ are (logically) *equivalent*, denoted by $\varphi \sim \psi$, if they have same models.

イロト イ何 トイヨ トイヨ トーヨー

Theory

Informally, a theory is a description of "world" to which we restrict ourselves.

- \bullet A propositional *theory* over the language $\mathbb P$ is any set *T* of propositions from $VF_{\mathbb{P}}$. We say that propositions of *T* are *axioms* of the theory *T*.
- A *model of theory T* over $\mathbb P$ is an assignment $v \in M(\mathbb P)$ (i.e. a model of the language) in which all axioms of *T* are true, denoted by $v \models T$.
- A *class of models* of *T* is $M^{\mathbb{P}}(T) = \{ v \in M(\mathbb{P}) \mid v \models \varphi$ for every $\varphi \in T \}.$ For example, for $T = \{p, \neg p \lor \neg q, q \rightarrow r\}$ over $\mathbb{P} = \{p, q, r\}$ we have

$$
M^{\mathbb{P}}(T)=\{(1,0,0),(1,0,1)\}
$$

- If a theory is finite, it can be replaced by a *conjunction* of its axioms.
- We write $M(T, \varphi)$ as a shortcut for $M(T \cup {\varphi})$.

KONKRAKS KRAU

G.

Semantics with respect to a theory

Semantic notions can be defined with respect to a theory, more precisely, with respect to its models. Let *T* be a theory over $\mathbb P$. A proposition φ over $\mathbb P$ is

- *valid in T* (*true in T*) if it is true in every model of *T*, denoted by $T \models \varphi$, We also say that φ is a (semantic) *consequence* of T.
- *unsatisfiable* (*contradictory*) *in T* (*inconsistent with T*) if it is false in every model of *T*,
- *independent (or contingency) in T* if it is true in some model of *T* and false in some other,
- *satisfiable in T* (*consistent with T*) if it is true in some model of *T*.

Propositions φ and ψ are *equivalent in T* (*T*-*equivalent*), denoted by $\varphi \sim_T \psi$, if for every model *v* of *T*, $v \models \varphi$ if and only if $v \models \psi$.

Note If all axioms of a theory *T* are valid (tautologies), e.g. for $T = \emptyset$, then all notions with respect to *T* correspond to the same notions in (pure) logic.

イロメ イ母メ イヨメ イヨメ

Adequacy

The language of propositional logic has *basic* connectives \neg , \wedge , \vee , \rightarrow , \leftrightarrow . In general, we can introduce *n*-ary connective for any Boolean function, e.g.

A set of connectives is *adequate* if every Boolean function can be expressed as a proposition formed from these connectives.

Proposition {¬ , ∧ , ∨} *is adequate. Proof* A function $f: \{0, 1\}^n \to \{0, 1\}$ is expressed by $\bigvee_{v \in f^{-1}[1]} \bigwedge_{i=1}^n p_i^{v(i)}$ *i* where $p_i^{\nu(i)}$ $p_i^{v(t)}$ denotes the proposition p_i if $v(i) = 1$; and $\neg p_i$ if $v(i) = 0$. For $f^{-1}[1] = \emptyset$ we take the proposition \bot .

Proposition {¬ , →} *is adequate. Proof* $(p \wedge q) \sim \neg(p \rightarrow \neg q)$, $(p \vee q) \sim (\neg p \rightarrow q)$. \Box

CNF and DNF

- A *literal* is a propositional letter or its negation. Let *p* ¹ be the literal *p* and let *p* ⁰ be the literal [¬]*p*. Let *^l* denote the *complementary* literal to a literal *^l*.
- A *clause* is a disjunction of literals, by the empty clause we mean ⊥.
- A proposition is in *conjunctive normal form* (*CNF*) if it is a conjunction of clauses. By the empty proposition in CNF we mean \top .
- An *elementary conjunction* is a conjunction of literals, by the empty conjunction we mean ⊤.
- A proposition is in *disjunctive normal form* (*DNF*) if it is a disjunction of elementary conjunctions. By the empty proposition in DNF we mean \perp .

Note A clause or an elementary conjunction is both in CNF and DNF.

Observation *A proposition in CNF is valid if and only if each of its clauses contains a pair of complementary literals. A proposition in DNF is satisfiable if and only if at least one of its elementary conjunctions does not contain a pair of complementary literals.* イロメ イ母メ イヨメ イヨメ QQ

Transformations by tables

Proposition Let $K \subseteq \{0,1\}^{\mathbb{P}}$ where \mathbb{P} is finite and $\overline{K} = \{0,1\}^{\mathbb{P}} \setminus K$. Then $M^{\mathbb{P}}\big(\,\,\bigvee\,$ *v*∈*K* Λ *p*∈P $p^{\nu(p)} \Big) = K = M^{\mathbb{P}} \Big(\begin{array}{c} 1 \end{array}$ *v*∈*K* \setminus *p*∈P $\left(\overline{p^{v(p)}}\right)$

Proof The first equality follows from $w(\bigwedge_{p \in \mathbb{P}} p^{v(p)}) = 1$ if and only if $w = v$. Similarly, the second one follows from $w(\bigvee_{p\in\mathbb{P}}p^{v(p)})=1$ if and only if $w\neq v.$ □

For example, $K = \{(1, 0, 0), (1, 1, 0), (0, 1, 0), (1, 1, 1)\}$ can be modeled by (*p* ∧ ¬*q* ∧ ¬*r*) ∨ (*p* ∧ *q* ∧ ¬*r*) ∨ (¬*p* ∧ *q* ∧ ¬*r*) ∨ (*p* ∧ *q* ∧ *r*) ∼ (*p* ∨ *q* ∨ *r*) ∧ (*p* ∨ *q* ∨ ¬*r*) ∧ (*p* ∨ ¬*q* ∨ ¬*r*) ∧ (¬*p* ∨ *q* ∨ ¬*r*)

Corollary *Every proposition has CNF and DNF equivalents.*

Proof The value of a proposition φ depends only on the assignment of var(φ) which is finite. Hence we can apply the above proposition for $K = M^{\mathbb{P}}(\varphi)$ and $\mathbb{P} = \text{var}(\varphi)$. \Box

Transformations by rules

Proposition *Let* φ ′ *be the proposition obtained from* φ *by replacing some* \bm{o} ccurrences of a subformula ψ with ψ' . If $\psi \sim \psi'$, then $\varphi \sim \varphi'$.

Proof By induction on the structure of the formula. \Box

- (1) $(\varphi \to \psi) \sim (\neg \varphi \vee \psi), \quad (\varphi \leftrightarrow \psi) \sim ((\neg \varphi \vee \psi) \wedge (\neg \psi \vee \varphi))$
- (2) $\neg\neg\varphi \sim \varphi$, $\neg(\varphi \land \psi) \sim (\neg\varphi \lor \neg\psi)$, $\neg(\varphi \lor \psi) \sim (\neg\varphi \land \neg\psi)$
- (3) $(\varphi \vee (\psi \wedge \gamma)) \sim ((\psi \wedge \gamma) \vee \varphi) \sim ((\varphi \vee \psi) \wedge (\varphi \vee \gamma))$

(3)' $(\varphi \wedge (\psi \vee \chi)) \sim ((\psi \vee \chi) \wedge \varphi) \sim ((\varphi \wedge \psi) \vee (\varphi \wedge \chi))$

Proposition *Every proposition can be transformed into CNF / DNF applying* the transformation rules $(1), (2), (3)/(3)'$.

Proof By induction on the structure of the formula. \Box

Proposition Assume that φ contains only ¬, ∧, ∨ and φ* is obtained from φ *by interchanging* ∧ *and* ∨*, and by complementing all literals. Then* ¬φ ∼ φ ∗ .

Proof By induction on the structure of the formula.

KOD KARD KED KEL YOUR

SAT problem and solvers

- Problem SAT: Is φ in CNF satisfiable?
- *Example Is it possible to perfectly cover the chessboard without two diagonally removed corners using the domino tiles?*

We can easily form a propositional formula that is satisfiable, if and only if the answer is yes. Then we can test its satisfiability by a SAT solver.

- **Best SAT solvers: www.satcompetition.org.**
- **SAT solver in the demo: [Glucose](http://www.labri.fr/perso/lsimon/glucose/), CNF format: [DIMACS](http://people.sc.fsu.edu/~jburkardt/data/cnf/cnf.html).**
- *Can all the mathematics be translated into logical formulas?* AI, theorem proving, Peano: *Formulario* (1895-1908), Mizar system
- **•** How can we solve it more *elegantly*? What is our approach based on?

イロト イ母 トイラト イラト

2-SAT

- A proposition in CNF is in *k-CNF* if every its clause has at most *k* literals.
- *k-SAT* is the problem of satisfiability of a given proposition in *k*-CNF.

Although for $k = 3$ it is an NP-complete problem, we show that 2-SAT can be solved in *linear* time (with respect to the length of φ).

We neglect implementation details (computational model, representation in memory) and we use the following fact, see $[{\rm ADS} \; I].$

Proposition *A partition of a directed graph* (*V* , *E*) *to strongly connected components can be found in time* $\mathcal{O}(|V| + |E|)$ *.*

- A directed graph *G* is *strongly connected* if for every two vertices *u* and *v* there are directed paths in *G* both from *u* to *v* and from *v* to *u*.
- A strongly connected *component* of a graph *G* is a maximal strongly connected subgraph of *G*.

イロト イ何 トイヨ トイヨ トーヨー

Implication graphs

An *implication graph* of a proposition φ in 2-CNF is a directed graph G_{φ} s.t.

- vertices are all the propositional letters in φ and their negations,
- a clause $l_1 \vee l_2$ in φ is represented by a pair of edges $\overline{l_1} \rightarrow l_2$, $\overline{l_2} \rightarrow l_1$,
- a clause l_1 in φ is represented by an edge $\overline{l_1} \to l_1$.

p ∧ (¬p ∨ q) ∧ (¬q ∨ ¬r) ∧ (p ∨ r) ∧ (r ∨ ¬s) ∧ (¬p ∨ t) ∧ (q ∨ t) ∧ ¬s ∧ (x ∨ y)

Proposition φ *is satisfiable if and only if no strongly connected component of G*^φ *contains a pair of complementary literals.*

Proof Every satisfying assignment assigns the same value to all the literals in a same component. Thus the implication from left to right holds (necessity).

Satisfying assignment

For the implication from right to left (sufficiency), let G^*_{φ} be the graph obtained from G_{φ} by contracting strongly connected components to single vertices.

Observation G^*_{φ} is acyclic, and therefore has a topological ordering <

- A directed graph is *acyclic* if it is has no directed *cycles*.
- A linear ordering < of vertices of a directed graph is *topological* if *p* < *q* for every edge from *p* to *q*.

Now for every unassigned component in an increasing order by \lt , assign 0 to all its literals and 1 to all literals in the complementary component.

It remains to show that such assignment ν satisfies φ . If not, then G_{φ}^* contains edges $p \rightarrow q$ and $\overline{q} \rightarrow \overline{p}$ with $v(p) = 1$ and $v(q) = 0$. But this contradicts the order of assigning values to components since $p < q$ and $\overline{q} < \overline{p}$. \Box

Corollary 2*-SAT can be solved in a linear time.*

Horn-SAT

- A *unit clause* is a clause containing a single literal,
- a *Horn clause* is a clause containing at most one positive literal,

 $\neg p_1 \vee \cdots \vee \neg p_n \vee q \sim (p_1 \wedge \cdots \wedge p_n) \rightarrow q$

- **•** a *Horn formula* is a conjunction of Horn clauses,
- *Horn-SAT* is the problem of satisfiability of a given Horn formula. **Algorithm**
- (1) *if* φ contains a pair of unit clauses *l* and *l*, then it is not satisfiable,
- (2) *if* φ *contains a unit clause l, then assign* 1 *to l, remove all clauses containing l, remove l from all clauses, and repeat from the start,*
- (3) *if* φ *does not contain a unit clause, then it is satisfied by assigning* 0 *to all remaining propositional variables.*
- Step (2) is called *unit propagation*.

イロト イ何 トイヨ トイヨ トーヨー

Unit propagation

$$
(\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land (\neg r \lor \neg s) \land (\neg t \lor s) \land s \qquad v(s) = 1
$$

$$
(\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land \neg r \qquad v(p) = v(q) = v(t) = 0
$$

Observation Let φ^l be the proposition obtained from φ by unit propagation. *Then* φ^l *is satisfiable if and only if* φ *is satisfiable.*

Corollary *The algorithm is correct (it solves Horn-SAT).*

Proof The correctness in Step (1) is obvious, in Step (2) it follows from the observation, in Step (3) it follows from the *Horn form* since every remaining clause contains at least one negative literal.

Note A direct implementation requires quadratic time, but with an appropriate representation in memory, one can achieve linear time (w.r.t. the length of φ).

イロト イ押ト イヨト イヨトー

DPLL algorithm

A literal *l* is *pure* in a CNF formula φ if *l* occurs in φ and *l* does not occur in φ . **Algorithm DPLL(**φ**)**

- (1) *while* φ *contains a unit clause l, assign* 1 *to l, remove all clauses containing l, remove l from all clauses, and repeat, (unit propagation)*
- (2) *while* φ *contains a pure literal l, assign* 1 *to l, remove all clauses containing l and repeat, (pure literal elimination)*
- (3) *if* φ *contains an empty clause, then it is not satisfiable,*
- (4) *if* φ does not contain any clause, then it is satisfiable,
- (5) *choose an unassigned propositional letter p and run DPLL(* $\varphi \wedge p$ *) and DPLL(* $\varphi \land \neg p$ *). (branching)*

Note The algoritm runs in exponentional time in the worst case. Its correctness is easy to verify.

イロト イ押ト イヨト イヨトー

G.