Propositional and Predicate Logic - II

Petr Gregor

KTIML MFF UK

WS 2023/2024

Semantic notions

A proposition φ over \mathbb{P} is

- is true in (satisfied by) an assignment $v \colon \mathbb{P} \to \{0,1\}$, if $\overline{v}(\varphi) = 1$. Then v is a satisfying assignment for φ , denoted by $v \models \varphi$.
- valid (a tautology), if $\overline{v}(\varphi) = 1$ for every $v \colon \mathbb{P} \to \{0, 1\}$, i.e. φ is satisfied by every assignment, denoted by $\models \varphi$.
- unsatisfiable (a contradiction), if $\overline{v}(\varphi) = 0$ for every $v \colon \mathbb{P} \to \{0,1\}$, i.e. $\neg \varphi$ is valid.
- independent (a contingency), if $\overline{v_1}(\varphi) = 0$ and $\overline{v_2}(\varphi) = 1$ for some $v_1, v_2 \colon \mathbb{P} \to \{0, 1\}$, i.e. φ is neither a tautology nor a contradiction.
- *satisfiable*, if $\overline{v}(\varphi)=1$ for some $v\colon \mathbb{P}\to \{0,1\}$, i.e. φ is not a contradiction.

Propositions φ and ψ are (logically) *equivalent*, denoted by $\varphi \sim \psi$, if $\overline{v}(\varphi) = \overline{v}(\psi)$ for every $v \colon \mathbb{P} \to \{0,1\}$, i.e. the proposition $\varphi \leftrightarrow \psi$ is valid.

Models

We reformulate these semantic notions in the terminology of models.

A *model of a language* \mathbb{P} is a truth assignment of \mathbb{P} . The class of all models of \mathbb{P} is denoted by $M(\mathbb{P})$. A proposition φ over \mathbb{P} is

- true in a model $v \in M(\mathbb{P})$, if $\overline{v}(\varphi) = 1$. Then v is a model of φ , denoted by $v \models \varphi$ and $M^{\mathbb{P}}(\varphi) = \{v \in M(\mathbb{P}) \mid v \models \varphi\}$ is the class of all models of φ .
- *valid* (*a tautology*) if it is true in every model of the language, denoted by $\models \varphi$.
- unsatisfiable (a contradiction) if it does not have a model.
- independent (a contingency) if it is true in some model and false in other.
- satisfiable if it has a model.

Propositions φ and ψ are (logically) *equivalent*, denoted by $\varphi \sim \psi$, if they have same models.

Theory

Informally, a theory is a description of "world" to which we restrict ourselves.

- A propositional *theory* over the language \mathbb{P} is any set T of propositions from $VF_{\mathbb{P}}$. We say that propositions of T are *axioms* of the theory T.
- A *model of theory* T over \mathbb{P} is an assignment $v \in M(\mathbb{P})$ (i.e. a model of the language) in which all axioms of T are true, denoted by $v \models T$.
- A class of models of T is $M^{\mathbb{P}}(T) = \{v \in M(\mathbb{P}) \mid v \models \varphi \text{ for every } \varphi \in T\}$. For example, for $T = \{p, \neg p \lor \neg q, \ q \to r\}$ over $\mathbb{P} = \{p, q, r\}$ we have $M^{\mathbb{P}}(T) = \{(1, 0, 0), (1, 0, 1)\}$
- If a theory is finite, it can be replaced by a *conjunction* of its axioms.
- We write $M(T, \varphi)$ as a shortcut for $M(T \cup \{\varphi\})$.

Semantics with respect to a theory

Semantic notions can be defined with respect to a theory, more precisely, with respect to its models. Let T be a theory over $\mathbb P$. A proposition φ over $\mathbb P$ is

- *valid in T* (*true in T*) if it is true in every model of T, denoted by $T \models \varphi$, We also say that φ is a (semantic) *consequence* of T.
- unsatisfiable (contradictory) in T (inconsistent with T) if it is false in every model of T,
- independent (or contingency) in T if it is true in some model of T and false in some other,
- satisfiable in T (consistent with T) if it is true in some model of T.

Propositions φ and ψ are *equivalent in T* (*T-equivalent*), denoted by $\varphi \sim_T \psi$, if for every model v of T, $v \models \varphi$ if and only if $v \models \psi$.

Note If all axioms of a theory T are valid (tautologies), e.g. for $T = \emptyset$, then all notions with respect to T correspond to the same notions in (pure) logic.

Adequacy

The language of propositional logic has *basic* connectives \neg , \wedge , \vee , \rightarrow , \leftrightarrow . In general, we can introduce *n*-ary connective for any Boolean function, e.g.

$$p\downarrow q$$
 "neither p nor q " (NOR, Peirce arrow) $p\uparrow q$ "not both p and q " (NAND, Sheffer stroke)

A set of connectives is *adequate* if every Boolean function can be expressed as a proposition formed from these connectives.

Proposition $\{\neg, \land, \lor\}$ *is adequate.*

Proof A function
$$f:\{0,1\}^n \to \{0,1\}$$
 is expressed by $\bigvee_{v \in f^{-1}[1]} \bigwedge_{i=1}^n p_i^{v(i)}$

where $p_i^{\nu(i)}$ denotes the proposition p_i if $\nu(i)=1$; and $\neg p_i$ if $\nu(i)=0$.

For
$$f^{-1}[1] = \emptyset$$
 we take the proposition \bot . \Box

Proposition $\{\neg, \rightarrow\}$ *is adequate.*

Proof
$$(p \land q) \sim \neg (p \rightarrow \neg q), \ (p \lor q) \sim (\neg p \rightarrow q).$$

CNF and DNF

- A *literal* is a propositional letter or its negation. Let p^1 be the literal p and let p^0 be the literal $\neg p$. Let \bar{l} denote the *complementary* literal to a literal l.
- A *clause* is a disjunction of literals, by the empty clause we mean \bot .
- A proposition is in conjunctive normal form (CNF) if it is a conjunction of clauses. By the empty proposition in CNF we mean ⊤.
- An elementary conjunction is a conjunction of literals, by the empty conjunction we mean ⊤.
- A proposition is in disjunctive normal form (DNF) if it is a disjunction of elementary conjunctions. By the empty proposition in DNF we mean ⊥.

Note A clause or an elementary conjunction is both in CNF and DNF.

Observation A proposition in CNF is valid if and only if each of its clauses contains a pair of complementary literals. A proposition in DNF is satisfiable if and only if at least one of its elementary conjunctions does not contain a pair of complementary literals.

Transformations by tables

Proposition Let $K \subseteq \{0,1\}^{\mathbb{P}}$ where \mathbb{P} is finite and $\overline{K} = \{0,1\}^{\mathbb{P}} \setminus K$. Then

$$M^{\mathbb{P}}\Big(\bigvee_{v\in K}\bigwedge_{p\in\mathbb{P}}p^{v(p)}\Big)=K=M^{\mathbb{P}}\Big(\bigwedge_{v\in\overline{K}}\bigvee_{p\in\mathbb{P}}\overline{p^{v(p)}}\Big)$$

Proof The first equality follows from $w(\bigwedge_{p\in\mathbb{P}}p^{v(p)})=1$ if and only if w=v. Similarly, the second one follows from $w(\bigvee_{p\in\mathbb{P}}\overline{p^{v(p)}})=1$ if and only if $w\neq v$.

For example, $K = \{(1,0,0), (1,1,0), (0,1,0), (1,1,1)\}$ can be modeled by $(p \wedge \neg q \wedge \neg r) \vee (p \wedge q \wedge \neg r) \vee (\neg p \wedge q \wedge \neg r) \vee (p \wedge q \wedge r) \sim \\ (p \vee q \vee r) \wedge (p \vee q \vee \neg r) \wedge (p \vee \neg q \vee \neg r) \wedge (\neg p \vee q \vee \neg r)$

Corollary Every proposition has CNF and DNF equivalents.

Proof The value of a proposition φ depends only on the assignment of $var(\varphi)$ which is finite. Hence we can apply the above proposition for $K=M^{\mathbb{P}}(\varphi)$ and $\mathbb{P}=var(\varphi)$. \square

Transformations by rules

Proposition Let φ' be the proposition obtained from φ by replacing some occurrences of a subformula ψ with ψ' . If $\psi \sim \psi'$, then $\varphi \sim \varphi'$.

Proof By induction on the structure of the formula.

(1)
$$(\varphi \to \psi) \sim (\neg \varphi \lor \psi)$$
, $(\varphi \leftrightarrow \psi) \sim ((\neg \varphi \lor \psi) \land (\neg \psi \lor \varphi))$

(2)
$$\neg\neg\varphi\sim\varphi$$
, $\neg(\varphi\wedge\psi)\sim(\neg\varphi\vee\neg\psi)$, $\neg(\varphi\vee\psi)\sim(\neg\varphi\wedge\neg\psi)$

(3)
$$(\varphi \lor (\psi \land \chi)) \sim ((\psi \land \chi) \lor \varphi) \sim ((\varphi \lor \psi) \land (\varphi \lor \chi))$$

(3)'
$$(\varphi \land (\psi \lor \chi)) \sim ((\psi \lor \chi) \land \varphi) \sim ((\varphi \land \psi) \lor (\varphi \land \chi))$$

Proposition Every proposition can be transformed into CNF / DNF applying the transformation rules (1), (2), (3)/(3)'.

Proof By induction on the structure of the formula.

Proposition Assume that φ contains only \neg , \wedge , \vee and φ^* is obtained from φ by interchanging \wedge and \vee , and by complementing all literals. Then $\neg \varphi \sim \varphi^*$.

Proof By induction on the structure of the formula.

SAT problem and solvers

- Problem SAT: Is φ in CNF satisfiable?
- Example Is it possible to perfectly cover the chessboard without two diagonally removed corners using the domino tiles?
 - We can easily form a propositional formula that is satisfiable, if and only if the answer is yes. Then we can test its satisfiability by a SAT solver.
- Best SAT solvers: www.satcompetition.org.
- SAT solver in the demo: Glucose, CNF format: DIMACS.
- Can all the mathematics be translated into logical formulas?
 Al, theorem proving, Peano: Formulario (1895-1908), Mizar system
- How can we solve it more elegantly? What is our approach based on?

2-SAT

2-SAT

- A proposition in CNF is in k-CNF if every its clause has at most k literals.
- k-SAT is the problem of satisfiability of a given proposition in k-CNF.

Although for k=3 it is an NP-complete problem, we show that 2-SAT can be solved in *linear* time (with respect to the length of φ).

We neglect implementation details (computational model, representation in memory) and we use the following fact, see [ADS I].

Proposition A partition of a directed graph (V, E) to strongly connected components can be found in time $\mathcal{O}(|V| + |E|)$.

- A directed graph G is strongly connected if for every two vertices u and v there are directed paths in G both from u to v and from v to u.
- A strongly connected component of a graph G is a maximal strongly connected subgraph of G.

Implication graphs

An *implication graph* of a proposition φ in 2-CNF is a directed graph G_{φ} s.t.

- ullet vertices are all the propositional letters in φ and their negations,
- a clause $l_1 \lor l_2$ in φ is represented by a pair of edges $\overline{l_1} \to l_2$, $\overline{l_2} \to l_1$,
- a clause l_1 in φ is represented by an edge $\overline{l_1} \to l_1$.

Proposition φ is satisfiable if and only if no strongly connected component of G_{φ} contains a pair of complementary literals.

Proof Every satisfying assignment assigns the same value to all the literals in a same component. Thus the implication from left to right holds (necessity).

WS 2023/2024

Satisfying assignment

For the implication from right to left (sufficiency), let G_{φ}^* be the graph obtained from G_{φ} by contracting strongly connected components to single vertices.

Observation G_{φ}^* is acyclic, and therefore has a topological ordering <.

- A directed graph is *acyclic* if it is has no directed *cycles*.
- A linear ordering < of vertices of a directed graph is topological if p < q for every edge from p to q.

Now for every unassigned component in an increasing order by <, assign 0 to all its literals and 1 to all literals in the complementary component.

It remains to show that such assignment ν satisfies φ . If not, then G_{φ}^* contains edges $p \to q$ and $\overline{q} \to \overline{p}$ with $\nu(p) = 1$ and $\nu(q) = 0$. But this contradicts the order of assigning values to components since p < q and $\overline{q} < \overline{p}$.

Corollary 2-SAT can be solved in a linear time.

Horn-SAT

- A unit clause is a clause containing a single literal,
- a Horn clause is a clause containing at most one positive literal,

$$\neg p_1 \lor \cdots \lor \neg p_n \lor q \quad \sim \quad (p_1 \land \cdots \land p_n) \to q$$

- a Horn formula is a conjunction of Horn clauses,
- Horn-SAT is the problem of satisfiability of a given Horn formula.

Algorithm

- (1) if φ contains a pair of unit clauses l and \bar{l} , then it is not satisfiable,
- (2) if φ contains a unit clause l, then assign 1 to l, remove all clauses containing l, remove \bar{l} from all clauses, and repeat from the start,
- (3) if φ does not contain a unit clause, then it is satisfied by assigning 0 to all remaining propositional variables.

Step (2) is called *unit propagation*.

Unit propagation

$$\begin{array}{lll} (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land (\neg r \lor \neg s) \land (\neg t \lor s) \land s & \nu(s) = 1 \\ (\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land \neg r & \nu(\neg r) = 1 \\ (\neg p \lor q) \land (\neg p \lor \neg q) & \nu(p) = \nu(q) = \nu(t) = 0 \end{array}$$

Observation Let φ^l be the proposition obtained from φ by unit propagation. Then φ^l is satisfiable if and only if φ is satisfiable.

Corollary The algorithm is correct (it solves Horn-SAT).

Proof The correctness in Step (1) is obvious, in Step (2) it follows from the observation, in Step (3) it follows from the **Horn form** since every remaining clause contains at least one negative literal.

Note A direct implementation requires quadratic time, but with an appropriate representation in memory, one can achieve linear time (w.r.t. the length of φ).

DPLL algorithm

A literal l is *pure* in a CNF formula φ if l occurs in φ and l does not occur in φ .

Algorithm DPLL(φ)

- (1) while φ contains a unit clause l, assign 1 to l, remove all clauses containing l, remove \bar{l} from all clauses, and repeat, (unit propagation)
- (2) while φ contains a pure literal l, assign 1 to l, remove all clauses containing l and repeat, (pure literal elimination)
- (3) if φ contains an empty clause, then it is not satisfiable,
- (4) if φ does not contain any clause, then it is satisfiable,
- (5) choose an unassigned propositional letter p and run DPLL($\varphi \land p$) and DPLL($\varphi \land \neg p$). (branching)

Note The algoritm runs in exponentional time in the worst case. Its correctness is easy to verify.

