Propositional and Predicate Logic - V

Petr Gregor

KTIML MFF UK

Compactness theorem

Theorem A theory T has a model iff every finite subset of T has a model.

Proof 1 The implication from left to right is obvious. If *T* has no model, then it is inconsistent, i.e. \perp is provable by a systematic tableau τ from T. Since τ is finite, \perp is provable from some finite $T' \subseteq T$, i.e. T' has no model.

Remark This proof is based on finiteness of proofs, soundness and completeness. We present an alternative proof (applying König's lemma).

Proof 2 Let $T = \{ \varphi_i \mid i \in \mathbb{N} \}$. Consider a tree S on (certain) finite binary strings σ ordered by being a prefix. We put $\sigma \in S$ if and only if there exists an assignment ν with prefix σ such that $\nu \models \varphi_i$ for every $i \leq lth(\sigma)$.

Observation S has an infinite branch if and only if T has a model.

Since $\{\varphi_i \mid i \in n\} \subseteq T$ has a model for every $n \in \mathbb{N}$, every level in S is nonempty. Thus S is infinite and moreover binary, hence by König's lemma, S contains an infinite branch.

Application of compactness

A graph (V,E) is $\emph{k-colorable}$ if there exists $c\colon V\to\{1,\ldots,k\}$ such that $c(u)\neq c(v)$ for every edge $\{u,v\}\in E$.

Theorem A countably infinite graph G = (V, E) is k-colorable if and only if every finite subgraph of G is k-colorable.

Proof The implication \Rightarrow is obvious. Assume that every finite subgraph of G is k-colorable. Consider $\mathbb{P} = \{p_{u,i} \mid u \in V, 1 \leq i \leq k\}$ and a theory T with axioms

$$egin{aligned} p_{u,1} ee \cdots ee p_{u,k} & & & & & & \text{for every } u \in V, \\ \neg (p_{u,i} \wedge p_{u,j}) & & & & & \text{for every } u \in V, i < j \leq k, \\ \neg (p_{u,i} \wedge p_{v,i}) & & & & \text{for every } \{u,v\} \in E, i \leq k. \end{aligned}$$

Then G is k-colorable if and only if T has a model. By compactness, it suffices to show that every finite $T' \subseteq T$ has a model. Let G' be the subgraph of G induced by vertices u such that $p_{u,i}$ appears in T' for some i. Since G' is k-colorable by the assumption, the theory T' has a model. \square

Resolution method - introduction

Main features of the resolution method (informally)

- is the underlying method of many systems, e.g. Prolog interpreters, SAT solvers, automated deduction / verification systems, . . .
- assumes input formulas in CNF (in general, "expensive" transformation),
- works under set representation (clausal form) of formulas,
- has a single rule, so called a resolution rule,
- has no explicit axioms (or atomic tableaux), but certain axioms are incorporated "inside" via various formatting rules,
- is a refutation procedure, similarly as the tableau method; that is, it tries
 to show that a given formula (or theory) is unsatisfiable,
- has several refinements e.g. with specific conditions on when the resolution rule may be applied.

Set representation (clausal form) of CNF formulas

- A *literal* l is a prop. letter or its negation. \bar{l} is its *complementary* literal.
- A clause C is a finite set of literals ("forming disjunction"). The empty clause, denoted by □, is never satisfied (has no satisfied literal).
- A formula S is a (possibly infinite) set of clauses ("forming conjunction").
 An empty formula ∅ is always satisfied (is has no unsatisfied clause).
 Infinite formulas represent infinite theories (as conjunction of axioms).
- A (partial) assignment V is a consistent set of literals, i.e. not containing
 any pair of complementary literals. An assignment V is total if it contains
 a positive or negative literal for each propositional letter.
- V satisfies S, denoted by $V \models S$, if $C \cap V \neq \emptyset$ for every $C \in S$.

$$((\neg p \lor q) \land (\neg p \lor \neg q \lor r) \land (\neg r \lor \neg s) \land (\neg t \lor s) \land s) \text{ is represented by } \\ S = \{\{\neg p, q\}, \{\neg p, \neg q, r\}, \{\neg r, \neg s\}, \{\neg t, s\}, \{s\}\} \text{ and } \\ \mathcal{V} \models S \text{ for } \mathcal{V} = \{s, \neg r, \neg p\}$$

Resolution rule

Let C_1 , C_2 be clauses with $l \in C_1$, $\bar{l} \in C_2$ for some literal l. Then from C_1 and C_2 infer through the literal l the clause C, called a *resolvent*, where

$$C = (C_1 \setminus \{l\}) \cup (C_2 \setminus \{\bar{l}\}).$$

Equivalently, if \sqcup means union of disjoint sets,

$$\frac{C_1' \sqcup \{l\}, C_2' \sqcup \{\bar{l}\}}{C_1' \cup C_2'}$$

For example, from $\{p,q,r\}$ and $\{\neg p, \neg q\}$ we can infer $\{q, \neg q, r\}$ or $\{p, \neg p, r\}$.

Observation The resolution rule is sound; that is, for every assignment V

$$\mathcal{V} \models C_1 \text{ and } \mathcal{V} \models C_2 \Rightarrow \mathcal{V} \models C.$$

Remark The resolution rule is a special case of the (so called) cut rule

$$\frac{\varphi \vee \psi, \ \neg \varphi \vee \chi}{\psi \vee \chi}$$

where φ , ψ , χ are arbitrary formulas.

Resolution proof

- A resolution proof of a clause C from a formula S is a finite sequence $C_0, \ldots, C_n = C$ such that for every $i \leq n, C_i \in S$ or C_i is a resolvent of some previous clauses.
- a clause C is (resolution) provable from S, denoted by $S \vdash_R C$, if it has a resolution proof from S,
- a (resolution) *refutation* of formula S is a resolution proof of \square from S,
- *S* is (resolution) *refutable* if $S \vdash_R \square$.

Theorem (soundness) If S is resolution refutable, then S is unsatisfiable.

Proof Let $S \vdash_R \Box$. If it was $\mathcal{V} \models S$ for some assignment \mathcal{V} , from the soundness of the resolution rule we would have $\mathcal{V} \models \square$, which is impossible.

Resolution trees and closures

A *resolution tree* of a clause C from formula S is finite binary tree with nodes labeled by clauses so that

- (i) the root is labeled C,
- (ii) the leaves are labeled with clauses from S,
- (iii) every inner node is labeled with a resolvent of the clauses in his sons.

Observation C has a resolution tree from S if and only if $S \vdash_R C$.

A *resolution closure* $\mathcal{R}(S)$ of a formula S is the smallest set satisfying

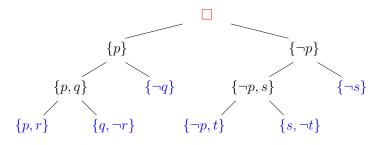
- (i) $C \in \mathcal{R}(S)$ for every $C \in S$,
- (ii) if $C_1, C_2 \in \mathcal{R}(S)$ and C is a resolvent of C_1, C_2 , then $C \in \mathcal{R}(S)$.

Observation $C \in \mathcal{R}(S)$ if and only if $S \vdash_R C$.

Remark All notions on resolution proofs can therefore be equivalently introduced in terms of resolution trees or resolution closures.

Example

Formula $((p \lor r) \land (q \lor \neg r) \land (\neg q) \land (\neg p \lor t) \land (\neg s) \land (s \lor \neg t))$ is unsatisfiable since for $S = \{\{p,r\}, \{q,\neg r\}, \{\neg q\}, \{\neg p,t\}, \{\neg s\}, \{s,\neg t\}\}$ we have $S \vdash_R \Box$.



The resolution closure of *S* (the closure of *S* under resolution) is

$$\mathcal{R}(S) = \{ \{p, r\}, \{q, \neg r\}, \{\neg q\}, \{\neg p, t\}, \{\neg s\}, \{s, \neg t\}, \{p, q\}, \{\neg r\}, \{r, t\}, \{q, t\}, \{\neg t\}, \{\neg p, s\}, \{r, s\}, \{t\}, \{q\}, \{q, s\}, \Box, \{\neg p\}, \{p\}, \{r\}, \{s\}\}.$$

Reduction by substitution

Let *S* be a formula and *l* be a literal. Let us define

$$S^l = \{C \setminus \{\bar{l}\} \mid l \notin C \in S\}.$$

Observation

- S^l is equivalent to a formula obtained from S by substituting the constant \top (true, 1) for all literals l and the constant \bot (false, 0) for all literals \bar{l} in S,
- Neither l nor \bar{l} occurs in (the clauses of) S^l .
- if $\{\bar{l}\} \in S$, then $\square \in S^l$.

Lemma *S* is satisfiable if and only if S^l or $S^{\bar{l}}$ is satisfiable.

Proof (\Rightarrow) Let $V \models S$ for some V and assume (w.l.o.g.) that $\bar{l} \notin V$.

- Then $\mathcal{V} \models S^l$ as for $l \notin C \in S$ we have $\mathcal{V} \setminus \{l, \overline{l}\} \models C$ and thus $\mathcal{V} \models C \setminus \{\overline{l}\}$.
- On the other hand (\Leftarrow), assume (w.l.o.g.) that $\mathcal{V} \models S^l$ for some \mathcal{V} .
- Since neither l nor \bar{l} occurs in S^l , we have $\mathcal{V}' \models S^l$ for $\mathcal{V}' = (\mathcal{V} \setminus \{\bar{l}\}) \cup \{l\}$.
- Then $\mathcal{V}' \models S$ since for $C \in S$ containing l we have $l \in \mathcal{V}'$ and for $C \in S$ not containing l we have $\mathcal{V}' \models (C \setminus \{\overline{l}\}) \in S^l$.

Tree of reductions

Step by step reductions of literals can be represented in a binary tree.

$$S = \{\{p\}, \{\neg q\}, \{\neg p, \neg q\}\}$$

$$S^p = \{\{\neg q\}\}$$

$$S^{p\overline{q}} = \{\Box\}$$

$$S^{p\overline{q}} = \emptyset$$

Corollary *S* is unsatisfiable if and only if every branch contains \square .

Remarks Since S can be infinite over a countable language, this tree can be infinite. However, if S is unsatisfiable, by the compactness theorem there is a finite $S' \subseteq S$ that is unsatisfiable. Thus after reduction of all literals occurring in S', there will be \square in every branch after finitely many steps.

(Refutation) completeness of resolution

Theorem If a finite S is unsatisfiable, it is resolution refutable, i.e. $S \vdash_R \Box$.

Proof By induction on the number of variables in S we show that $S \vdash_R \square$.

- If unsatisfiable S has no variable, it is $S = \{\Box\}$ and thus $S \vdash_R \Box$,
- ullet Let l be a literal occurring in S. By Lemma, S^l and S^l are unsatisfiable.
- Since S^l and $S^{\overline{l}}$ have less variables than S, by induction there exist resolution trees T^l and $T^{\overline{l}}$ for derivation of \square from S^l resp. $S^{\overline{l}}$.
- If every leaf of T^l is in S, then T^l is a resolution tree of \square from S, $S \vdash_R \square$.
- Otherwise, by appending the literal \bar{l} to every leaf of T^l that is not in S, (and to all predecessors) we obtain a resolution tree of $\{\bar{l}\}$ from S.
- Similarly, we get a resolution tree $\{l\}$ from S by appending l in the tree $T^{\bar{l}}$.
- By resolution of roots $\{\bar{l}\}$ and $\{l\}$ we get a resolution tree of \square from S.

Corollary *If* S *is unsatisfiable, it is resolution refutable, i.e.* $S \vdash_R \Box$.

Proof Follows from the previous theorem by applying compactness.

Linear resolution - introduction

The resolution method can be significantly refined.

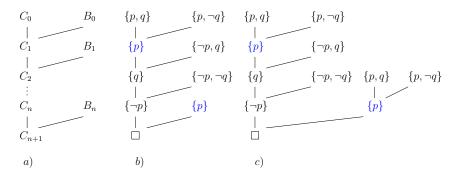
- A *linear proof* of a clause C from a formula S is a finite sequence of pairs $(C_0, B_0), \ldots, (C_n, B_n)$ such that $C_0 \in S$ and for every $i \leq n$
 - *i*) $B_i \in S$ or $B_i = C_i$ for some j < i, and
 - *ii*) C_{i+1} is a resolvent of C_i and B_i where $C_{n+1} = C$.
- C_0 is called a *starting* clause, C_i a *central* clause, B_i a *side* clause.
- C is linearly provable from S, $S \vdash_I C$, if it has a linear proof from S.
- A *linear refutation* of S is a linear proof of \square from S.
- *S* is *linearly refutable* if $S \vdash_L \Box$.

Observation (soundness) If S is linearly refutable, it is unsatisfiable.

Proof Every linear proof can be transformed to a (general) resolution proof.

Remark The completeness is preserved as well (proof omitted here).

Example of linear resolution



- a) a general form of linear resolution,
- b) for $S = \{\{p,q\}, \{p, \neg q\}, \{\neg p, q\}, \{\neg p, \neg q\}\}$ we have $S \vdash_L \Box$,
- c) a transformation of a linear proof to a (general) resolution proof.

LI-resolution

Linear resolution can be further refined for Horn formulas as follows.

- a Horn clause is a clause containing at most one positive literal,
- a Horn formula is a (possibly infinite) set of Horn clauses,
- a *fact* is a (Horn) clause $\{p\}$ where p is a positive literal,
- a rule is a (Horn) clause with exactly one positive literal and at least one negative literal. Rules and facts are program clauses,
- a goal is a nonempty (Horn) clause with only negative literals.

Observation If a Horn formula S is unsatisfiable and $\square \notin S$, it contains some fact and some goal.

Proof If S does not contain any fact (goal), it is satisfied by the assignment of all propositional variables to 0 (resp. to 1).

A *linear input resolution* (*LI-resolution*) from a formula S is a linear resolution from S in which every side clause B_i is from the (input) formula S. We write $S \vdash_{LI} C$ to denote that C is provable by LI-resolution from S.

Completeness of LI-resolution for Horn formulas

Theorem If T is satisfiable Horn formula but $T \cup \{G\}$ is unsatisfiable for some goal G, then \square has a LI-resolution from $T \cup \{G\}$ with starting clause G.

Proof By the compactness theorem we may assume that *T* is finite.

- We proceed by induction on the number of variables in T.
- By Observation, T contains a fact {p} for some variable p.
- By Lemma, $T' = (T \cup \{G\})^p = T^p \cup \{G^p\}$ is unsatisfiable where $G^p = G \setminus \{\overline{p}\}.$
- If $G^p = \square$, we have $G = \{\overline{p}\}$ and thus \square is a resolvent of G and $\{p\} \in T$.
- Otherwise, since T^p is satisfiable (by the assignment satisfying T) and has less variables than T, by induction assumption, there is an LI-resolution of \square from T' starting with G^p .
- By appending the literal \overline{p} to all leaves that are not in $T \cup \{G\}$ (and nodes below) we obtain an LI-resolution of $\{\overline{p}\}\$ from $T \cup \{G\}$ that starts with G.
- By an additional resolution step with the fact $\{p\} \in T$ we resolve \square .

Example of LI-resolution

$$T = \{\{p, \neg r, \neg s\}, \{r, \neg q\}, \{q, \neg s\}, \{s\}\}, \qquad G = \{\neg p, \neg q\}$$

$$T^s = \{\{p, \neg r\}, \{r, \neg q\}, \{q\}\}\}$$

 $T^{sq} = \{\{p, \neg r\}, \{r\}\}$

$$T^{sqr}, G^{sqr} \vdash_{LI} \square$$

$$T^{sq}, G^{sq} \vdash_{LI} \square$$
 $T^s, G^s \vdash_{LI} \square$

$$T^s, G^s \vdash_{LI}$$

$$G = \{\neg p, \neg q\} \quad \{p, \neg r, \neg s\}$$

$$| \qquad \qquad | \qquad \qquad |$$

$$G^s = \{\neg p, \neg q\} \quad \{p, \neg r\} \quad \{\neg q, \neg r, \neg s\} \quad \{r, \neg q\}$$

$$T^{sqr} = \{\{p\}\} \qquad G^{sq} = \{\neg p\} \quad \{p, \neg r\} \qquad \{\neg q, \neg r\} \quad \{r, \neg q\} \qquad \{\neg q, \neg s\} \quad \{q, \neg s\}$$

$$G^{sqr} = \{\neg p\} \quad \{p\} \qquad \{\neg r\} \quad \{r\} \qquad \{\neg q\} \qquad \{q\} \qquad \{\neg s\} \qquad \{s\} \qquad$$

Program in Prolog

A (propositional) *program* (in Prolog) is a Horn formula containing only program clauses, i.e. facts or rules.

$$\begin{array}{llll} a \ rule & p := q, r. & q \land r \rightarrow p & \{p, \neg q, \neg r\} \\ & p := s. & s \rightarrow p & \{p, \neg s\} \\ & q := s. & s \rightarrow q & \{q, \neg s\} \\ a \ fact & r. & r & \{r\} \\ & s. & s & \{s\} & a \ program \\ \hline a \ query & ?= p, q. & \{\neg p, \neg q\} & a \ qoal \end{array}$$

We would like to know whether a given query follows from a given program.

Corollary For every program P and query $(p_1 \wedge \ldots \wedge p_n)$ it is equivalent that

- (1) $P \models p_1 \wedge \ldots \wedge p_n$,
- (2) $P \cup \{\neg p_1, \dots, \neg p_n\}$ is unsatisfiable,
- (3) \square has LI-resolution from $P \cup \{G\}$ starting by goal $G = \{\neg p_1, \dots, \neg p_n\}$.

3--- (**F**1) / **Fn**)

Hilbert's calculus

- basic connectives: ¬, → (others can be defined from them)
- logical axioms (schemes of axioms):

(i)
$$\varphi \to (\psi \to \varphi)$$

$$(ii) \hspace{0.5cm} (\varphi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi))$$

(iii)
$$(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$$

where φ , ψ , χ are any propositions (of a given language).

a rule of inference:

$$\frac{\varphi, \ \varphi \to \psi}{\psi} \qquad \text{(modus ponens)}$$

A proof (in Hilbert-style) of a formula φ from a theory T is a finite sequence $\varphi_0, \ldots, \varphi_n = \varphi$ of formulas such that for every $i \leq n$

- φ_i is a logical axiom or $\varphi_i \in T$ (an axiom of the theory), or
- φ_i can be inferred from the previous formulas applying a rule of inference.

Remark Choice of axioms and inference rules differs in various Hilbert-style proof systems. ◆ロ > ◆部 > ◆き > ◆き > き め Q (*) $\neg \varphi \rightarrow (\neg \psi \rightarrow \neg \varphi)$

Example and soundness

A formula φ is *provable* from T if it has a proof from T, denoted by $T \vdash_H \varphi$. If $T = \emptyset$, we write $\vdash_H \varphi$. E.g. for $T = \{ \neg \varphi \}$ we have $T \vdash_H \varphi \to \psi$ for every ψ .

- 1)
 - an axiom of T
- $\neg \psi \rightarrow \neg \varphi$ 3)

by modus ponens from 1), 2)

a logical axiom (i)

 $(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$ 4)

a logical axiom (iii)

5) $\varphi \to \psi$

by modus ponens from 3), 4)

Theorem For every theory T and formula φ , $T \vdash_H \varphi \Rightarrow T \models \varphi$.

Proof

- If φ is an axiom (logical or from T), then $T \models \varphi$ (I. axioms are tautologies),
- if $T \models \varphi$ and $T \models \varphi \rightarrow \psi$, then $T \models \psi$, i.e. modus ponens is sound,
- thus every formula in a proof from T is valid in T.

Remark The completeness holds as well, i.e. $T \models \varphi \Rightarrow T \vdash_H \varphi$.

