
Propositional and Predicate Logic - V

Petr Gregor

KTIML MFF UK

WS 2023/2024

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2023/2024 1 / 20

Tableau method Compactness

Compactness theorem
Theorem A theory T has a model iff every finite subset of T has a model.

Proof 1 The implication from left to right is obvious. If T has no model, then
it is inconsistent, i.e. ⊥ is provable by a systematic tableau τ from T . Since τ
is finite, ⊥ is provable from some finite T ′ ⊆ T , i.e. T ′ has no model.

Remark This proof is based on finiteness of proofs, soundness and
completeness. We present an alternative proof (applying König’s lemma).

Proof 2 Let T = {φi | i ∈ N}. Consider a tree S on (certain) finite binary
strings σ ordered by being a prefix. We put σ ∈ S if and only if there exists
an assignment v with prefix σ such that v |= φi for every i ≤ lth(σ).

Observation S has an infinite branch if and only if T has a model.

Since {φi | i ∈ n} ⊆ T has a model for every n ∈ N, every level in S is
nonempty. Thus S is infinite and moreover binary, hence by König’s lemma,
S contains an infinite branch.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2023/2024 2 / 20

Tableau method Compactness

Application of compactness
A graph (V ,E) is k-colorable if there exists c : V → {1, . . . , k} such that
c(u) ̸= c(v) for every edge {u, v} ∈ E .

Theorem A countably infinite graph G = (V ,E) is k-colorable if and only if
every finite subgraph of G is k-colorable.

Proof The implication ⇒ is obvious. Assume that every finite subgraph of G

is k-colorable. Consider P = {pu,i | u ∈ V , 1 ≤ i ≤ k} and a theory T with
axioms

pu,1 ∨ · · · ∨ pu,k for every u ∈ V ,

¬(pu,i ∧ pu,j) for every u ∈ V , i < j ≤ k,

¬(pu,i ∧ pv,i) for every {u, v} ∈ E , i ≤ k.

Then G is k-colorable if and only if T has a model. By compactness, it
suffices to show that every finite T ′ ⊆ T has a model. Let G′ be the subgraph
of G induced by vertices u such that pu,i appears in T ′ for some i. Since G′ is
k-colorable by the assumption, the theory T ′ has a model.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2023/2024 3 / 20

Resolution method Introduction

Resolution method - introduction

Main features of the resolution method (informally)

is the underlying method of many systems, e.g. Prolog interpreters, SAT
solvers, automated deduction / verification systems, . . .

assumes input formulas in CNF (in general, “expensive” transformation),

works under set representation (clausal form) of formulas,

has a single rule, so called a resolution rule,

has no explicit axioms (or atomic tableaux), but certain axioms are
incorporated “inside” via various formatting rules,

is a refutation procedure, similarly as the tableau method; that is, it tries
to show that a given formula (or theory) is unsatisfiable,

has several refinements e.g. with specific conditions on when the
resolution rule may be applied.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2023/2024 4 / 20

Resolution method Introduction

Set representation (clausal form) of CNF formulas
A literal l is a prop. letter or its negation. l is its complementary literal.

A clause C is a finite set of literals (“forming disjunction”). The empty
clause, denoted by □, is never satisfied (has no satisfied literal).

A formula S is a (possibly infinite) set of clauses (“forming conjunction”).
An empty formula ∅ is always satisfied (is has no unsatisfied clause).
Infinite formulas represent infinite theories (as conjunction of axioms).

A (partial) assignment V is a consistent set of literals, i.e. not containing
any pair of complementary literals. An assignment V is total if it contains
a positive or negative literal for each propositional letter.

V satisfies S, denoted by V |= S, if C ∩ V ̸= ∅ for every C ∈ S.

((¬p ∨ q) ∧ (¬p ∨ ¬q ∨ r) ∧ (¬r ∨ ¬s) ∧ (¬t ∨ s) ∧ s) is represented by

S = {{¬p,q}, {¬p,¬q, r}, {¬r,¬s}, {¬t , s}, {s}} and
V |= S for V = {s,¬r,¬p}

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2023/2024 5 / 20

Resolution method Introduction

Resolution rule
Let C1, C2 be clauses with l ∈ C1, l ∈ C2 for some literal l. Then from C1 and
C2 infer through the literal l the clause C , called a resolvent, where

C = (C1 \ {l}) ∪ (C2 \ {l}).
Equivalently, if ⊔ means union of disjoint sets,

C ′
1 ⊔ {l},C ′

2 ⊔ {l}
C ′

1 ∪ C ′
2

For example, from {p,q, r} and {¬p,¬q} we can infer {q,¬q, r} or {p,¬p, r}.

Observation The resolution rule is sound; that is, for every assignment V
V |= C1 and V |= C2 ⇒ V |= C .

Remark The resolution rule is a special case of the (so called) cut rule
φ ∨ ψ, ¬φ ∨ χ

ψ ∨ χ
where φ, ψ, χ are arbitrary formulas.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2023/2024 6 / 20

Resolution method Introduction

Resolution proof

A resolution proof of a clause C from a formula S is a finite sequence
C0, . . . ,Cn = C such that for every i ≤ n, Ci ∈ S or Ci is a resolvent
of some previous clauses,

a clause C is (resolution) provable from S, denoted by S ⊢R C , if it has
a resolution proof from S,

a (resolution) refutation of formula S is a resolution proof of □ from S,

S is (resolution) refutable if S ⊢R □.

Theorem (soundness) If S is resolution refutable, then S is unsatisfiable.

Proof Let S ⊢R □. If it was V |= S for some assignment V, from the soundness
of the resolution rule we would have V |= □, which is impossible.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2023/2024 7 / 20

Resolution method Introduction

Resolution trees and closures
A resolution tree of a clause C from formula S is finite binary tree with nodes
labeled by clauses so that
(i) the root is labeled C ,

(ii) the leaves are labeled with clauses from S,

(iii) every inner node is labeled with a resolvent of the clauses in his sons.

Observation C has a resolution tree from S if and only if S ⊢R C .

A resolution closure R(S) of a formula S is the smallest set satisfying
(i) C ∈ R(S) for every C ∈ S,

(ii) if C1,C2 ∈ R(S) and C is a resolvent of C1, C2, then C ∈ R(S).

Observation C ∈ R(S) if and only if S ⊢R C .

Remark All notions on resolution proofs can therefore be equivalently
introduced in terms of resolution trees or resolution closures.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2023/2024 8 / 20

Resolution method Introduction

Example
Formula ((p ∨ r)∧ (q ∨¬r)∧ (¬q)∧ (¬p ∨ t)∧ (¬s)∧ (s ∨¬t)) is unsatisfiable
since for S = {{p, r}, {q,¬r}, {¬q}, {¬p, t}, {¬s}, {s,¬t}} we have S ⊢R □.

{¬q}

{p}

{p, q}

{q,¬r}{p, r} {¬p, t}

{¬p}

{¬p, s} {¬s}

{s,¬t}

The resolution closure of S (the closure of S under resolution) is

R(S) = {{p, r}, {q,¬r}, {¬q}, {¬p, t}, {¬s}, {s,¬t}, {p,q}, {¬r}, {r, t},
{q, t}, {¬t}, {¬p, s}, {r, s}, {t}, {q}, {q, s},□, {¬p}, {p}, {r}, {s}}.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2023/2024 9 / 20

Resolution method Completeness

Reduction by substitution
Let S be a formula and l be a literal. Let us define

Sl = {C \ {l} | l /∈ C ∈ S}.
Observation

Sl is equivalent to a formula obtained from S by substituting the constant
⊤ (true, 1) for all literals l and the constant ⊥ (false, 0) for all literals l in S,
Neither l nor l occurs in (the clauses of) Sl .
if {l} ∈ S, then □ ∈ Sl .

Lemma S is satisfiable if and only if Sl or Sl is satisfiable.

Proof (⇒) Let V |= S for some V and assume (w.l.o.g.) that l /∈ V.
Then V |= Sl as for l /∈ C ∈ S we have V \{l, l} |= C and thus V |= C \ {l}.
On the other hand (⇐), assume (w.l.o.g.) that V |= Sl for some V.
Since neither l nor l occurs in Sl , we have V ′ |= Sl for V ′ = (V \ {l})∪ {l}.
Then V ′ |= S since for C ∈ S containing l we have l ∈ V ′ and for C ∈ S
not containing l we have V ′ |= (C \ {l}) ∈ Sl .

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2023/2024 10 / 20

Resolution method Completeness

Tree of reductions

Step by step reductions of literals can be represented in a binary tree.

Spq = ∅

Sp = {{¬q}}

Spq = { }

Sp = { , {¬q}}

S = {{p}, {¬q}, {¬p,¬q}}

Corollary S is unsatisfiable if and only if every branch contains □.

Remarks Since S can be infinite over a countable language, this tree can be
infinite. However, if S is unsatisfiable, by the compactness theorem there is a
finite S′ ⊆ S that is unsatisfiable. Thus after reduction of all literals occurring
in S′, there will be □ in every branch after finitely many steps.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2023/2024 11 / 20

Resolution method Completeness

(Refutation) completeness of resolution
Theorem If a finite S is unsatisfiable, it is resolution refutable, i.e. S ⊢R □.

Proof By induction on the number of variables in S we show that S ⊢R □.
If unsatisfiable S has no variable, it is S = {□} and thus S ⊢R □,

Let l be a literal occurring in S. By Lemma, Sl and Sl are unsatisfiable.

Since Sl and Sl have less variables than S, by induction there exist
resolution trees T l and T l for derivation of □ from Sl resp. Sl .
If every leaf of T l is in S, then T l is a resolution tree of □ from S, S ⊢R □.
Otherwise, by appending the literal l to every leaf of T l that is not in S,
(and to all predecessors) we obtain a resolution tree of {l} from S.

Similarly, we get a resolution tree {l} from S by appending l in the tree T l .
By resolution of roots {l} and {l} we get a resolution tree of □ from S.

Corollary If S is unsatisfiable, it is resolution refutable, i.e. S ⊢R □.

Proof Follows from the previous theorem by applying compactness.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2023/2024 12 / 20

Linear resolution Introduction

Linear resolution - introduction
The resolution method can be significantly refined.

A linear proof of a clause C from a formula S is a finite sequence
of pairs (C0,B0), . . . , (Cn,Bn) such that C0 ∈ S and for every i ≤ n

i) Bi ∈ S or Bi = Cj for some j < i, and

ii) Ci+1 is a resolvent of Ci and Bi where Cn+1 = C .

C0 is called a starting clause, Ci a central clause, Bi a side clause.

C is linearly provable from S, S ⊢L C , if it has a linear proof from S.

A linear refutation of S is a linear proof of □ from S.

S is linearly refutable if S ⊢L □.

Observation (soundness) If S is linearly refutable, it is unsatisfiable.

Proof Every linear proof can be transformed to a (general) resolution proof.

Remark The completeness is preserved as well (proof omitted here).

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2023/2024 13 / 20

Linear resolution Introduction

Example of linear resolution

B0C0 {p,¬q}{p, q}

{q} {¬p,¬q}

{¬p}

{¬p, q}{p}

{p}

C1

C2

Cn

Cn+1

B1

Bn

a) b)

{p,¬q}{p, q}

{q} {¬p,¬q}

{¬p}

{¬p, q}{p}

c)

{p,¬q}{p, q}

{p}

a) a general form of linear resolution,

b) for S = {{p,q}, {p,¬q}, {¬p,q}, {¬p,¬q}} we have S ⊢L □,

c) a transformation of a linear proof to a (general) resolution proof.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2023/2024 14 / 20

Resolution in Prolog LI-resolution

LI-resolution
Linear resolution can be further refined for Horn formulas as follows.

a Horn clause is a clause containing at most one positive literal,
a Horn formula is a (possibly infinite) set of Horn clauses,
a fact is a (Horn) clause {p} where p is a positive literal,
a rule is a (Horn) clause with exactly one positive literal and at least one
negative literal. Rules and facts are program clauses,
a goal is a nonempty (Horn) clause with only negative literals.

Observation If a Horn formula S is unsatisfiable and □ /∈ S, it contains some
fact and some goal.

Proof If S does not contain any fact (goal), it is satisfied by the assignment of
all propositional variables to 0 (resp. to 1).

A linear input resolution (LI-resolution) from a formula S is a linear resolution
from S in which every side clause Bi is from the (input) formula S. We write
S ⊢LI C to denote that C is provable by LI-resolution from S.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2023/2024 15 / 20

Resolution in Prolog LI-resolution

Completeness of LI-resolution for Horn formulas
Theorem If T is satisfiable Horn formula but T ∪ {G} is unsatisfiable for
some goal G, then □ has a LI-resolution from T ∪ {G} with starting clause G.

Proof By the compactness theorem we may assume that T is finite.
We proceed by induction on the number of variables in T .
By Observation, T contains a fact {p} for some variable p.
By Lemma, T ′ = (T ∪ {G})p = T p ∪ {Gp} is unsatisfiable where
Gp = G \ {p}.
If Gp = □, we have G = {p} and thus □ is a resolvent of G and {p} ∈ T .
Otherwise, since T p is satisfiable (by the assignment satisfying T) and
has less variables than T , by induction assumption, there is an
LI-resolution of □ from T ′ starting with Gp.
By appending the literal p to all leaves that are not in T ∪ {G} (and nodes
below) we obtain an LI-resolution of {p} from T ∪ {G} that starts with G.
By an additional resolution step with the fact {p} ∈ T we resolve □.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2023/2024 16 / 20

Resolution in Prolog LI-resolution

Example of LI-resolution

T = {{p,¬r,¬s}, {r,¬q}, {q,¬s}, {s}},

{p,¬r,¬s}

{¬q,¬s} {q,¬s}

{¬s}

{r,¬q}{¬q,¬r,¬s}

{s}

T s = {{p,¬r}, {r,¬q}, {q}}

T sq = {{p,¬r}, {r}}

T sqr = {{p}}

G = {¬p,¬q}

Gs = {¬p,¬q}

Gsq = {¬p}

Gsqr = {¬p}

Gsqrp =

{p,¬r}

{¬q} {q}

{r,¬q}{¬q,¬r}{p,¬r}

{r}{¬r}{p}

T,G `LIT s, Gs `LIT sq, Gsq `LIT sqr, Gsqr `LI

G = {¬p,¬q}

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2023/2024 17 / 20

Resolution in Prolog LI-resolution

Program in Prolog
A (propositional) program (in Prolog) is a Horn formula containing only
program clauses, i.e. facts or rules.

p :− q, r. {p,¬q,¬r}

{r}
{q,¬s}

{¬p,¬q}

p :− s.

r.

s.

?− p, q.

q ∧ r → p

s→ p

r

s

{p,¬s}

{s}
a query a goal

a program

a rule

a fact

q :− s. s→ q

We would like to know whether a given query follows from a given program.

Corollary For every program P and query (p1 ∧ . . . ∧ pn) it is equivalent that
(1) P |= p1 ∧ . . . ∧ pn,
(2) P ∪ {¬p1, . . . ,¬pn} is unsatisfiable,
(3) □ has LI-resolution from P ∪ {G} starting by goal G = {¬p1, . . . ,¬pn}.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2023/2024 18 / 20

Formal proof systems Hilbert’s calculus

Hilbert’s calculus
basic connectives: ¬, → (others can be defined from them)
logical axioms (schemes of axioms):

(i) φ→ (ψ → φ)

(ii) (φ→ (ψ → χ)) → ((φ→ ψ) → (φ→ χ))

(iii) (¬φ→ ¬ψ) → (ψ → φ)

where φ, ψ, χ are any propositions (of a given language).
a rule of inference:

φ, φ→ ψ

ψ
(modus ponens)

A proof (in Hilbert-style) of a formula φ from a theory T is a finite sequence
φ0, . . . , φn = φ of formulas such that for every i ≤ n

φi is a logical axiom or φi ∈ T (an axiom of the theory), or
φi can be inferred from the previous formulas applying a rule of inference.

Remark Choice of axioms and inference rules differs in various Hilbert-style
proof systems.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2023/2024 19 / 20

Formal proof systems Hilbert’s calculus

Example and soundness
A formula φ is provable from T if it has a proof from T , denoted by T ⊢H φ.
If T = ∅, we write ⊢H φ. E.g. for T = {¬φ} we have T ⊢H φ→ ψ for every ψ.

1) ¬φ an axiom of T

2) ¬φ→ (¬ψ → ¬φ) a logical axiom (i)

3) ¬ψ → ¬φ by modus ponens from 1), 2)
4) (¬ψ → ¬φ) → (φ→ ψ) a logical axiom (iii)

5) φ→ ψ by modus ponens from 3), 4)

Theorem For every theory T and formula φ, T ⊢H φ ⇒ T |= φ.
Proof

If φ is an axiom (logical or from T), then T |= φ (l. axioms are tautologies),
if T |= φ and T |= φ→ ψ, then T |= ψ, i.e. modus ponens is sound,
thus every formula in a proof from T is valid in T .

Remark The completeness holds as well, i.e. T |= φ⇒ T ⊢H φ.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2023/2024 20 / 20

	Tableau method
	Compactness

	Resolution method
	Introduction
	Completeness

	Linear resolution
	Introduction

	Resolution in Prolog
	LI-resolution

	Formal proof systems
	Hilbert's calculus

