Propositional and Predicate Logic - V

Petr Gregor

KTIML MFF UK

WS 2023/2024

Þ

メロトメ 倒 トメ ミトメ ミト

Compactness theorem

Theorem *A theory T has a model iff every finite subset of T has a model.*

Proof 1 The implication from left to right is obvious. If *T* has no model, then it is inconsistent, i.e. \perp is provable by a systematic tableau τ from T . Since τ is finite, \perp is provable from some finite $T' \subseteq T$, i.e. T' has no model.

Remark This proof is based on finiteness of proofs, soundness and completeness. We present an alternative proof (applying König's lemma).

Proof 2 Let $T = \{ \varphi_i \mid i \in \mathbb{N} \}$. Consider a tree *S* on (certain) finite binary strings σ ordered by being a prefix. We put $\sigma \in S$ if and only if there exists an assignment ν with prefix σ such that $\nu\models \varphi_i$ for every $i\leq \mathop{\rm lth}(\sigma).$

Observation S has an infinite branch if and only if T has a model.

Since $\{\varphi_i \mid i \in n\} \subseteq T$ has a model for every $n \in \mathbb{N}$, every level in S is nonempty. Thus *S* is infinite and moreover binary, hence by König's lemma, *S* contains an infinite branch.

イロト イ押ト イヨト イヨトー

G.

Application of compactness

A graph (V, E) is *k-colorable* if there exists $c: V \rightarrow \{1, \ldots, k\}$ such that $c(u) \neq c(v)$ for every edge $\{u, v\} \in E$.

Theorem A countably infinite graph $G = (V, E)$ is *k*-colorable if and only if *every finite subgraph of G is k-colorable.*

Proof The implication ⇒ is obvious. Assume that every finite subgraph of *G* is *k*-colorable. Consider $\mathbb{P} = \{p_{u,i} \mid u \in V, 1 \leq i \leq k\}$ and a theory T with axioms

Then *G* is *k*-colorable if and only if *T* has a model. By compactness, it suffices to show that every finite $T' \subseteq T$ has a model. Let G' be the subgraph of *G* induced by vertices u such that $p_{u,i}$ appears in T' for some i. Since G' is k -colorabl[e](#page-1-0) by the assumption, the theory T' has a [m](#page-1-0)[od](#page-3-0)e[l.](#page-2-0) QQ

Resolution method - introduction

Main features of the resolution method (*informally*)

- is the underlying method of many systems, e.g. Prolog interpreters, SAT solvers, automated deduction / verification systems, . . .
- assumes input formulas in CNF (in general, *"expensive"* transformation),
- works under set representation (clausal form) of formulas,
- has a single rule, so called a resolution rule,
- has no explicit axioms (or atomic tableaux), but certain axioms are incorporated *"inside"* via various formatting rules,
- is a *refutation* procedure, similarly as the tableau method; that is, it tries to show that a given formula (or theory) is unsatisfiable,
- has several refinements e.g. with specific conditions on when the resolution rule may be applied.

イロト イ押ト イヨト イヨトー

G.

Set representation (clausal form) of CNF formulas

- A *literal l* is a prop. letter or its negation. *l* is its *complementary* literal.
- A *clause C* is a finite set of literals (*"forming disjunction"*). The empty clause, denoted by \square , is never satisfied (has no satisfied literal).
- A *formula S* is a (possibly infinite) set of clauses (*"forming conjunction"*). An empty formula \emptyset is always satisfied (is has no unsatisfied clause). Infinite formulas represent infinite theories (as conjunction of axioms).
- \bullet A (*partial*) *assignment* $\mathcal V$ is a consistent set of literals, i.e. not containing any pair of complementary literals. An assignment V is *total* if it contains a positive or negative literal for each propositional letter.
- $\bullet \; \mathcal{V}$ *satisfies S*, denoted by $\mathcal{V} \models S$, if $C \cap \mathcal{V} \neq \emptyset$ for every $C \in S$.

 $((¬p ∨ q) ∧ (∣p ∨ ¬q ∨ r) ∧ (∼r ∨ ¬s) ∧ (∼t ∨ s) ∧ s)$ is represented by

$$
S = \{ \{\neg p, q\}, \{\neg p, \neg q, r\}, \{\neg r, \neg s\}, \{\neg t, s\}, \{s\} \} \text{ and } \nu \models S \text{ for } \nu = \{s, \neg r, \neg p\}
$$

イロメ イ母メ イヨメ イヨメ

Resolution rule

Let C_1 , C_2 be clauses with $l \in C_1$, $\overline{l} \in C_2$ for some literal *l*. Then from C_1 and *C*² infer through the literal *l* the clause *C*, called a *resolvent*, where

 $C = (C_1 \setminus \{l\}) \cup (C_2 \setminus \{\overline{l}\}).$

Equivalently, if ⊔ means union of disjoint sets,

$$
\frac{C'_1\sqcup\{l\},C'_2\sqcup\{\overline{l}\}}{C'_1\cup C'_2}
$$

For example, from $\{p, q, r\}$ and $\{\neg p, \neg q\}$ we can infer $\{q, \neg q, r\}$ or $\{p, \neg p, r\}$.

Observation *The resolution rule is sound; that is, for every assignment* V

$$
\mathcal{V} \models C_1 \text{ and } \mathcal{V} \models C_2 \Rightarrow \mathcal{V} \models C.
$$

Remark The resolution rule is a special case of the (so called) cut rule

$$
\frac{\varphi \vee \psi, \neg \varphi \vee \chi}{\psi \vee \chi}
$$

where φ , ψ , χ are arbitrary formulas.

イロト イ母 トイヨ トイヨ トー

Resolution proof

- A *resolution proof* of a clause *C* from a formula *S* is a finite sequence $C_0, \ldots, C_n = C$ such that for every $i \leq n, C_i \in S$ or C_i is a resolvent of some previous clauses,
- a clause *C* is (resolution) *provable* from *S*, denoted by *S* ⊢*^R C*, if it has a resolution proof from *S*,
- a (resolution) *refutation* of formula *S* is a resolution proof of □ from *S*,
- *^S* is (resolution) *refutable* if *^S* [⊢]*^R* □.

Theorem (soundness) *If S is resolution refutable, then S is unsatisfiable.*

Proof Let $S \vdash_R \Box$. If it was $V \models S$ for some assignment V, from the soundness of the resolution rule we would have $V \models \Box$, which is impossible.

イロト イ母 トイヨ トイヨ トー

Resolution trees and closures

A *resolution tree* of a clause *C* from formula *S* is finite binary tree with nodes labeled by clauses so that

- (*i*) the root is labeled *C*,
- (*ii*) the leaves are labeled with clauses from *S*,

(*iii*) every inner node is labeled with a resolvent of the clauses in his sons.

Observation C has a resolution tree from *S* if and only if $S \vdash_R C$.

A *resolution closure* R(*S*) of a formula *S* is the smallest set satisfying (*i*) $C \in \mathcal{R}(S)$ for every $C \in S$,

(*ii*) if $C_1, C_2 \in \mathcal{R}(S)$ and C is a resolvent of C_1, C_2 , then $C \in \mathcal{R}(S)$.

Observation $C \in \mathcal{R}(S)$ *if and only if* $S \vdash_R C$ *.*

Remark All notions on resolution proofs can therefore be equivalently introduced in terms of resolution trees or resolution closures.

イロト イ押ト イヨト イヨトー

G.

Example

Formula $((p \lor r) \land (q \lor \neg r) \land (\neg q) \land (\neg p \lor t) \land (\neg s) \land (s \lor \neg t))$ is unsatisfiable since for $S = \{\{p, r\}, \{q, \neg r\}, \{\neg q\}, \{\neg p, t\}, \{\neg s\}, \{s, \neg t\}\}\$ we have $S \vdash_R \Box$.

The resolution closure of *S* (*the closure of S under resolution*) is

 $\mathcal{R}(S) = \{\{p, r\}, \{q, \neg r\}, \{\neg q\}, \{\neg p, t\}, \{\neg s\}, \{s, \neg t\}, \{p, q\}, \{\neg r\}, \{r, t\},\$ ${q, t}$, ${\neg t}$, ${\neg p, s}$, ${r, s}$, ${t}$, ${q}$, ${q, s}$, \Box , ${\neg p}$, ${p}$, ${r}$, ${s}$

イロト イ母ト イヨト イヨト

Reduction by substitution

Let *S* be a formula and *l* be a literal. Let us define

 $S^l = \{C \setminus \{\overline{l}\} \mid l \notin C \in S\}.$

Observation

- *S l* is equivalent to a formula obtained from *S* by substituting the constant ⊤ (true, 1) for all literals *l* and the constant ⊥ (false, 0) for all literals *l* in *S*,
- Neither *l* nor *l* occurs in (the clauses of) *S l* .
- if $\{\bar{l}\}\in S$, then $\square\in S^l$.

Lemma *S* is satisfiable if and only if S^l or S^l is satisfiable.

Proof (\Rightarrow) Let $V \models S$ for some V and assume (w.l.o.g.) that $\overline{l} \notin V$.

Then $\mathcal{V} \models S^l$ as for $l \notin C \in S$ we have $\mathcal{V} \setminus \{l, \overline{l}\} \models C$ and thus $\mathcal{V} \models C \setminus \{ \overline{l}\}.$

- On the other hand (\Leftarrow), assume (w.l.o.g.) that $\mathcal{V} \models \mathcal{S}^l$ for some $\mathcal{V}.$
- Since neither *l* nor \overline{l} occurs in S^l , we have $\mathcal{V}' \models S^l$ for $\mathcal{V}' = (\mathcal{V} \setminus {\overline{l}}) \cup \{l\}$.
- Then $\mathcal{V}' \models S$ since for $C \in S$ containing *l* we have $l \in \mathcal{V}'$ and for $C \in S$ not containing *l* we have $\mathcal{V}' \models (C \setminus {\overline{l}}) \in S^l$.

画

Tree of reductions

Step by step reductions of literals can be represented in a binary tree.

Corollary *S is unsatisfiable if and only if every branch contains* □*.*

Remarks Since S can be infinite over a countable language, this tree can be infinite. However, if S is unsatisfiable, by the compactness theorem there is a finite S ′ [⊆] *^S that is unsatisfiable. Thus after reduction of all literals occurring* in *S'*, there will be □ in every branch after finitely many steps.

イロト イ母 トイヨ トイヨ トー

(Refutation) completeness of resolution

Theorem *If a finite S* is unsatisfiable, it is resolution refutable, i.e. $S \vdash_R \Box$.

Proof By induction on the number of variables in *S* we show that *S* ⊢_{*R*} □.

- **If unsatisfiable** *S* has no variable, it is $S = \{\Box\}$ and thus $S \vdash_R \Box$,
- Let *l* be a literal occurring in *S*. By Lemma, *S ^l* and *S ^l* are unsatisfiable.
- Since S^l and S^l have less variables than S , by induction there exist resolution trees T^l and T^l for derivation of \Box from S^l resp. $S^l.$
- If every leaf of T^l is in *S*, then T^l is a resolution tree of \Box from *S*, $S \vdash_R \Box$.
- Otherwise, by appending the literal \overline{l} to every leaf of T^l that is not in *S*, (and to all predecessors) we obtain a resolution tree of $\{\bar{l}\}$ from *S*.
- Similarly, we get a resolution tree $\{l\}$ from S by appending l in the tree T^l .
- \bullet By resolution of roots $\{\bar{l}\}$ and $\{l\}$ we get a resolution tree of $□$ from *S*. ■

Corollary *If S is unsatisfiable, it is resolution refutable, i.e.* $S \vdash_R \Box$ *.*

Proof Follows from the previous theorem by applying compactness.

イロメ イ母メ イヨメ イヨメ

Linear resolution - introduction

The resolution method can be significantly refined.

- A *linear proof* of a clause *C* from a formula *S* is a finite sequence of pairs $(C_0, B_0), \ldots, (C_n, B_n)$ such that $C_0 \in S$ and for every $i \leq n$
	- *i*) $B_i \in S$ or $B_i = C_j$ for some $j < i$, and
	- *ii*) C_{i+1} is a resolvent of C_i and B_i where $C_{n+1} = C$.
- *C*⁰ is called a *starting* clause, *Cⁱ* a *central* clause, *Bⁱ* a *side* clause.
- *C* is *linearly provable* from *S*, *S* ⊢*^L C*, if it has a linear proof from *S*.
- A *linear refutation* of *S* is a linear proof of □ from *S*.
- *^S* is *linearly refutable* if *^S* [⊢]*^L* □.

Observation (soundness) *If S is linearly refutable, it is unsatisfiable.*

Proof Every linear proof can be transformed to a (general) resolution proof.

Remark The completeness is preserved as well (proof omitted here).

メロメメ 御 メメ きょく ミメー

GHT .

Example of linear resolution

a) a general form of linear resolution,

- *b*) for *S* = {{ p, q }, { $p, \neg q$ }, { $\neg p, q$ }, { $\neg p, \neg q$ }} we have *S* ⊢*L* □,
- *c*) a transformation of a linear proof to a (general) resolution proof.

4 0 8

LI-resolution

Linear resolution can be further refined for Horn formulas as follows.

- a *Horn clause* is a clause containing at most one positive literal,
- **a** *Horn formula* is a (possibly infinite) set of Horn clauses,
- a *fact* is a (Horn) clause $\{p\}$ where p is a positive literal,
- a *rule* is a (Horn) clause with exactly one positive literal and at least one negative literal. Rules and facts are *program clauses*,
- a *goal* is a nonempty (Horn) clause with only negative literals.

Observation If a Horn formula ^S is unsatisfiable and □ [∈]/ *^S, it contains some fact and some goal.*

Proof If *S* does not contain any fact (goal), it is satisfied by the assignment of all propositional variables to 0 (resp. to 1). \blacksquare

A *linear input resolution* (*LI-resolution*) from a formula *S* is a linear resolution from S in which every side clause B_i is from the (input) formula $S.$ We write $S \vdash_{LI} C$ $S \vdash_{LI} C$ t[o](#page-15-0) denote that *C* is provable by LI-resolutio[n f](#page-13-0)ro[m](#page-13-0) *S*[.](#page-15-0) 化重新分重率 QQ

Completeness of LI-resolution for Horn formulas

Theorem *If T is satisfiable Horn formula but T* ∪ {*G*} *is unsatisfiable for some goal G*, then \square has a LI-resolution from $T \cup \{G\}$ with starting clause G.

Proof By the compactness theorem we may assume that *T* is finite.

- We proceed by induction on the number of variables in *T*.
- By Observation, *T* contains a fact {*p*} for some variable *p*.
- By Lemma, $T' = (T \cup \{G\})^p = T^p \cup \{G^p\}$ is unsatisfiable where $G^p = G \setminus {\{\overline{p}\}}.$
- If $G^p = \Box$, we have $G = \{\overline{p}\}$ and thus \Box is a resolvent of G and $\{p\} \in T$.
- Otherwise, since T^p is satisfiable (by the assignment satisfying T) and has less variables than *T*, by induction assumption, there is an LI-resolution of \Box from T' starting with G^p .
- By appending the literal *p* to all leaves that are not in *T* ∪ {*G*} (and nodes below) we obtain an LI-resolution of $\{\overline{p}\}$ from $T \cup \{G\}$ that starts with *G*.
- **•** By an additional resolution step with the fact $\{p\}$ ∈ *T* we resolve \Box .■

イロメ イ母メ イヨメ イヨメ

Example of LI-resolution

$$
T = \{\{p, \neg r, \neg s\}, \{r, \neg q\}, \{q, \neg s\}, \{s\}\}, \qquad G = \{\neg p, \neg q\}
$$
\n
$$
T^s = \{\{p, \neg r\}, \{r, \neg q\}, \{q\}\}
$$
\n
$$
T^{sq} = \{\{p, \neg r\}, \{r\}\}
$$
\n
$$
G^s = \{\neg p, \neg q\} \{p, \neg r\}
$$
\n
$$
T^{sq} = \{\{p\}\}
$$
\n
$$
G^{sq} = \{\neg p\} \{p, \neg r\}
$$
\n
$$
T^{sq} = \{\{p\}\}
$$
\n
$$
G^{sq} = \{\neg p\} \{p, \neg r\}
$$
\n
$$
\{\neg q, \neg r\} \{r, \neg q\}
$$
\n
$$
\{\neg q, \neg r, \neg s\} \{r, \neg q\}
$$
\n
$$
T^{sq} = \{\neg p\} \{p\}
$$
\n
$$
\{\neg r\} \{r\}
$$
\n
$$
\{\neg q\}
$$
\n
$$
\{\neg q, \neg r\}
$$
\n
$$
\{\neg q, \neg s\}
$$
\n
$$
\{\neg q, \neg s\}
$$
\n
$$
\{\{q, \neg s\}
$$
\n
$$
\{\{q\}
$$
\n
$$
\{\neg s\}
$$
\n
$$
G^{sq} = \{\neg p\} \{p\}
$$
\n
$$
\{\neg r\} \{r\}
$$
\n
$$
\{\neg q\}
$$
\n
$$
\{\{q\}
$$
\n
$$
\{\neg s\}
$$
\n
$$
\{\{s\}
$$
\n
$$
G^{sq} = \Box
$$
\n
$$
\Box
$$
\n $$

メロトメ 伊 トメ ミトメ ミト

重

Program in Prolog

A (propositional) *program* (in Prolog) is a Horn formula containing only program clauses, i.e. facts or rules.

We would like to know whether a given query follows from a given program.

Corollary *For every program P* and query $(p_1 \land \ldots \land p_n)$ *it is equivalent that* (1) $P \models p_1 \land \ldots \land p_n$

- (2) $P \cup \{\neg p_1, \ldots, \neg p_n\}$ is unsatisfiable,
- (3) \square has LI-resolution from $P \cup \{G\}$ starting by goal $G = \{\neg p_1, \ldots, \neg p_n\}.$

K □ ▶ K @ ▶ K 로 ▶ K 로 ▶ _ 로 _ K 9 Q @

Hilbert's calculus

- basic connectives: \neg , \rightarrow (others can be defined from them)
- *logical axioms* (schemes of axioms):

(i)
\n
$$
\varphi \to (\psi \to \varphi)
$$
\n(ii)
\n
$$
(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))
$$
\n(iii)
\n
$$
(\neg \varphi \to \neg \psi) \to (\psi \to \varphi)
$$

where φ , ψ , χ are any propositions (of a given language).

a rule of inference:

$$
\frac{\varphi, \varphi \to \psi}{\psi} \qquad \text{(modus ponens)}
$$

A *proof* (in *Hilbert-style*) of a formula φ from a theory *T* is a finite sequence

 $\varphi_0, \ldots, \varphi_n = \varphi$ of formulas such that for every $i \leq n$

- $\varphi_{\bm i}$ is a logical axiom or $\varphi_{\bm i} \in T$ (an axiom of the theory), or
- \bullet φ_i can be inferred from the previous formulas applying a rule of inference.

Remark Choice of axioms and inference rules differs in various Hilbert-style proof systems. イロト イ母 トイラ トイラトー $2Q$

Example and soundness

A formula φ is *provable* from *T* if it has a proof from *T*, denoted by $T \vdash_H \varphi$. If $T = \emptyset$, we write $\vdash_H \varphi$. E.g. for $T = \{\neg \varphi\}$ we have $T \vdash_H \varphi \to \psi$ for every ψ .

- 1) $\neg \varphi$ an axiom of *T* 2) $\neg \varphi \rightarrow (\neg \psi \rightarrow \neg \varphi)$ a logical axiom *(i)*
-

4)
$$
(\neg \psi \to \neg \varphi) \to (\varphi \to \psi)
$$

5) $\varphi \to \psi$ by modus ponens from 3), 4)

3) $\neg \psi \rightarrow \neg \varphi$ by modus ponens from 1), 2) a logical axiom (*iii*)

Theorem *For every theory T* and formula φ , $T \vdash_H \varphi \Rightarrow T \models \varphi$. *Proof*

- **If** φ is an axiom (logical or from *T*), then $T \models \varphi$ (*l.* axioms are tautologies),
- if $T \models \varphi$ and $T \models \varphi \rightarrow \psi$, then $T \models \psi$, i.e. modus ponens is sound,
- thus every formula in a proof from *T* is valid in *T*.

Remark The completeness holds as well, i.e. $T \models \varphi \Rightarrow T \vdash_H \varphi$.