Propositional and Predicate Logic - VI

Petr Gregor

KTIML MFF UK

WS 2023/2024

Hilbert's calculus

- basic connectives: ¬, → (others can be defined from them)
- logical axioms (schemes of axioms):

(i)
$$\varphi \to (\psi \to \varphi)$$

$$(ii) \hspace{0.5cm} (\varphi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi))$$

(iii)
$$(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$$

where φ , ψ , χ are any propositions (of a given language).

a rule of inference:

$$\frac{\varphi, \ \varphi \to \psi}{\psi} \qquad \text{(modus ponens)}$$

A *proof* (in *Hilbert-style*) of a formula φ from a theory T is a finite sequence $\varphi_0, \ldots, \varphi_n = \varphi$ of formulas such that for every $i \leq n$

- φ_i is a logical axiom or $\varphi_i \in T$ (an axiom of the theory), or
- φ_i can be inferred from the previous formulas applying a rule of inference.

Remark Choice of axioms and inference rules differs in various Hilbert-style proof systems.

Example and soundness

A formula φ is *provable* from T if it has a proof from T, denoted by $T \vdash_H \varphi$. If $T = \emptyset$, we write $\vdash_H \varphi$. E.g. for $T = \{ \neg \varphi \}$ we have $T \vdash_H \varphi \to \psi$ for every ψ .

- 1)

 - $\neg \varphi \rightarrow (\neg \psi \rightarrow \neg \varphi)$ a logical axiom (i)
- $\neg \psi \rightarrow \neg \varphi$ 3)

by modus ponens from 1), 2) a logical axiom (iii)

an axiom of T

- $(\neg \psi \rightarrow \neg \varphi) \rightarrow (\varphi \rightarrow \psi)$ 4) 5) $\varphi \to \psi$
- by modus ponens from 3), 4)

Theorem For every theory T and formula φ , $T \vdash_H \varphi \Rightarrow T \models \varphi$.

Proof

- If φ is an axiom (logical or from T), then $T \models \varphi$ (I. axioms are tautologies),
- if $T \models \varphi$ and $T \models \varphi \rightarrow \psi$, then $T \models \psi$, i.e. modus ponens is sound,
- thus every formula in a proof from T is valid in T.

Remark The completeness holds as well, i.e. $T \models \varphi \Rightarrow T \vdash_H \varphi$.

Predicate logic

Deals with statements about objects, their properties and relations.

"She is intelligent and her father knows the rector."

$$I(x) \wedge K(f(x), r)$$

- x is a variable, representing an object,
- r is a constant symbol, representing a particular object,
- f is a function symbol, representing a function,
- I, K are relation (predicate) symbols, representing relations (the property of "being intelligent" and the relation "to know").

"Everybody has a father."

$$(\forall x)(\exists y)(y=f(x))$$

- $(\forall x)$ is the universal quantifier (for every x),
- $(\exists y)$ is the existential quantifier (there exists y),
- = is a (binary) relation symbol, representing the identity relation.

Language

A first-order language consists of

- variables $x, y, z, \ldots, x_0, x_1, \ldots$ (countable many), the set of all variables is denoted by Var,
- function symbols f, g, h, \ldots , including constant symbols c, d, \ldots , which are nullary function symbols,
- relation (predicate) symbols P, Q, R, \ldots , eventually the symbol = (equality) as a special relation symbol,
- quantifiers $(\forall x)$, $(\exists x)$ for every variable $x \in \text{Var}$,
- logical connectives \neg , \land , \lor , \rightarrow , \leftrightarrow
- parentheses (,)

Every function and relation symbol S has an associated *arity* $ar(S) \in \mathbb{N}$.

Remark Compared to propositional logic we have no (explicit) propositional variables, but they can be introduced as nullary relation symbols.

Signatures

- Symbols of logic are variables, quantifiers, connectives and parentheses.
- Non-logical symbols are function and relation symbols except the equality symbol. The equality is (usually) considered separately.
- A *signature* is a pair $(\mathcal{R}, \mathcal{F})$ of disjoint sets of relation and function symbols with associated arities, whereas none of them is the equality symbol. A signature lists all non-logical symbols.
- A *language* is determined by a signature $L = \langle \mathcal{R}, \mathcal{F} \rangle$ and by specifying whether it is a language with equality or not. A language must contain at least one relation symbol (non-logical or the equality).

Remark The meaning of symbols in a language is not assigned, e.g. the symbol + does not have to represent the standard addition.

Examples of languages

We describe a language by a list of all non-logical symbols with eventual clarification of arity and whether they are relation or function symbols.

The following examples of languages are all with equality.

- $L = \langle \ \rangle$ is the language of pure equality,
- $L = \langle c_i \rangle_{i \in \mathbb{N}}$ is the language of countable many constants,
- $L = \langle \langle \rangle$ is the language of orderings,
- $L = \langle E \rangle$ is the language of the graph theory,
- $L = \langle +, -, 0 \rangle$ is the language of the group theory,
- $L = \langle +, -, \cdot, 0, 1 \rangle$ is the language of the field theory,
- $L = \langle -, \wedge, \vee, 0, 1 \rangle$ is the language of Boolean algebras,
- $L = \langle S, +, \cdot, 0, \leq \rangle$ is the language of arithmetic,

where c_i , 0, 1 are constant symbols, S_i are unary function symbols, $+, \cdot, \wedge, \vee$ are binary function symbols, E, \leq are binary relation symbols.

Terms

Are expressions representing values of (composed) functions.

Terms of a language L are defined inductively by

- (i) every variable or constant symbol in L is a term,
- (ii) if f is a function symbol in L of arity n>0 and t_1,\ldots,t_n are terms, then also the expression $f(t_1,\ldots,t_n)$ is a term,
- (iii) every term is formed by a finite number of steps (i), (ii).
 - A ground term is a term with no variables.
 - The set of all terms of a language L is denoted by Term_L.
 - A term that is a part of another term t is called a subterm of t.
 - The structure of terms can be represented by their formation trees.
 - For binary function symbols we often use infix notation, e.g. we write (x + y) instead of +(x, y).

Examples of terms

- *a*) The formation tree of the term $(S(0) + x) \cdot y$ of the language of arithmetic.
- *b*) Propositional formulas only with connectives \neg , \wedge , \vee , eventually with constants \top , \bot can be viewed as terms of the language of Boolean algebras.

Atomic formulas

Are the simplest formulas.

- An atomic formula of a language L is an expression $R(t_1, \ldots, t_n)$ where R is an n-ary relation symbol in L and t_1, \ldots, t_n are terms of L.
- The set of all atomic formulas of a language L is denoted by AFm_L.
- The structure of an atomic formula can be represented by a formation tree from the formation subtrees of its terms.
- For binary relation symbols we often use infix notation, e.g. $t_1 = t_2$ instead of $= (t_1, t_2)$ or $t_1 \le t_2$ instead of $\le (t_1, t_2)$.
- Examples of atomic formulas

$$K(f(x), r), \quad x \cdot y \leq (S(0) + x) \cdot y, \quad \neg(x \wedge y) \vee \bot = \bot.$$

Formula

Formulas of a language L are defined inductively by

- (i) every atomic formula is a formula,
- (ii) if φ , ψ are formulas, then also the following expressions are formulas

$$(\neg \varphi)$$
, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$,

- (iii) if φ is a formula and x is a variable, then also the expressions $((\forall x)\varphi)$ and $((\exists x)\varphi)$ are formulas.
- (iv) every formula is formed by a finite number of steps (i), (ii), (iii).
 - The set of all formulas of a language L is denoted by Fm_L.
 - A formula that is a part of another formula φ is called a *subformula* of φ .
 - The structure of formulas can be represented by their formation trees.

Conventions

- After introducing *priorities* for binary function symbols e.g. +, · we are in infix notation allowed to omit parentheses that are around a subterm formed by a symbol of higher priority, e.g. $x \cdot y + z$ instead of $(x \cdot y) + z$.
- After introducing priorities for connectives and quantifiers we are allowed to omit parentheses that are around subformulas formed by connectives of higher priority.

$$(1) \rightarrow, \leftrightarrow \qquad (2) \land, \lor \qquad (3) \neg, (\forall x), (\exists x)$$

- They can be always omitted around subformulas formed by \neg , $(\forall x)$, $(\exists x)$.
- We may also omit parentheses in $(\forall x)$ and $(\exists x)$ for every $x \in \text{Var}$.
- The outer parentheses may be omitted as well.

$$(((\neg((\forall x)R(x))) \land ((\exists y)P(y))) \rightarrow (\neg(((\forall x)R(x)) \lor (\neg((\exists y)P(y))))))$$
$$\neg(\forall x)R(x) \land (\exists y)P(y) \rightarrow \neg((\forall x)R(x) \lor \neg(\exists y)P(y))$$

An example of a formula

The formation tree of the formula $(\forall x)(x \cdot y \leq (S(0) + x) \cdot y)$.

Occurrences of variables

Let φ be a formula and x be a variable.

- An *occurrence* of x in φ is a leaf labeled by x in the formation tree of φ .
- An occurrence of x in φ is **bound** if it is in some subformula ψ that starts with $(\forall x)$ or $(\exists x)$. An occurrence of x in φ is **free** if it is not bound.
- A variable x is *free* in φ if it has at least one free occurrence in φ . It is *bound* in φ if it has at least one bound occurrence in φ .
- A variable x can be both free and bound in φ . For example in

$$(\forall x)(\exists y)(x \le y) \lor x \le z.$$

• We write $\varphi(x_1, \ldots, x_n)$ to denote that x_1, \ldots, x_n are all free variables in the formula φ . (φ states something about these variables.)

Remark We will see that the truth value of a formula (in a given interpretation of symbols) depends only on the assignment of free variables.

Open and closed formulas

- A formula is *open* if it is without quantifiers. For the set \widehat{OFm}_L of all open formulas in a language L it holds that $\widehat{AFm}_L \subseteq \widehat{OFm}_L \subseteq \widehat{Fm}_L$.
- A formula is closed (a sentence) if it has no free variable; that is, all
 occurrences of variables are bound.
- A formula can be both open and closed. In this case, all its terms are ground terms.

$$\begin{array}{ll} x+y\leq 0 & \textit{open}, \varphi(x,y) \\ (\forall x)(\forall y)(x+y\leq 0) & \textit{a sentence}, \\ (\forall x)(x+y\leq 0) & \textit{neither open nor a sentence}, \varphi(y) \\ 1+0<0 & \textit{open sentence} \end{array}$$

Remark We will see that in a fixed interpretation of symbols a sentence has a fixed truth value; that is, it does not depend on the assignment of variables.

Instances

After substituting a term t for a free variable x in a formula φ , we would expect that the new formula (newly) says about t "the same" as φ did about x.

```
\varphi(x) (\exists y)(x+y=1) "there is an element 1-x" for t=1 we can \varphi(x/t) (\exists y)(1+y=1) "there is an element 1-1" for t=y we cannot (\exists y)(y+y=1) "1 is divisible by 2"
```

- A term t is *substitutable* for a variable x in a formula φ if substituting t for all free occurrences of x in φ does not introduce a new bound occurrence of a variable from t.
- Then we denote the obtained formula $\varphi(x/t)$ and we call it an *instance* of the formula φ after a *substitution* of a term t for a variable x.
- t is not substitutable for x in φ if and only if x has a free occurrence in some subformula that starts with $(\forall y)$ or $(\exists y)$ for some variable y in t.
- Ground terms are always substitutable.

Variants

Quantified variables can be (under certain conditions) renamed so that we obtain an equivalent formula.

Let $(Qx)\psi$ be a subformula of φ where Q means \forall or \exists and y is a variable such that the following conditions hold.

- 1) y is substitutable for x in ψ , and
- 2) y does not have a free occurrence in ψ .

Then by replacing the subformula $(Qx)\psi$ with $(Qy)\psi(x/y)$ we obtain a *variant* of φ *in subformula* $(Qx)\psi$. After variation of one or more subformulas in φ we obtain a *variant* of φ . For example,

$(\exists x)(\forall y)(x \leq y)$	is a formula $arphi,$
$(\exists u)(\forall v)(u \leq v)$	is a variant of $arphi,$
$(\exists y)(\forall y)(y \le y)$	is not a variant of φ , 1) does not hold,
$(\exists x)(\forall x)(x < x)$	is not a variant of φ , 2) does not hold.

Structures

- $S = \langle S, \leq \rangle$ is an ordered set where \leq is reflexive, antisymmetric, transitive binary relation on S,
- $G = \langle V, E \rangle$ is an undirected graph without loops where V is the set of vertices and E is irreflexive, symmetric binary relation on V (adjacency),
- $\mathbb{Z}_p = \langle \mathbb{Z}_p, +, -, 0 \rangle$ is the additive group of integers modulo p,
- $\mathbb{Q} = \langle \mathbb{Q}, +, -, \cdot, 0, 1 \rangle$ is the field of rational numbers,
- $\mathcal{P}(X) = \langle \mathcal{P}(X), -, \cap, \cup, \emptyset, X \rangle$ is the set algebra over X,
- $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ is the standard model of arithmetic,
- finite automata and other models of computation.
- relational databases, . . .

A structure for a language

Let $L = \langle \mathcal{R}, \mathcal{F} \rangle$ be a signature of a language and A be a nonempty set.

- A realization (interpretation) of a relation symbol $R \in \mathcal{R}$ on A is any relation $R^A \subset A^{\operatorname{ar}(R)}$. A realization of = on A is the relation Id_A (identity).
- A realization (interpretation) of a function symbol $f \in \mathcal{F}$ on A is any function $f^A: A^{ar(f)} \to A$. Thus a realization of a constant symbol is some element of A.

A *structure* for the language L (*L-structure*) is a triple $A = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$, where

- A is nonempty set, called the domain of the structure A,
- $\mathcal{R}^A = \langle R^A \mid R \in \mathcal{R} \rangle$ is a collection of realizations of relation symbols,
- $\mathcal{F}^A = \langle f^A \mid f \in \mathcal{F} \rangle$ is a collection of realizations of function symbols.

A structure for the language L is also called a *model of the language* L. The class of all models of L is denoted by M(L). Examples for $L = \langle \leq \rangle$ are $\langle \mathbb{N}, < \rangle, \langle \mathbb{Q}, > \rangle, \langle X, E \rangle, \langle \mathcal{P}(X), \subset \rangle.$

Value of terms

Let t be a term of $L = \langle \mathcal{R}, \mathcal{F} \rangle$ and $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ be an L-structure.

- A *variable assignment* over the domain A is a function $e: Var \rightarrow A$.
- The value $t^A[e]$ of the term t in the structure A with respect to the assignment e is defined by

$$\begin{split} x^A[e] &= e(x) \quad \text{for every } x \in \text{Var}, \\ (f(t_1, \dots, t_n))^A[e] &= f^A(t_1^A[e], \dots, t_n^A[e]) \quad \text{for every } f \in \mathcal{F}. \end{split}$$

- In particular, for a constant symbol c we have $c^A[e] = c^A$.
- If t is a ground term, its value in A is independent on the assignment e.
- The value of t in A depends only on the assignment of variables in t.

For example, the value of the term x+1 in the structure $\mathcal{N}=\langle \mathbb{N},+,1\rangle$ with respect to the assignment e with e(x) = 2 is $(x+1)^N[e] = 3$.

Values of atomic formulas

Let φ be an atomic formula of $L = \langle \mathcal{R}, \mathcal{F} \rangle$ in the form $R(t_0, \ldots, t_{n-1})$, $A = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ be an *L*-structure, and *e* be a variable assignment over *A*.

• The value $H_{at}^A(\varphi)[e]$ of the formula φ in the structure \mathcal{A} with respect to e is

$$H_{at}^A(R(t_1,\ldots,t_n))[e] = \left\{egin{array}{ll} 1 & ext{ if } (t_1^A[e],\ldots,t_n^A[e]) \in R^A, \ 0 & ext{ otherwise.} \end{array}
ight.$$

where $=^A$ is Id_A ; that is, $H_{at}^A(t_1 = t_2)[e] = 1$ if $t_1^A[e] = t_2^A[e]$, and $H_{at}^A(t_1=t_2)[e]=0$ otherwise.

- If φ is a sentence; that is, all its terms are ground, then its value in \mathcal{A} is independent on the assignment e.
- The value of φ in \mathcal{A} depends only on the assignment of variables in φ .

For example, the value of φ in form x+1 < 1 in $\mathcal{N} = \langle \mathbb{N}, +, 1, < \rangle$ with respect to the assignment e is $H_{at}^N(\varphi)[e] = 1$ if and only if e(x) = 0.

Values of formulas

The *value* $H^A(\varphi)[e]$ of the formula φ in the structure A with respect to e is

$$\begin{split} H^A(\varphi)[e] &= H^A_{at}(\varphi)[e] \quad \text{if } \varphi \text{ is atomic,} \\ H^A(\neg\varphi)[e] &= -_1(H^A(\varphi)[e]) \\ H^A(\varphi \wedge \psi)[e] &= \wedge_1(H^A(\varphi)[e], H^A(\psi)[e]) \\ H^A(\varphi \vee \psi)[e] &= \vee_1(H^A(\varphi)[e], H^A(\psi)[e]) \\ H^A(\varphi \to \psi)[e] &= \to_1(H^A(\varphi)[e], H^A(\psi)[e]) \\ H^A(\varphi \leftrightarrow \psi)[e] &= \leftrightarrow_1(H^A(\varphi)[e], H^A(\psi)[e]) \\ H^A((\forall x)\varphi)[e] &= \min_{a \in A}(H^A(\varphi)[e(x/a)]) \\ H^A((\exists x)\varphi)[e] &= \max_{a \in A}(H^A(\varphi)[e(x/a)]) \end{split}$$

where $-1, \wedge 1, \vee 1, \rightarrow 1, \leftrightarrow 1$ are the Boolean functions given by the tables and e(x/a) for $a \in A$ denotes the assignment obtained from e by setting e(x) = a.

Observation $H^A(\varphi)[e]$ depends only on the assignment of free variables in φ .

WS 2023/2024

Satisfiability with respect to assignments

The structure \mathcal{A} satisfies the formula φ with assignment e if $H^A(\varphi)[e] = 1$. Then we write $\mathcal{A} \models \varphi[e]$, and $\mathcal{A} \not\models \varphi[e]$ otherwise. It holds that

Observation Let term t be substitutable for x in φ and ψ be a variant of φ . Then for every structure A and assignment e

- 1) $A \models \varphi(x/t)[e]$ if and only if $A \models \varphi[e(x/a)]$ where $a = t^A[e]$,
- 2) $A \models \varphi[e]$ if and only if $A \models \psi[e]$.

Validity in a structure

Let φ be a formula of a language L and \mathcal{A} be an L-structure.

- φ is *valid* (*true*) *in the structure* \mathcal{A} , denoted by $\mathcal{A} \models \varphi$, if $\mathcal{A} \models \varphi[e]$ for every $e \colon \text{Var} \to A$. We say that \mathcal{A} *satisfies* φ . Otherwise, we write $\mathcal{A} \not\models \varphi$.
- φ is *contradictory in* A if $A \models \neg \varphi$; that is, $A \not\models \varphi[e]$ for every $e \colon \text{Var} \to A$.
- For every formulas φ , ψ , variable x, and structure \mathcal{A}
 - $(1) \qquad \mathcal{A} \models \varphi \qquad \Rightarrow \quad \mathcal{A} \not\models \neg \varphi$
 - $(2) \qquad \mathcal{A} \models \varphi \wedge \psi \quad \Leftrightarrow \quad \mathcal{A} \models \varphi \ \ \text{and} \ \ \mathcal{A} \models \psi$
 - $(3) \qquad \mathcal{A} \models \varphi \lor \psi \quad \Leftarrow \quad \mathcal{A} \models \varphi \text{ or } \mathcal{A} \models \psi$
 - (4) $\mathcal{A} \models \varphi \qquad \Leftrightarrow \mathcal{A} \models (\forall x)\varphi$
- If φ is a sentence, it is valid or contradictory in \mathcal{A} , and thus (1) holds also in \Leftarrow . If moreover ψ is a sentence, also (3) holds in \Rightarrow .
- By (4), $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \psi$ where ψ is a *universal closure* of φ , i.e. a formula $(\forall x_1) \cdots (\forall x_n) \varphi$ where x_1, \dots, x_n are all free variables in φ .

WS 2023/2024

Validity in a theory

- A *theory* of language L is any set T of formulas of L (so called *axioms*).
- A *model of a theory* T is an L-structure A such that $A \models \varphi$ for every $\varphi \in T$. Then we write $A \models T$ and we say that A *satisfies* T.
- The *class of models* of a theory T is $M(T) = \{A \in M(L) \mid A \models T\}$.
- A formula φ is *valid in T* (*true in T*), denoted by $T \models \varphi$, if $A \models \varphi$ for every model A of T. Otherwise, we write $T \not\models \varphi$.
- φ is *contradictory in T* if $T \models \neg \varphi$, i.e. φ is contradictory in all models of T.
- φ is *independent in T* if it is neither valid nor contradictory in T.
- If $T = \emptyset$, we have M(T) = M(L) and we omit T, eventually we say "in logic". Then $\models \varphi$ means that φ is (universally) valid (a tautology).
- A *consequence* of T is the set $\theta^L(T)$ of all sentences of L valid in T, i.e. $\theta^L(T) = \{ \varphi \in \operatorname{Fm}_L \mid T \models \varphi \text{ and } \varphi \text{ is a sentence} \}.$

Example of a theory

A *theory of orderings* T in language $L = \langle \leq \rangle$ with equality has axioms

$$x \le x$$
 (reflexivity)
 $x \le y \land y \le x \rightarrow x = y$ (antisymmetry)
 $x \le y \land y \le z \rightarrow x \le z$ (transitivity)

Models of T are L-structures $\langle S, \leq_S \rangle$, so called <u>ordered sets</u>, that satisfy the axioms of T, for example $A = \langle \mathbb{N}, \leq \rangle$ or $\mathcal{B} = \langle \mathcal{P}(X), \subseteq \rangle$ for $X = \{0, 1, 2\}$.

- A formula $\varphi \colon x \leq y \lor y \leq x$ is valid in $\mathcal A$ but not in $\mathcal B$ since $\mathcal B \not\models \varphi[e]$ for the assignment $e(x) = \{0\}, e(y) = \{1\}$, thus φ is independent in T.
- A sentence $\psi \colon (\exists x)(\forall y)(y \le x)$ is valid in $\mathcal B$ and contradictory in $\mathcal A$, hence it is independent in T as well. We write $\mathcal B \models \psi$, $\mathcal A \models \neg \psi$.
- A formula $\chi \colon (x \leq y \land y \leq z \land z \leq x) \to (x = y \land y = z)$ is valid in T, denoted by $T \models \chi$, the same holds for its universal closure.