Propositional and Predicate Logic - VI

Petr Gregor

KTIML MFF UK

WS 2023/2024

Petr Gregor (KTIML MFF UK) [Propositional and Predicate Logic - VI](#page-25-0) WS 2023/2024 1/26

メロメメ 御 メメ きょく きょう

画

Hilbert's calculus

- basic connectives: \neg , \rightarrow (others can be defined from them)
- *logical axioms* (schemes of axioms):

(i)
\n
$$
\varphi \to (\psi \to \varphi)
$$
\n(ii)
\n
$$
(\varphi \to (\psi \to \chi)) \to ((\varphi \to \psi) \to (\varphi \to \chi))
$$
\n(iii)
\n
$$
(\neg \varphi \to \neg \psi) \to (\psi \to \varphi)
$$

where φ , ψ , χ are any propositions (of a given language).

a rule of inference:

$$
\frac{\varphi, \varphi \to \psi}{\psi} \qquad \text{(modus ponens)}
$$

A *proof* (in *Hilbert-style*) of a formula φ from a theory *T* is a finite sequence

 $\varphi_0, \ldots, \varphi_n = \varphi$ of formulas such that for every $i \leq n$

- $\varphi_{\bm i}$ is a logical axiom or $\varphi_{\bm i} \in T$ (an axiom of the theory), or
- \bullet φ_i can be inferred from the previous formulas applying a rule of inference.

Remark Choice of axioms and inference rules differs in various Hilbert-style proof systems. イロト イ母 トイラ トイラトー QQ

Example and soundness

A formula φ is *provable* from *T* if it has a proof from *T*, denoted by $T \vdash_H \varphi$. If $T = \emptyset$, we write $\vdash_H \varphi$. E.g. for $T = \{\neg \varphi\}$ we have $T \vdash_H \varphi \to \psi$ for every ψ .

- 1) $\neg \varphi$ an axiom of *T* 2) $\neg \varphi \rightarrow (\neg \psi \rightarrow \neg \varphi)$ a logical axiom *(i)*
-

4)
$$
(\neg \psi \to \neg \varphi) \to (\varphi \to \psi)
$$

3) $\neg \psi \rightarrow \neg \varphi$ by modus ponens from 1), 2) a logical axiom (*iii*) 5) $\varphi \to \psi$ by modus ponens from 3), 4)

Theorem *For every theory T* and formula φ , $T \vdash_H \varphi \Rightarrow T \models \varphi$. *Proof*

- **If** φ is an axiom (logical or from *T*), then $T \models \varphi$ (*l.* axioms are tautologies),
- if $T \models \varphi$ and $T \models \varphi \rightarrow \psi$, then $T \models \psi$, i.e. modus ponens is sound,

thus every formula in a proof from *T* is valid in *T*.

Remark The completeness holds as well, i.e. $T \models \varphi \Rightarrow T \vdash_H \varphi$.

Predicate logic

Deals with statements about objects, their properties and relations.

"She is intelligent and her father knows the rector." I(x) ∧ $K(f(x), r)$

- *x* is a variable, representing an object,
- *r* is a constant symbol, representing a particular object,
- **•** *f* is a function symbol, representing a function,
- *I*, *K* are relation (predicate) symbols, representing relations (the property of *"being intelligent"* and the relation *"to know"*).

"Everybody has a father." $(∀x)(∃y)(y = f(x))$

- \bullet ($\forall x$) is the universal quantifier (*for every x*),
- (∃*y*) is the existential quantifier (*there exists y*),
- \bullet = is a (binary) relation symbol, representing the identity relation.

イロメ イ母メ イヨメ イヨメ

Language

A first-order language consists of

- variables $x, y, z, \ldots, x_0, x_1, \ldots$ (countable many), the set of all variables is denoted by Var,
- \bullet function symbols f, g, h, \ldots , including constant symbols c, d, \ldots , which are nullary function symbols,
- relation (predicate) symbols P, Q, R, \ldots , eventually the symbol $=$ (equality) as a special relation symbol,
- \bullet quantifiers ($\forall x$), ($\exists x$) for every variable *x* ∈ Var,
- logical connectives ¬, ∧, ∨, →, ↔
- \bullet parentheses $($, $)$

Every function and relation symbol *S* has an associated *arity* $ar(S) \in \mathbb{N}$.

Remark Compared to propositional logic we have no (explicit) propositional variables, but they can be introduced as nullary relation symbols.

KOD KARD KED KEL YOUR

Signatures

- *Symbols of logic* are variables, quantifiers, connectives and parentheses.
- *Non-logical symbols* are function and relation symbols except the equality symbol. The equality is (usually) considered separately.
- A *signature* is a pair $\langle \mathcal{R}, \mathcal{F} \rangle$ of disjoint sets of relation and function symbols with associated arities, whereas none of them is the equality symbol. A signature lists all non-logical symbols.
- A *language* is determined by a signature $L = \langle \mathcal{R}, \mathcal{F} \rangle$ and by specifying whether it is a language with equality or not. A language must contain at least one relation symbol (non-logical or the equality).

Remark The meaning of symbols in a language is not assigned, e.g. the symbol + *does not have to represent the standard addition.*

イロメ イ母メ イヨメ イヨメ

Examples of languages

We describe a language by a list of all non-logical symbols with eventual clarification of arity and whether they are relation or function symbols.

The following examples of languages are all with equality.

- \bullet $L = \langle \ \rangle$ is the language of pure equality,
- $L = \langle c_i \rangle_{i \in \mathbb{N}}$ is the language of countable many constants,
- $L = \langle \langle \rangle$ is the language of orderings,
- \bullet $L = \langle E \rangle$ is the language of the graph theory,
- \bullet $L = \langle +, -, 0 \rangle$ is the language of the group theory,
- $L = \langle +, -, \cdot, 0, 1 \rangle$ is the language of the field theory,
- \bullet $L = \langle -, \land, \lor, 0, 1 \rangle$ is the language of Boolean algebras,
- $L = \langle S, +, \cdot, 0, \leq \rangle$ is the language of arithmetic,

where c_i , 0, 1 are constant symbols, S , $-$ are unary function symbols, +, · , ∧, ∨ are binary function symbols, *E*, ≤ are binary relation symbols.

KOD KARD KED KEL YOUR

Terms

Are expressions representing values of (composed) functions.

Terms of a language *L* are defined inductively by

- (*i*) every variable or constant symbol in *L* is a term,
- (*ii*) if f is a function symbol in L of arity $n > 0$ and t_1, \ldots, t_n are terms, then also the expression $f(t_1, \ldots, t_n)$ is a term,
- (*iii*) every term is formed by a finite number of steps (*i*), (*ii*).
	- A *ground term* is a term with no variables.
	- The set of all terms of a language *L* is denoted by Term*L*.
	- A term that is a part of another term *t* is called a *subterm* of *t*.
	- The structure of terms can be represented by their formation trees.
	- For binary function symbols we often use *infix* notation, e.g. we write $(x + y)$ instead of $+(x, y)$.

イロト イ押ト イヨト イヨトー

Examples of terms

- *a*) The formation tree of the term $(S(0) + x) \cdot y$ of the language of arithmetic.
- *b*) Propositional formulas only with connectives ¬, ∧, ∨, eventually with constants ⊤, ⊥ can be viewed as terms of the language of Boolean algebras.

4 D F

Atomic formulas

Are the simplest formulas.

- An *atomic formula* of a language L is an expression $R(t_1, \ldots, t_n)$ where *R* is an *n*-ary relation symbol in *L* and t_1, \ldots, t_n are terms of *L*.
- The set of all atomic formulas of a language *L* is denoted by AFm*L*.
- The structure of an atomic formula can be represented by a formation tree from the formation subtrees of its terms.
- **•** For binary relation symbols we often use *infix* notation, e.g.
	- $t_1 = t_2$ instead of $=(t_1, t_2)$ or $t_1 \leq t_2$ instead of $\leq (t_1, t_2)$.
- *Examples of atomic formulas*

 $K(f(x), r)$, $x \cdot y \leq (S(0) + x) \cdot y$, $\neg(x \wedge y) \vee \bot = \bot$.

イロト イ母 トイヨ トイヨ トー

G.

Formula

Formulas of a language *L* are defined inductively by

- (*i*) every atomic formula is a formula,
- (*ii*) if φ , ψ are formulas, then also the following expressions are formulas

 $(\neg \varphi)$, $(\varphi \land \psi)$, $(\varphi \lor \psi)$, $(\varphi \to \psi)$, $(\varphi \leftrightarrow \psi)$,

- (*iii*) if φ is a formula and x is a variable, then also the expressions ($(\forall x)\varphi$) and $((\exists x)\varphi)$ are formulas.
- (*iv*) every formula is formed by a finite number of steps (*i*), (*ii*), (*iii*).
	- The set of all formulas of a language *L* is denoted by Fm*L*.
	- A formula that is a part of another formula φ is called a *subformula* of φ .
	- The structure of formulas can be represented by their formation trees.

Conventions

- After introducing *priorities* for binary function symbols e.g. + , · we are in infix notation allowed to omit parentheses that are around a subterm formed by a symbol of higher priority, e.g. $x \cdot y + z$ instead of $(x \cdot y) + z$.
- After introducing *priorities* for connectives and quantifiers we are allowed to omit parentheses that are around subformulas formed by connectives of higher priority.

$$
(1) \rightarrow, \leftrightarrow \qquad (2) \land, \lor \qquad (3) \neg, (\forall x), (\exists x)
$$

- They can be always omitted around subformulas formed by ¬, (∀*x*), (∃*x*).
- We may also omit parentheses in (∀*x*) and (∃*x*) for every *x* ∈ Var.
- The outer parentheses may be omitted as well. (((¬((∀*x*)*R*(*x*))) ∧ ((∃*y*)*P*(*y*))) → (¬(((∀*x*)*R*(*x*)) ∨ (¬((∃*y*)*P*(*y*)))))) $\neg(\forall x)R(x) \land (\exists y)P(y) \rightarrow \neg((\forall x)R(x) \lor \neg(\exists y)P(y))$

メロメメ 御 メメ きょく ミメー

G.

An example of a formula

The formation tree of the formula $(\forall x)(x \cdot y \leq (S(0) + x) \cdot y)$.

4 0 8

∩ ⊧

Occurrences of variables

Let φ be a formula and x be a variable.

- An *occurrence* of x in φ is a leaf labeled by x in the formation tree of φ .
- An occurrence of x in φ is *bound* if it is in some subformula ψ that starts with $(\forall x)$ or $(\exists x)$. An occurrence of x in φ is *free* if it is not bound.
- **•** A variable x is *free* in φ if it has at least one free occurrence in φ . It is *bound* in φ if it has at least one bound occurrence in φ .
- **•** A variable x can be both free and bound in φ . For example in

(∀*x*)(∃*y*)(*x* ≤ *y*) ∨ *x* ≤ *z*.

• We write $\varphi(x_1, \ldots, x_n)$ to denote that x_1, \ldots, x_n are all free variables in the formula φ. *(*φ *states something about these variables.)*

Remark We will see that the truth value of a formula (in a given interpretation of symbols) depends only on the assignment of free variables.

イロト イ母 トイヨ トイヨ トー

G.

Open and closed formulas

- A formula is *open* if it is without quantifiers. For the set OFm_L of all open formulas in a language L it holds that $A Fm_L \subset G Fm_L \subset Fm_L$.
- A formula is *closed* (a *sentence*) if it has no free variable; that is, all occurrences of variables are bound.
- A formula can be both open and closed. In this case, all its terms are ground terms.

 $x + y \le 0$ *open*, $\varphi(x, y)$ $(\forall x)(\forall y)(x + y \le 0)$ *a sentence*, $(\forall x)(x + y < 0)$ *neither open nor a sentence*, $\varphi(y)$ $1 + 0 \le 0$ open sentence

Remark We will see that in a fixed interpretation of symbols a sentence has a fixed truth value; that is, it does not depend on the assignment of variables.

イロト イ母 トイラ トイラトー

Instances

After substituting a term t for a free variable x in a formula φ*, we would expect that the new formula (newly) says about t "the same" as* φ *did about x.*

 $\varphi(x)$ ($\exists y$)($x + y = 1$) "there is an element $1 - x$ "
for $t = 1$ we can $\varphi(x/t)$ ($\exists y$)($1 + y = 1$) "there is an element $1 - 1$ " *for* $t = 1$ *we can* $\varphi(x/t)$ $(\exists y)(1 + y = 1)$ *for* $t = y$ *we cannot* $(\exists y)(y + y = 1)$ *"*1 *is divisible by* 2*"*

- A term *t* is *substitutable* for a variable x in a formula φ if substituting t for all free occurrences of x in φ does not introduce a new bound occurrence of a variable from *t*.
- Then we denote the obtained formula $\varphi(x/t)$ and we call it an *instance* of the formula φ after a *substitution* of a term *t* for a variable *x*.
- *t* is not substitutable for *x* in φ if and only if *x* has a free occurrence in some subformula that starts with $(\forall \gamma)$ or $(\exists \gamma)$ for some variable γ in t .
- **Ground terms are always substitutable.**

メロメメ 御 メメ きょく ヨメー

G.

Variants

Quantified variables can be (under certain conditions) renamed so that we obtain an equivalent formula.

Let $(Qx)\psi$ be a subformula of φ where *Q* means \forall or \exists and γ is a variable such that the following conditions hold.

- 1) *y* is substitutable for *x* in ψ , and
- 2) γ does not have a free occurrence in ψ .

Then by replacing the subformula $(Qx)\psi$ with $(Qy)\psi(x/y)$ we obtain a *variant* of φ *in subformula* $(Qx)\psi$. After variation of one or more subformulas in φ we obtain a *variant* of φ. *For example,*

 $(\exists x)(\forall y)(x \leq y)$ *is a formula* φ ,

 $(\exists u)(\forall v)(u \leq v)$ *is a variant of* φ , $(\exists y)(\forall y)(y \leq y)$ *is not a variant of* φ , 1) *does not hold*, $(\exists x)(\forall x)(x \leq x)$ *is not a variant of* φ , 2) *does not hold.*

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

画

Structures

- $S = \langle S, \le \rangle$ is an ordered set where \le is reflexive, antisymmetric, transitive binary relation on *S*,
- $G = \langle V, E \rangle$ is an undirected graph without loops where V is the set of *vertices* and *E* is irreflexive, symmetric binary relation on *V (adjacency)*,
- $\bullet \mathbb{Z}_p = \langle \mathbb{Z}_p, +, -, 0 \rangle$ is the additive group of integers modulo p,
- $\mathbf{Q} = \langle \mathbb{Q}, +, -, \cdot, 0, 1 \rangle$ is the field of rational numbers,
- $\mathcal{P}(X) = \langle \mathcal{P}(X), -, \cap, \cup, \emptyset, X \rangle$ is the set algebra over X,
- $\bullet \mathbb{N} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ is the standard model of arithmetic.
- **•** finite automata and other models of computation,
- relational databases. . . .

A structure for a language

Let $L = \langle \mathcal{R}, \mathcal{F} \rangle$ be a signature of a language and A be a nonempty set.

- A *realization* (*interpretation*) of a *relation symbol R* ∈ R on *A* is any relation $R^A \subseteq A^{\text{ar}(R)}$. A realization of $=$ on A is the relation Id_A (identity).
- A *realization* (*interpretation*) of a *function symbol f* ∈ F on *A* is any function f^A : $A^{\text{ar}(f)} \rightarrow A$. Thus a realization of a constant symbol is some element of *A*.

A *structure* for the language *L* (*L-structure*) is a triple $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$, where

- *A* is nonempty set, called the *domain* of the structure A,
- $\mathcal{R}^A = \langle R^A \mid R \in \mathcal{R} \rangle$ is a collection of realizations of relation symbols,
- $\mathcal{F}^A = \langle f^A \, | \, f \in \mathcal{F} \rangle$ is a collection of realizations of function symbols.

A structure for the language *L* is also called a *model of the language L*. The class of all models of *L* is denoted by $M(L)$. *Examples for* $L = \langle \leq \rangle$ *are* $\langle \mathbb{N}, \leq \rangle$, $\langle \mathbb{Q}, \geq \rangle$, $\langle X, E \rangle$, $\langle \mathcal{P}(X), \subseteq \rangle$.

Value of terms

Let *t* be a term of $L = \langle \mathcal{R}, \mathcal{F} \rangle$ and $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ be an *L*-structure.

- A *variable assignment* over the domain A is a function $e: Var \rightarrow A$.
- The *value t^A*[e] of the term *t* in the structure A with respect to the assignment *e* is defined by

 $x^A[e] = e(x)$ for every $x \in \text{Var}$, $(f(t_1,\ldots,t_n))^A[e] = f^A(t_1^A[e],\ldots,t_n^A[e])$ for every $f \in \mathcal{F}$.

- In particular, for a constant symbol *c* we have $c^A[e] = c^A$.
- If *t* is a ground term, its value in A is independent on the assignment *e*.
- The value of *t* in A depends only on the assignment of variables in *t*.

For example, the value of the term $x + 1$ *in the structure* $\mathcal{N} = \langle \mathbb{N}, +, 1 \rangle$ with *respect to the assignment* e *<i>with* $e(x) = 2$ *is* $(x + 1)^N[e] = 3$.

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B} \oplus \mathbf{B} \opl$

Values of atomic formulas

Let φ be an atomic formula of $L = \langle \mathcal{R}, \mathcal{F} \rangle$ in the form $R(t_0, \ldots, t_{n-1}),$

 $\mathcal{A} = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ be an *L*-structure, and *e* be a variable assignment over A .

The *value* $H_{at}^A(\varphi)[e]$ of the formula φ in the structure ${\mathcal A}$ with respect to e is

$$
H_{at}^{A}(R(t_{1},...,t_{n))[e] = \begin{cases} 1 & \text{if } (t_{1}^{A}[e],...,t_{n}^{A}[e]) \in R^{A}, \\ 0 & \text{otherwise.} \end{cases}
$$

where $=^{A}$ is Id_A; that is, $H_{at}^{A}(t_{1} = t_{2})[e] = 1$ if $t_{1}^{A}[e] = t_{2}^{A}[e]$, and $H_{at}^{A}(t_{1} = t_{2})[e] = 0$ otherwise.

- **If** φ is a sentence; that is, all its terms are ground, then its value in A is independent on the assignment *e*.
- The value of φ in A depends only on the assignment of variables in φ .

For example, the value of φ *in form* $x + 1 \leq 1$ *in* $\mathcal{N} = \langle \mathbb{N}, +, 1, \leq \rangle$ with *respect to the assignment* e *is* $H_{at}^N(\varphi)[e]=1$ *if and only if* $e(x)=0.$

KONKRAKS KRAU

Values of formulas

The *value* $H^A(\varphi)[e]$ of the formula φ in the structure ${\mathcal A}$ with respect to e is

 $H^A(\varphi)[e] = H^A_{at}(\varphi)[e]$ if φ is atomic, $H^A(\neg\varphi)[e] = -1(H^A(\varphi)[e])$ $H^A(\varphi \wedge \psi)[e] = \wedge_1(H^A(\varphi)[e], H^A(\psi)[e])$ $H^A(\varphi \vee \psi)[e] = \vee_1(H^A(\varphi)[e], H^A(\psi)[e])$ $H^A(\varphi \to \psi)[e] = \to_1 (H^A(\varphi)[e], H^A(\psi)[e])$ $H^A(\varphi \leftrightarrow \psi)[e] = \leftrightarrow_1 (H^A(\varphi)[e], H^A(\psi)[e])$ $H^A((\forall x)\varphi)[e] = \min_{a \in A} (H^A(\varphi)[e(x/a)])$ $H^A((\exists x)\varphi)[e] = \max_{a \in A}(H^A(\varphi)[e(x/a)])$

where $-1, \wedge_1, \vee_1, \rightarrow_1, \leftrightarrow_1$ are the Boolean functions given by the tables and $e(x/a)$ for $a \in A$ denotes the assignment obtained from *e* by setting $e(x) = a$. *Observation* $H^A(\varphi)[e]$ *depends only on the assignment of free variables in* φ *.*

イロト イ押ト イヨト イヨト

Satisfiability with respect to assignments

The structure A satisfies the formula φ with assignment *e* if $H^A(\varphi)[e]=1$. Then we write $A \models \varphi[e]$, and $A \not\models \varphi[e]$ otherwise. It holds that

$A \models \neg \varphi[e]$	\Leftrightarrow	$A \not\models \varphi[e]$
$A \models (\varphi \land \psi)[e]$	\Leftrightarrow	$A \models \varphi[e]$ and $A \models \psi[e]$
$A \models (\varphi \lor \psi)[e]$	\Leftrightarrow	$A \models \varphi[e]$ or $A \models \psi[e]$
$A \models (\varphi \to \psi)[e]$	\Leftrightarrow	$A \models \varphi[e]$ implies $A \models \psi[e]$
$A \models (\varphi \leftrightarrow \psi)[e]$	\Leftrightarrow	$A \models \varphi[e]$ if and only if $A \models \psi[e]$
$A \models (\forall x)\varphi[e]$	\Leftrightarrow	$A \models \varphi[e(x/a)]$ for every $a \in A$
$A \models (\exists x)\varphi[e]$	\Leftrightarrow	$A \models \varphi[e(x/a)]$ for some $a \in A$

Observation Let term *t* be *substitutable* for *x* in φ and ψ be a variant of φ . *Then for every structure* A *and assignment e*

1)
$$
A \models \varphi(x/t)[e]
$$
 if and only if $A \models \varphi[e(x/a)]$ where $a = t^A[e]$,

2)
$$
A \models \varphi[e]
$$
 if and only if $A \models \psi[e]$.

イロト イ母 トイラ トイラトー

Validity in a structure

Let φ be a formula of a language *L* and A be an *L*-structure.

- $\bullet \varphi$ is *valid* (*true*) *in the structure* A, denoted by $A \models \varphi$, if $A \models \varphi[e]$ for every *e*: Var \rightarrow *A*. We say that *A satisfies* φ . Otherwise, we write $\mathcal{A} \not\models \varphi$.
- $\bullet \varphi$ is *contradictory in* A if $\mathcal{A} \models \neg \varphi$; that is, $\mathcal{A} \not\models \varphi[e]$ for every $e \colon \text{Var} \to \mathcal{A}$.
- **•** For every formulas φ, ψ , variable x, and structure A

- If φ is a sentence, it is valid or contradictory in A, and thus (1) holds also in \Leftarrow . If moreover ψ is a sentence, also (3) holds in \Rightarrow .
- **By** (4), $\mathcal{A} \models \varphi$ if and only if $\mathcal{A} \models \psi$ where ψ is a *universal closure* of φ , i.e. a formula $(\forall x_1) \cdots (\forall x_n) \varphi$ where x_1, \ldots, x_n are all free variables in φ .

イロメ イ母メ イヨメ イヨメ

Validity in a theory

- A *theory* of language *L* is any set *T* of formulas of *L* (so called *axioms*).
- A *model of a theory* T is an L-structure A such that $A \models \varphi$ for every $\varphi \in T$. Then we write $\mathcal{A} \models T$ and we say that A *satisfies* T.
- The *class of models* of a theory *T* is $M(T) = \{A \in M(L) | A \models T\}.$
- A formula φ is *valid in T* (*true in T*), denoted by $T \models \varphi$, if $A \models \varphi$ for every model A of T. Otherwise, we write $T \not\models \varphi$.
- $\bullet \varphi$ is *contradictory in T* if $T \models \neg \varphi$, i.e. φ is contradictory in all models of *T*.
- φ is *independent in T* if it is neither valid nor contradictory in *T*.
- **•** If $T = \emptyset$, we have $M(T) = M(L)$ and we omit *T*, eventually we say *"in logic"*. Then $\models \varphi$ means that φ is (*universally*) *valid* (a *tautology*).
- A *consequence* of T is the set $\theta^L(T)$ of all sentences of L valid in T , i.e. $\theta^L(T) = \{ \varphi \in \operatorname{Fm}_L \mid T \models \varphi \text{ and } \varphi \text{ is a sentence} \}.$

KONKRAKS KRAU

G.

Example of a theory

A *theory of orderings T* in language $L = \langle \leq \rangle$ with equality has axioms

 $x \leq x$ (reflexivity) $x \leq y \land y \leq x \rightarrow x = y$ (antisymmetry) $x \leq y \land y \leq z \rightarrow x \leq z$ (transitivity)

Models of *T* are *L*-structures ⟨*S*, ≤*S*⟩, so called ordered sets, that satisfy the axioms of *T*, for example $\mathcal{A} = \langle \mathbb{N}, \le \rangle$ or $\mathcal{B} = \langle \mathcal{P}(X), \subseteq \rangle$ for $X = \{0, 1, 2\}.$

- **•** *A formula* φ : $x \le y \vee y \le x$ *is valid in A but not in B since B* $\models \varphi[e]$ *for the assignment* $e(x) = \{0\}, e(y) = \{1\}$, thus φ *is independent in T.*
- *A sentence* ψ: (∃*x*)(∀*y*)(*y* ≤ *x*) *is valid in* B *and contradictory in* A*, hence it is independent in T as well. We write* $B \models \psi$, $A \models \neg \psi$.
- \bullet *A formula* χ : $(x \leq \gamma \land \gamma \leq z \land z \leq x) \rightarrow (x = \gamma \land \gamma = z)$ *is valid in T*, *denoted by* $T \models \chi$, the same holds for its *universal closure*.

 QQ

メロメメ 倒 メメ きょくきょうき