Propositional and Predicate Logic - VII

Petr Gregor

KTIML MFF UK

WS 2023/2024

Validity in a theory

- A *theory* of a language L is any set T of formulas of L (so called *axioms*).
- A model of a theory T is an L-structure A such that $A \models \varphi$ for every $\varphi \in T$. Then we write $A \models T$ and we say that A satisfies T.
- The *class of models* of a theory T is $M(T) = \{A \in M(L) \mid A \models T\}$.
- A formula φ is *valid in T* (*true in T*), denoted by $T \models \varphi$, if $A \models \varphi$ for every model A of T. Otherwise, we write $T \not\models \varphi$.
- φ is *contradictory in T* if $T \models \neg \varphi$, i.e. φ is contradictory in all models of T.
- φ is *independent in T* if it is neither valid nor contradictory in T.
- If $T = \emptyset$, we have M(T) = M(L) and we omit T, eventually we say "in logic". Then $\models \varphi$ means that φ is (logically) valid (a tautology).
- A *consequence* of T is the set $\theta^L(T)$ of all sentences of L valid in T, i.e. $\theta^L(T) = \{ \varphi \in \operatorname{Fm}_L \mid T \models \varphi \text{ and } \varphi \text{ is a sentence} \}.$

Example of a theory

The *theory of orderings* T of the language $L = \langle \leq \rangle$ with equality has axioms

$$x \le x$$
 (reflexivity)
 $x \le y \land y \le x \rightarrow x = y$ (antisymmetry)
 $x \le y \land y \le z \rightarrow x \le z$ (transitivity)

Models of T are L-structures $\langle S, \leq_S \rangle$, so called <u>ordered sets</u>, that satisfy the axioms of T, for example $A = \langle \mathbb{N}, \leq \rangle$ or $\mathcal{B} = \langle \mathcal{P}(X), \subseteq \rangle$ for $X = \{0, 1, 2\}$.

- The formula $\varphi \colon x \leq y \lor y \leq x$ is valid in \mathcal{A} but not in \mathcal{B} since $\mathcal{B} \not\models \varphi[e]$ for the assignment $e(x) = \{0\}, e(y) = \{1\}$, thus φ is independent in T.
- The sentence $\psi \colon (\exists x)(\forall y)(y \le x)$ is valid in $\mathcal B$ and contradictory in $\mathcal A$, hence it is independent in T as well. We write $\mathcal B \models \psi$, $\mathcal A \models \neg \psi$.
- The formula χ : $(x \le y \land y \le z \land z \le x) \rightarrow (x = y \land y = z)$ is valid in T, denoted by $T \models \chi$, the same holds for its universal closure.

Unsatisfiability and validity

The problem of validity in a theory can be transformed to the problem of satisfiability of (another) theory.

Proposition For every theory T and sentence φ (of the same language)

$$T, \neg \varphi$$
 is unsatisfiable \Leftrightarrow $T \models \varphi$.

Proof By definitions, it is equivalent that

- (1) $T, \neg \varphi$ is unsatisfiable (i.e. it has no model),
- (2) $\neg \varphi$ is not valid in any model of T,
- (3) φ is valid in every model of T,
- (4) $T \models \varphi$. \square

Remark The assumption that φ is a sentence is necessary for $(2) \Rightarrow (3)$.

For example, the theory $\{P(c), \neg P(x)\}$ is unsatisfiable, but $P(c) \not\models P(x)$, where P is a unary relation symbol and c is a constant symbol.

Basic algebraic theories

ullet theory of groups in the language $L=\langle +,-,0
angle$ with equality has axioms

$$x+(y+z)=(x+y)+z$$
 (associativity of +)
 $0+x=x=x+0$ (0 is neutral to +)
 $x+(-x)=0=(-x)+x$ (-x is inverse of x)

- theory of *Abelian groups* has moreover ax. x + y = y + x (commutativity)
- theory of *rings* in $L = \langle +, -, \cdot, 0, 1 \rangle$ with equality has moreover axioms

```
1 \cdot x = x = x \cdot 1 (1 is neutral to ·) x \cdot (y \cdot z) = (x \cdot y) \cdot z (associativity of ·) x \cdot (y + z) = x \cdot y + x \cdot z, (x + y) \cdot z = x \cdot z + y \cdot z (distributivity)
```

- theory of *commutative rings* has moreover ax. $x \cdot y = y \cdot x$ (commutativity)
- theory of fields in the same language has additional axioms

```
x \neq 0 \rightarrow (\exists y)(x \cdot y = 1) (existence of inverses to ·) 0 \neq 1 (nontriviality)
```

Properties of theories

A theory T of a language L is (semantically)

- *inconsistent* if $T \models \bot$, otherwise T is *consistent* (*satisfiable*),
- complete if it is consistent and every sentence of L is valid in T or contradictory in T,
- an *extension* of a theory T' of language L' if $L' \subseteq L$ and $\theta^{L'}(T') \subseteq \theta^L(T)$, we say that an extension T of a theory T' is *simple* if L = L'; and *conservative* if $\theta^{L'}(T') = \theta^L(T) \cap \operatorname{Fm}_{L'}$,
- equivalent with a theory T' if T is an extension of T' and vice-versa,

Structures A, B for a language L are *elementarily equivalent*, denoted by $A \equiv B$, if they satisfy the same sentences of L.

Observation Let T and T' be theories of a language L. T is (semantically)

- (1) consistent if and only if it has a model,
- (2) complete iff it has a single model, up to elementarily equivalence,
- (3) an extension of T' if and only if $M(T) \subseteq M(T')$,
- (4) equivalent with T' if and only if M(T) = M(T').

Substructures

Let $A = \langle A, \mathcal{R}^A, \mathcal{F}^A \rangle$ and $\mathcal{B} = \langle B, \mathcal{R}^B, \mathcal{F}^B \rangle$ be structures for $L = \langle \mathcal{R}, \mathcal{F} \rangle$.

We say that \mathcal{B} is an (induced) *substructure* of \mathcal{A} , denoted by $\mathcal{B} \subseteq \mathcal{A}$, if

- (i) $B \subseteq A$,
- (ii) $R^B = R^A \cap B^{\operatorname{ar}(R)}$ for every $R \in \mathcal{R}$,
- $(\emph{iii}) \ \ f^B = f^A \cap (B^{\operatorname{ar}(f)} \times B); \text{ that is, } f^B = f^A \upharpoonright B^{\operatorname{ar}(f)}, \text{ for every } f \in \mathcal{F}.$

A set $C \subseteq A$ is a domain of some substructure of \mathcal{A} if and only if C is closed under all functions of \mathcal{A} . Then the respective substructure, denoted by $\mathcal{A} \upharpoonright C$, is said to be the *restriction* of the structure \mathcal{A} to C.

• A set $C \subseteq A$ is *closed* under a function $f: A^n \to A$ if $f(x_1, \dots, x_n) \in C$ for every $x_1, \dots, x_n \in C$.

 $\begin{array}{l} \textit{Example:} \ \underline{\mathbb{Z}} = \langle \mathbb{Z}, +, \cdot, 0 \rangle \ \textit{is a substructure of} \ \underline{\mathbb{Q}} = \langle \mathbb{Q}, +, \cdot, 0 \rangle \ \textit{and} \ \underline{\mathbb{Z}} = \underline{\mathbb{Q}} \upharpoonright \mathbb{Z}. \\ \textit{Furthermore,} \ \underline{\mathbb{N}} = \langle \mathbb{N}, +, \cdot, 0 \rangle \ \textit{is their substructure and} \ \underline{\mathbb{N}} = \underline{\mathbb{Q}} \upharpoonright \mathbb{N} = \underline{\mathbb{Z}} \upharpoonright \mathbb{N}. \end{array}$

◆□▶◆□▶◆□▶◆□▶ ● かへで

Validity in a substructure

Let $\mathcal B$ be a substructure of a structure $\mathcal A$ for a (fixed) language L.

Proposition For every open formula φ and assignment $e \colon \operatorname{Var} \to B$,

$$\mathcal{A} \models \varphi[e]$$
 if and only if $\mathcal{B} \models \varphi[e]$.

Proof For atomic φ it follows from the definition of the truth value with respect to an assignment. Otherwise by induction on the structure of the formula.

Corollary For every open formula φ and structure A,

$$\mathcal{A} \models \varphi$$
 if and only if $\mathcal{B} \models \varphi$ for every substructure $\mathcal{B} \subseteq \mathcal{A}$.

A theory T is open if all axioms of T are open.

Corollary Every substructure of a model of an open theory T is a model of T.

For example, every substructure of a graph, i.e. a model of theory of graphs, is a graph, called a subgraph. Similarly subgroups, Boolean subalgebras, etc.

Generated substructure, expansion, reduct

Let $\mathcal{A}=\langle A,\mathcal{R}^A,\mathcal{F}^A\rangle$ be a structure and $X\subseteq A$. Let B be the smallest subset of A containing X that is closed under all functions of the structure \mathcal{A} (including constants). Then the structure $\mathcal{A}\upharpoonright B$ is denoted by $\mathcal{A}\langle X\rangle$ and is called the substructure of \mathcal{A} *generated* by the set X.

Example: for $\underline{\mathbb{Q}}=\langle\mathbb{Q},+,\cdot,0\rangle$, $\underline{\mathbb{Z}}=\langle\mathbb{Z},+,\cdot,0\rangle$, $\underline{\mathbb{N}}=\langle\mathbb{N},+,\cdot,0\rangle$ it is $\underline{\mathbb{Q}}\langle\{1\}\rangle=\underline{\mathbb{N}}$, $\underline{\mathbb{Q}}\langle\{-1\}\rangle=\underline{\mathbb{Z}}$, and $\underline{\mathbb{Q}}\langle\{2\}\rangle$ is the substructure on all even natural numbers.

Let \mathcal{A} be a structure for a language L and $L' \subseteq L$. By omitting realizations of symbols that are not in L' we obtain from \mathcal{A} a structure \mathcal{A}' called the *reduct* of \mathcal{A} to the language L'. Conversely, \mathcal{A} is an *expansion* of \mathcal{A}' into L.

For example, $\langle \mathbb{N}, + \rangle$ is a reduct of $\langle \mathbb{N}, +, \cdot, 0 \rangle$. On the other hand, the structure $\langle \mathbb{N}, +, c_i \rangle_{i \in \mathbb{N}}$ with $c_i = i$ for every $i \in \mathbb{N}$ is the expansion of $\langle \mathbb{N}, + \rangle$ by names of elements from \mathbb{N} .

Theorem on constants

Theorem Let φ be a formula in a language L with free variables x_1, \ldots, x_n and let T be a theory in L. Let L' be the extension of L with new constant symbols c_1, \ldots, c_n and let T' denote the theory T in L'. Then

$$T \models \varphi$$
 if and only if $T' \models \varphi(x_1/c_1, \dots, x_n/c_n)$.

Proof (\Rightarrow) If \mathcal{A}' is a model of T', let \mathcal{A} be the reduct of \mathcal{A}' to L. Since $\mathcal{A} \models \varphi[e]$ for every assignment e, we have in particular

$$\mathcal{A} \models \varphi[e(x_1/c_1^{A'},\ldots,x_n/c_n^{A'})], \quad \text{i.e. } \mathcal{A}' \models \varphi(x_1/c_1,\ldots,x_n/c_n).$$

 (\Leftarrow) If \mathcal{A} is a model of T and e an assignment, let \mathcal{A}' be the expansion of A into L' by setting $c_i^{A'} = e(x_i)$ for every i. Since $\mathcal{A}' \models \varphi(x_1/c_1, \dots, x_n/c_n)[e']$ for every assignment e', we have

$$\mathcal{A}' \models \varphi[e(x_1/c_1^{A'}, \dots, x_n/c_n^{A'})], \text{ i.e. } \mathcal{A} \models \varphi[e]. \square$$

Extensions of theories

Proposition Let T be a theory of L and T' be a theory of L' where $L \subseteq L'$.

- (i) T' is an extension of T if and only if the reduct A of every model A' of T' to the language L is a model of T,
- (ii) T' is a conservative extension of T if T' is an extension of T and every model $\mathcal A$ of T can be expanded to the language L' on a model $\mathcal A'$ of T'.

Proof

- (i)a) If T' is an extension of T and φ is any axiom of T, then $T' \models \varphi$. Thus $\mathcal{A}' \models \varphi$ and also $\mathcal{A} \models \varphi$, which implies that \mathcal{A} is a model of T.
- (i)b) If \mathcal{A} is a model of T and $T \models \varphi$ where φ is of L, then $\mathcal{A} \models \varphi$ and also $\mathcal{A}' \models \varphi$. This implies that $T' \models \varphi$ and thus T' is an extension of T.
 - (ii) If $T' \models \varphi$ where φ is of L and $\mathcal A$ is a model of T, then in its expansion $\mathcal A'$ that models T' we have $\mathcal A' \models \varphi$. Thus also $\mathcal A \models \varphi$, and hence $T \models \varphi$. Therefore T' is conservative. \square

Extensions by definition of a relation symbol

Let T be a theory of L, $\psi(x_1,\ldots,x_n)$ be a formula of L in free variables x_1,\ldots,x_n and L' denote the language L with a new n-ary relation symbol R.

The *extension* of T by definition of R with the formula ψ is the theory T' of L' obtained from T by adding the axiom

$$R(x_1,\ldots,x_n) \leftrightarrow \psi(x_1,\ldots,x_n)$$

Observation Every model of T can be uniquely expanded to a model of T'.

Corollary T' is a conservative extension of T.

Proposition For every formula φ' of L' there is φ of L s.t. $T' \models \varphi' \leftrightarrow \varphi$.

Proof Replace each subformula $R(t_1, ..., t_n)$ in φ with $\psi'(x_1/t_1, ..., x_n/t_n)$, where ψ' is a suitable variant of ψ allowing all substitutions. \square

For example, the symbol ≤ can be defined in arithmetics by the axiom

$$x \le y \leftrightarrow (\exists z)(x + z = y)$$

Extensions by definition of a function symbol

Let T be a theory of a language L and $\psi(x_1, \ldots, x_n, y)$ be a formula of L in free variables x_1, \ldots, x_n, y such that

$$T \models (\exists y)\psi(x_1,\ldots,x_n,y)$$
 (existence)

$$T \models \psi(x_1, \dots, x_n, y) \land \psi(x_1, \dots, x_n, z) \rightarrow y = z$$
 (uniqueness)

Let L' denote the language L with a new n-ary function symbol f.

The *extension* of T by definition of f with the formula ψ is the theory T' of L' obtained from T by adding the axiom

$$f(x_1,\ldots,x_n)=y \leftrightarrow \psi(x_1,\ldots,x_n,y)$$

Remark In particular, if ψ is $t(x_1, \dots, x_n) = y$ where t is a term and x_1, \dots, x_n are the variables in t, both the conditions of existence and uniqueness hold.

For example binary - can be defined using + and unary - by the axiom

$$x - y = z \leftrightarrow x + (-y) = z$$

Extensions by definition of a function symbol (cont.)

Observation Every model of T can be uniquely expanded to a model of T'. **Corollary** T' is a conservative extension of T.

Proposition For every formula φ' of L' there is φ of L s.t. $T' \models \varphi' \leftrightarrow \varphi$.

Proof It suffices to consider φ' with a single occurrence of f. If φ' has more, we may proceed inductively. Let φ^* denote the formula obtained from φ' by replacing the term $f(t_1,\ldots,t_n)$ with a new variable z. Let φ be the formula

$$(\exists z)(\varphi^* \wedge \psi'(x_1/t_1,\ldots,x_n/t_n,y/z)),$$

where ψ' is a suitable variant of ψ allowing all substitutions.

Let $\mathcal A$ be a model of T', e be an assignment, and $a=f^A(t_1,\dots,t_n)[e]$. By the two conditions, $\mathcal A\models\psi'(x_1/t_1,\dots,x_n/t_n,y/z)[e]$ if and only if e(z)=a. Thus

$$\mathcal{A} \models \varphi[e] \Leftrightarrow \mathcal{A} \models \varphi^*[e(z/a)] \Leftrightarrow \mathcal{A} \models \varphi'[e]$$

for every assignment e, i.e. $A \models \varphi' \leftrightarrow \varphi$ and so $T' \models \varphi' \leftrightarrow \varphi$. \square

(ロ) (部) (注) (注) 注 り(で)

Extensions by definitions

A theory T' of L' is called an *extension* of a theory T of L by definitions if it is obtained from T by successive definitions of relation and function symbols.

Corollary Let T' be an extension of a theory T by definitions. Then

- every model of T can be uniquely expanded to a model of T',
- T' is a conservative extension of T,
- for every formula φ' of L' there is a formula φ of L such that $T' \models \varphi' \leftrightarrow \varphi$.

For example, in $T=\{(\exists y)(x+y=0), (x+y=0) \land (x+z=0) \rightarrow y=z\}$ of $L=\langle +,0,\leq \rangle$ with equality we can define < and unary - by the axioms

$$-x = y \leftrightarrow x + y = 0$$

$$x < y \leftrightarrow x \le y \land \neg(x = y)$$

Then the formula -x < y is equivalent in this extension to a formula

$$(\exists z)((z \le y \land \neg(z = y)) \land x + z = 0).$$

Definable sets

We interested in which sets can be defined within a given structure.

• A set defined by a formula $\varphi(x_1, \ldots, x_n)$ in structure \mathcal{A} is the set

$$\varphi^{\mathcal{A}}(x_1,\ldots,x_n)=\{(a_1,\ldots,a_n)\in A^n\mid \mathcal{A}\models \varphi[e(x_1/a_1,\ldots,x_n/a_n)]\}.$$

Shortly, $\varphi^{\mathcal{A}}(\overline{x}) = \{ \overline{a} \in A^{|\overline{x}|} \mid \mathcal{A} \models \varphi[e(\overline{x}/\overline{a})] \}$, where $|\overline{x}| = n$.

• A set defined by a formula $\varphi(\overline{x},\overline{y})$ with parameters $\overline{b}\in A^{|\overline{y}|}$ in $\mathcal A$ is

$$\varphi^{\mathcal{A},\overline{b}}(\overline{x},\overline{y}) = \{\overline{a} \in A^{|\overline{x}|} \mid \mathcal{A} \models \varphi[e(\overline{x}/\overline{a},\overline{y}/\overline{b})]\}.$$

Example: $E(x,y)^{\mathcal{G},b}$ is the set of neighbors of a vertex b in a graph \mathcal{G} .

• For a structure A, a set $B \subseteq A$, and $n \in \mathbb{N}$ let $\mathbf{Df}^n(A, B)$ denote the class of definable sets $D \subseteq A^n$ in the structure A with parameters from B.

Observation $\mathrm{Df}^n(\mathcal{A},B)$ is closed under complements, union, intersection and it contains \emptyset , A^n . Thus it forms a subalgebra of the set algebra $\underline{\mathcal{P}}(A^n)$.

Example - database queries

Movie	name	director	actor	Program	cinema	name	time
	Lidé z Maringotek	M. Frič	J. Tříska		Světozor	Po strništi bos	13:15
	Po strništi bos	J. Svěrák	Z. Svěrák		Mat	Po strništi bos	16:15
	Po strništi bos	J. Svěrák	J. Tříska		Mat	Lidé z Maringotek	18:30

Where and when can I see a movie with J. Tříska?

select *Program.cinema*, *Program.time* **from** *Movie*, *Program* **where** *Movie.name* = *Program.name* **and** *actor* = 'J. Tříska';

Equivalently, it is the set $\varphi^{\mathcal{D}}(x, y)$ defined by the formula $\varphi(x, y)$

$$(\exists n)(\exists d)(P(x,n,y) \land M(n,d,'J. Tříska'))$$

in the structure $\mathcal{D}=\langle D, Movie, Program, c^D \rangle_{c \in D}$ of $L=\langle M, P, c \rangle_{c \in D}$, where $D=\{\text{'Po strništi bos', 'J. Tříska', 'Mat', '13:15', ...}\}$ and $c^D=c$ for any $c \in D$.

Boolean algebras

The theory of *Boolean algebras* has the language $L = \langle -, \wedge, \vee, 0, 1 \rangle$ with equality and the following axioms.

$$x \wedge (y \wedge z) = (x \wedge y) \wedge z \qquad \qquad \text{(asociativity of } \wedge \text{)}$$

$$x \vee (y \vee z) = (x \vee y) \vee z \qquad \qquad \text{(asociativity of } \vee \text{)}$$

$$x \wedge y = y \wedge x \qquad \qquad \text{(commutativity of } \wedge \text{)}$$

$$x \wedge (y \vee z) = (x \wedge y) \vee (x \wedge z) \qquad \qquad \text{(distributivity of } \wedge \text{ over } \vee \text{)}$$

$$x \wedge (y \vee z) = (x \vee y) \wedge (x \vee z) \qquad \qquad \text{(distributivity of } \wedge \text{ over } \vee \text{)}$$

$$x \wedge (x \vee y) = x, \quad x \vee (x \wedge y) = x \qquad \qquad \text{(absorption)}$$

$$x \wedge (x \vee y) = x, \quad x \vee (x \wedge y) = x \qquad \qquad \text{(absorption)}$$

$$x \vee (-x) = 1, \quad x \wedge (-x) = 0 \qquad \qquad \text{(complementation)}$$

$$0 \neq 1 \qquad \qquad \text{(non-triviality)}$$

The smallest model is $\underline{2} = \langle \{0,1\}, -1, \wedge_1, \vee_1, 0, 1 \rangle$. Finite Boolean algebras are (up to isomorphism) $\langle \{0,1\}^n, -n, \wedge_n, \vee_n, 0_n, 1_n \rangle$ for $n \in \mathbb{N}^+$, where the operations *(on binary n-tuples)* are the coordinate-wise operations of 2.

Relations of propositional and predicate logic

- Propositional formulas over connectives \neg , \wedge , \vee (eventually with \top , \bot) can be viewed as Boolean terms. Then the truth value of φ in a given assignment is the value of the term in the Boolean algebra $\underline{2}$.
- Lindenbaum-Tarski algebra over $\mathbb P$ is Boolean algebra (also for $\mathbb P$ infinite).
- If we represent atomic subformulas in an open formula φ (without equality) with propositional letters, we obtain a proposition that is valid if and only if φ is valid.
- Propositional logic can be introduced as a fragment of predicate logic using nullary relation symbols (*syntax*) and nullary relations (*semantics*) since $A^0 = \{\emptyset\} = 1$, so $R^A \subseteq A^0$ is either $R^A = \emptyset = 0$ or $R^A = \{\emptyset\} = 1$.

