Propositional and Predicate Logic - VII

Petr Gregor

KTIML MFF UK

WS 2023/2024

Petr Gregor (KTIML MFF UK) [Propositional and Predicate Logic - VII](#page-18-0) WS 2023/2024 1/19

画

メロメメ 御 メメ きょく きょう

Validity in a theory

- A *theory* of a language *L* is any set *T* of formulas of *L* (so called *axioms*).
- A *model of a theory* T is an L-structure A such that $A \models \varphi$ for every $\varphi \in T$. Then we write $\mathcal{A} \models T$ and we say that A *satisfies* T.
- The *class of models* of a theory *T* is $M(T) = \{A \in M(L) | A \models T\}.$
- A formula φ is *valid in T* (*true in T*), denoted by $T \models \varphi$, if $A \models \varphi$ for every model A of T. Otherwise, we write $T \not\models \varphi$.
- $\bullet \varphi$ is *contradictory in T* if $T \models \neg \varphi$, i.e. φ is contradictory in all models of *T*.
- φ is *independent in T* if it is neither valid nor contradictory in *T*.
- **•** If $T = \emptyset$, we have $M(T) = M(L)$ and we omit *T*, eventually we say *"in logic"*. Then $\models \varphi$ means that φ is (*logically*) *valid* (a *tautology*).
- A *consequence* of T is the set $\theta^L(T)$ of all sentences of L valid in T , i.e. $\theta^L(T)=\{\varphi\in \operatorname{Fm}_L\mid T\models \varphi \text{ and } \varphi \text{ is a sentence}\}.$

G.

Example of a theory

The *theory of orderings T* of the language $L = \langle \leq \rangle$ with equality has axioms

 $x \leq x$ (reflexivity) $x \leq y \land y \leq x \rightarrow x = y$ (antisymmetry) $x \leq y \land y \leq z \rightarrow x \leq z$ (transitivity)

Models of *T* are *L*-structures ⟨*S*, ≤*S*⟩, so called ordered sets, that satisfy the axioms of *T*, for example $\mathcal{A} = \langle \mathbb{N}, \le \rangle$ or $\mathcal{B} = \langle \mathcal{P}(X), \subseteq \rangle$ for $X = \{0, 1, 2\}.$

- **•** The formula $\varphi: x \leq y \vee y \leq x$ is valid in A but not in B since $\mathcal{B} \not\models \varphi[e]$ *for the assignment* $e(x) = \{0\}, e(y) = \{1\}$, thus φ *is independent in T.*
- *The sentence* ψ: (∃*x*)(∀*y*)(*y* ≤ *x*) *is valid in* B *and contradictory in* A*, hence it is independent in T as well. We write* $B \models \psi$, $A \models \neg \psi$.
- The formula $\chi: (x \le y \land y \le z \land z \le x) \rightarrow (x = y \land y = z)$ is valid in T, *denoted by* $T \models \chi$, the same holds for its *universal closure*.

Unsatisfiability and validity

The problem of validity in a theory can be transformed to the problem of satisfiability of (another) theory.

Proposition *For every theory T* and sentence φ (of the same language)

 $T, \neg \varphi$ *is unsatisfiable* \Leftrightarrow $T \models \varphi$.

Proof By definitions, it is equivalent that

- (1) $T, \neg \varphi$ is unsatisfiable (i.e. it has no model),
- (2) $\neg \varphi$ is not valid in any model of *T*,
- (3) φ is valid in every model of *T*,

(4) $T \models \varphi$. \square

Remark The assumption that φ *is a sentence is necessary for* $(2) \Rightarrow (3)$ *. For example, the theory* $\{P(c), \neg P(x)\}$ *is unsatisfiable, but* $P(c) \not\models P(x)$ *, where P is a unary relation symbol and c is a constant symbol.*

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - ' 큰' - K) Q Q @

Basic algebraic theories

- theory of *groups* in the language $L = \langle +, -, 0 \rangle$ with equality has axioms $x + (y + z) = (x + y) + z$ (associativity of +) $0 + x = x = x + 0$ (0 is neutral to +) $x + (-x) = 0 = (-x) + x$ (−*x* is inverse of *x*)
- theory of *Abelian groups* has moreover ax. $x + y = y + x$ (commutativity)
- theory of *rings* in $L = \langle +, -, \cdot, 0, 1 \rangle$ with equality has moreover axioms
	- $1 \cdot x = x = x \cdot 1$ (1 is neutral to ·)
	- $x \cdot (y \cdot z) = (x \cdot y) \cdot z$ (associativity of ·)
	- $x \cdot (y + z) = x \cdot y + x \cdot z$, $(x + y) \cdot z = x \cdot z + y \cdot z$ (distributivity)
- theory of *commutative rings* has moreover ax. $x \cdot y = y \cdot x$ (commutativity)
- **•** theory of *fields* in the same language has additional axioms
	- $x \neq 0 \rightarrow (\exists y)(x \cdot y = 1)$ (existence of inverses to ·) $0 \neq 1$ (nontriviality)

Properties of theories

A theory *T* of a language *L* is *(semantically)*

- *inconsistent* if *T* |= ⊥, otherwise *T* is *consistent* (*satisfiable*),
- *complete* if it is consistent and every sentence of *L* is valid in *T* or contradictory in *T*,
- an *extension* of a theory T' of language L' if $L' \subseteq L$ and $\theta^{L'}(T') \subseteq \theta^L(T)$, we say that an extension T of a theory T' is \boldsymbol{s} imple if $L=L'$; and *conservative* if $\theta^{L'}(T') = \theta^{L}(T) \cap \text{Fm}_{L'}$,
- *equivalent* with a theory *T* ′ if *T* is an extension of *T* ′ and vice-versa,

Structures A, B for a language *L* are *elementarily equivalent*, denoted by $A \equiv B$, if they satisfy the same sentences of L.

Observation *Let T and T* ′ *be theories of a language L. T is (semantically)*

- (1) *consistent if and only if it has a model,*
- (2) *complete iff it has a single model, up to elementarily equivalence,*
- (3) an extension of T' if and only if $M(T) \subseteq M(T')$,
- (4) *equivalent with* T' *if and only if* $M(T) = M(T')$ *.*

∍

Substructures

Let $\mathcal{A}=\langle A,\mathcal{R}^A,\mathcal{F}^A\rangle$ and $\mathcal{B}=\langle B,\mathcal{R}^B,\mathcal{F}^B\rangle$ be structures for $L=\langle\mathcal{R},\mathcal{F}\rangle.$

We say that B is an (induced) *substructure* of A, denoted by $B \subseteq A$, if

 (i) $B \subseteq A$, (iii) $R^B = R^A \cap B^{ar(R)}$ for every $R \in \mathcal{R}$, (iii) $f^B = f^A \cap (B^{\operatorname{ar}(f)} \times B)$; that is, $f^B = f^A \restriction B^{\operatorname{ar}(f)}$, for every $f \in \mathcal{F}$.

A set *C* ⊆ *A* is a domain of some substructure of A if and only if *C* is closed under all functions of A. Then the respective substructure, denoted by $\mathcal{A} \restriction C$, is said to be the *restriction* of the structure A to *C*.

A set $C \subseteq A$ is *closed* under a function $f: A^n \to A$ if $f(x_1, \ldots, x_n) \in C$ for every $x_1, \ldots, x_n \in C$.

Example: $\underline{\mathbb{Z}} = \langle \mathbb{Z}, +, \cdot, 0 \rangle$ *is a substructure of* $\mathbb{Q} = \langle \mathbb{Q}, +, \cdot, 0 \rangle$ *and* $\underline{\mathbb{Z}} = \mathbb{Q} \upharpoonright \mathbb{Z}$ *. Furthermore,* $\underline{N} = \langle N, +, \cdot, 0 \rangle$ *is their substructure and* $\underline{N} = \mathbb{Q} \restriction N = \mathbb{Z} \restriction N$.

Validity in a substructure

Let B be a substructure of a structure A for a (fixed) language *L*. **Proposition** *For every open formula* φ *and assignment* $e: \text{Var} \rightarrow B$ *,* $\mathcal{A} \models \varphi[e]$ *if and only if* $\mathcal{B} \models \varphi[e]$.

Proof For atomic φ it follows from the definition of the truth value with respect to an assignment. Otherwise by induction on the structure of the formula. \Box

Corollary *For every open formula* φ *and structure* A,

 $A \models \varphi$ *if and only if* $B \models \varphi$ *for every substructure* $B \subseteq A$.

A theory *T* is *open* if all axioms of *T* are open.

Corollary *Every substructure of a model of an open theory T is a model of T.*

For example, every substructure of a graph, i.e. a model of theory of graphs, is a graph, called a subgraph. Similarly subgroups, Boolean subalgebras, etc.

KOD KARD KED KEL YOUR

Generated substructure, expansion, reduct

Let $\mathcal{A}=\langle A,\mathcal{R}^A,\mathcal{F}^A\rangle$ be a structure and $X\subseteq A.$ Let B be the smallest subset of *A* containing *X* that is closed under all functions of the structure A (including constants). Then the structure $A \restriction B$ is denoted by $A\langle X \rangle$ and is called the substructure of A *generated* by the set *X*.

Example: for $\mathbb{Q} = \langle \mathbb{Q}, +, \cdot, 0 \rangle$, $\mathbb{Z} = \langle \mathbb{Z}, +, \cdot, 0 \rangle$, $\mathbb{N} = \langle \mathbb{N}, +, \cdot, 0 \rangle$ *it is* $\mathbb{Q}\langle \{1\} \rangle = \mathbb{N}$, Q⟨{−1}⟩ = Z*, and* Q⟨{2}⟩ *is the substructure on all even natural numbers.*

Let ${\mathcal A}$ be a structure for a language L and $L' \subseteq L$. By omitting realizations of symbols that are not in *L* ′ we obtain from A a structure A′ called the *reduct* of A to the language *L* ′ . Conversely, A is an *expansion* of A′ into *L*.

For example, ⟨N, +⟩ *is a reduct of* ⟨N, +, ·, 0⟩*. On the other hand, the structure* $\langle \mathbb{N}, +, c_i \rangle_{i \in \mathbb{N}}$ with $c_i = i$ for every $i \in \mathbb{N}$ is the expansion of $\langle \mathbb{N}, + \rangle$ by names of *elements from* N*.*

Theorem on constants

Theorem Let φ be a formula in a language L with free variables x_1, \ldots, x_n *and let T be a theory in L. Let L* ′ *be the extension of L with new constant symbols c*1, . . . , *cⁿ and let T* ′ *denote the theory T in L* ′ *. Then*

 $T \models \varphi$ *if and only if* $T' \models \varphi(x_1/c_1, \ldots, x_n/c_n)$.

Proof (\Rightarrow) If A' is a model of T', let A be the reduct of A' to L. Since $A \models \varphi[e]$ for every assignment *e*, we have in particular

> $\mathcal{A} \models \varphi[\pmb{e}(x_1/c_1^{A'})]$ $x_1^{A'}, \ldots, x_n/c_n^{A'}$ $\left[\begin{array}{c}A'\\n\end{array}\right]$, i.e. $A' \models \varphi(x_1/c_1, \ldots, x_n/c_n)$.

 (\Leftarrow) If A is a model of T and e an assignment, let A' be the expansion of A into L' by setting $c_i^{A'} = e(x_i)$ for every i . Since $A' \models \varphi(x_1/c_1, \ldots, x_n/c_n)[e']$ for every assignment *e* ′ , we have

$$
\mathcal{A}'\models \varphi[e(x_1/c_1^{A'},\ldots,x_n/c_n^{A'})],\quad \text{i.e. }\mathcal{A}\models \varphi[e].\quad \Box
$$

Extensions of theories

Proposition Let T be a theory of L and T' be a theory of L' where $L \subseteq L'$.

- (*i*) *T* ′ *is an extension of T if and only if the reduct* A *of every model* A′ *of T* ′ *to the language L is a model of T,*
- (*ii*) *T* ′ *is a conservative extension of T if T* ′ *is an extension of T and every model* A of T can be *expanded* to the language L' on a model A' of T'. *Proof*
- $(i)a$) If T' is an extension of T and φ is any axiom of T , then $T' \models \varphi$. Thus $\mathcal{A}'\models\varphi$ and also $\mathcal{A}\models\varphi$, which implies that \mathcal{A} is a model of $T.$
- $(i)b$ If A is a model of T and $T \models \varphi$ where φ is of L, then $\mathcal{A} \models \varphi$ and also $\mathcal{A}'\models\varphi.$ This implies that $T'\models\varphi$ and thus T' is an extension of $T.$
	- (*ii*) If $T' \models \varphi$ where φ is of *L* and *A* is a model of *T*, then in its expansion *A'* that models T' we have $\mathcal{A}'\models\varphi.$ Thus also $\mathcal{A} \models\varphi.$ and hence $T\models\varphi.$ Therefore T' is conservative.

メロメメ 御 メメ きょく ヨメー

G.

Extensions by definition of a relation symbol

Let *T* be a theory of *L*, $\psi(x_1, \ldots, x_n)$ be a formula of *L* in free variables x_1, \ldots, x_n and L' denote the language L with a new n -ary relation symbol R .

The *extension* of T *by definition of R* with the formula ψ is the theory T' of L' obtained from *T* by adding the axiom

 $R(x_1, \ldots, x_n) \leftrightarrow \psi(x_1, \ldots, x_n)$

Observation *Every model of T can be uniquely expanded to a model of T* ′ *.* **Corollary** *T* ′ *is a conservative extension of T.*

Proposition For every formula φ' of L' there is φ of L s.t. $T' \models \varphi' \leftrightarrow \varphi$. *Proof* Replace each subformula $R(t_1, \ldots, t_n)$ in φ with $\psi'(x_1/t_1, \ldots, x_n/t_n)$, where ψ' is a suitable variant of ψ allowing all substitutions. \Box

For example, the symbol ≤ *can be defined in arithmetics by the axiom*

$$
x \leq y \ \leftrightarrow \ (\exists z)(x+z=y)
$$

Extensions by definition of a function symbol

Let *T* be a theory of a language *L* and $\psi(x_1, \ldots, x_n, y)$ be a formula of *L* in free variables x_1, \ldots, x_n, y such that

 $T \models (\exists \gamma) \psi(x_1, \ldots, x_n, \gamma)$ (existence)

 $T \models \psi(x_1, \ldots, x_n, y) \land \psi(x_1, \ldots, x_n, z) \rightarrow y = z$ (uniqueness)

Let *L* ′ denote the language *L* with a new *n*-ary function symbol *f* .

The *extension* of T *by definition of* f *with the formula* ψ *is the theory* T' *of* L' obtained from *T* by adding the axiom

$$
f(x_1,\ldots,x_n)=y\ \leftrightarrow\ \psi(x_1,\ldots,x_n,y)
$$

Remark In particular, if ψ *is* $t(x_1, \ldots, x_n) = \gamma$ *where t is a term and* x_1, \ldots, x_n *are the variables in t, both the conditions of existence and uniqueness hold. For example binary* − *can be defined using* + *and unary* − *by the axiom*

$$
x - y = z \ \leftrightarrow \ x + (-y) = z
$$

KOD KARD KED KEL YOUR

Extensions by definition of a function symbol (cont.)

Observation *Every model of T can be uniquely expanded to a model of T* ′ *.* **Corollary** *T* ′ *is a conservative extension of T.*

Proposition For every formula φ' of L' there is φ of L s.t. $T' \models \varphi' \leftrightarrow \varphi$.

Proof It suffices to consider φ' with a single occurrence of f. If φ' has more, we may proceed inductively. Let φ^* denote the formula obtained from φ' by replacing the term $f(t_1, \ldots, t_n)$ with a new variable *z*. Let φ be the formula

 $(\exists z)(\varphi^* \land \psi'(x_1/t_1, \ldots, x_n/t_n, y/z)),$

where ψ' is a suitable variant of ψ allowing all substitutions.

Let ${\cal A}$ be a model of $T',$ e be an assignment, and $a=f^A(t_1,\ldots,t_n)[e].$ By the two conditions, $\mathcal{A} \models \psi'(x_1/t_1, \dots, x_n/t_n, y/z)[e]$ if and only if $e(z) = a.$ Thus $\mathcal{A} \models \varphi[e] \Leftrightarrow \mathcal{A} \models \varphi^*[e(z/a)] \Leftrightarrow \mathcal{A} \models \varphi'[e]$

for every assignment $e,$ i.e. $\mathcal{A} \models \varphi' \leftrightarrow \varphi$ and so $T' \models \varphi' \leftrightarrow \varphi.$ \Box

Extensions by definitions

A theory *T* ′ of *L* ′ is called an *extension* of a theory *T* of *L by definitions* if it is obtained from *T* by successive definitions of relation and function symbols. **Corollary** *Let T* ′ *be an extension of a theory T by definitions. Then*

- *every model of T can be uniquely expanded to a model of T* ′ *,*
- *T* ′ *is a conservative extension of T,*
- *for every formula* φ' *of L'* there is a formula φ *of L* such that $T' \models \varphi' \leftrightarrow \varphi$.

For example, in $T = \{(\exists y)(x + y = 0), (x + y = 0) \land (x + z = 0) \rightarrow y = z\}$ of $L = \langle +, 0, \le \rangle$ *with equality we can define* \langle *and unary – by the axioms*

$$
-x = y \Leftrightarrow x + y = 0
$$

$$
x < y \Leftrightarrow x \leq y \wedge \neg(x = y)
$$

Then the formula −*x* < *y is equivalent in this extension to a formula*

$$
(\exists z)((z \leq y \ \land \ \neg(z = y)) \ \land \ x + z = 0).
$$

イロト イ母 トイヨ トイヨ トー

G.

Definable sets

We interested in which sets can be defined within a given structure.

• A set defined by a formula $\varphi(x_1, \ldots, x_n)$ in structure A is the set

 $\varphi^{\mathcal{A}}(x_1, ..., x_n) = \{ (a_1, ..., a_n) \in A^n \mid \mathcal{A} \models \varphi[e(x_1/a_1, ..., x_n/a_n)] \}.$

Shortly, $\varphi^{\mathcal{A}}(\overline{x}) = \{ \overline{a} \in A^{|\overline{x}|} \mid \mathcal{A} \models \varphi[e(\overline{x}/\overline{a})] \}$, where $|\overline{x}| = n$.

A set defined by a formula $\varphi(\overline{x},\overline{y})$ *<i>with parameters* $\overline{b} \in A^{|\overline{y}|}$ *in* $\mathcal A$ *is*

 $\varphi^{\mathcal{A},b}(\overline{x},\overline{y}) = \{\overline{a} \in A^{|\overline{x}|} \mid \mathcal{A} \models \varphi[\overline{e}(\overline{x}/\overline{a},\overline{y}/\overline{b})]\}.$

Example: $E(x, y)^{\mathcal{G}, b}$ *is the set of neighbors of a vertex b in a graph* \mathcal{G} *.*

For a structure A, a set $B \subseteq A$, and $n \in \mathbb{N}$ let $\text{D}f^n(\mathcal{A}, B)$ denote the class of definable sets $D \subseteq A^n$ in the structure A with parameters from B .

Observation Df*ⁿ* (A, *B*) *is closed under complements, union, intersection* and it contains \emptyset , A^n . Thus it forms a subalgebra of the set algebra $\underline{P}(A^n)$.

Example - database queries

Where and when can I see a movie with J. Tříska?

select *Program.cinema, Program.time* **from** *Movie, Program* **where** *Movie.name* = *Program.name* **and** *actor* = 'J. Tříska';

Equivalently, it is the set $\varphi^{\mathcal{D}}(x, y)$ defined by the formula $\varphi(x, y)$

 $(\exists n)(\exists d)(P(x, n, v) \wedge M(n, d, 'J, T\check{r}$ íska'))

in the structure $\mathcal{D} = \langle D, Movie, Program, c^D \rangle_{c \in D}$ of $L = \langle M, P, c \rangle_{c \in D},$ where $D = \{$ 'Po strništi bos', 'J. Tříska', 'Mat', '13:15', $\dots\}$ and $c^D = c$ for any $c \in D.$

イロト イ母 トイラ トイラトー

Boolean algebras

The theory of *Boolean algebras* has the language $L = \langle -, \wedge, \vee, 0, 1 \rangle$ with equality and the following axioms.

$$
x \land (y \land z) = (x \land y) \land z
$$
 (associativity of \land)
\n
$$
x \lor (y \lor z) = (x \lor y) \lor z
$$
 (associativity of \land)
\n
$$
x \land y = y \land x
$$
 (commutativity of \land)
\n
$$
x \lor y = y \lor x
$$
 (commutativity of \land)
\n
$$
x \land (y \lor z) = (x \land y) \lor (x \land z)
$$
 (distributivity of \land over \land)
\n
$$
x \lor (y \land z) = (x \lor y) \land (x \lor z)
$$
 (distributivity of \lor over \land)
\n
$$
x \land (x \lor y) = x, \quad x \lor (x \land y) = x
$$
 (absorption)
\n
$$
x \lor (-x) = 1, \quad x \land (-x) = 0
$$
 (complementation)
\n
$$
0 \neq 1
$$
 (non-triviality)

The smallest model is $\underline{2} = \langle \{0, 1\}, -1, \wedge_1, \vee_1, 0, 1 \rangle$. Finite Boolean algebras are (up to isomorphism) $\langle \{0,1\}^n,-n,\wedge_n,\vee_n,0_n,1_n\rangle$ for $n\in\mathbb{N}^+$, where the operations *(on binary n-tuples)* are the coordinate-wise operations of 2.

イロメ イ母メ イヨメ イヨメ

Relations of propositional and predicate logic

- \bullet Propositional formulas over connectives \neg , \wedge , \vee (eventually with \top , \bot) can be viewed as Boolean terms. Then the truth value of φ in a given assignment is the value of the term in the Boolean algebra 2.
- \bullet Lindenbaum-Tarski algebra over $\mathbb P$ is Boolean algebra (also for $\mathbb P$ infinite).
- **If we represent atomic subformulas in an open formula** φ (without equality) with propositional letters, we obtain a proposition that is valid if and only if φ is valid.
- Propositional logic can be introduced as a fragment of predicate logic using nullary relation symbols (*syntax*) and nullary relations (*semantics*) $\mathsf{since}\ A^0=\{\emptyset\}=1,\ \mathsf{so}\ R^A\subseteq A^0\ \mathsf{is}\ \mathsf{either}\ R^A=\emptyset=0\ \mathsf{or}\ R^A=\{\emptyset\}=1.$

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B} \oplus \mathbf{B} \opl$