Propositional and Predicate Logic - VIII

Petr Gregor

KTIML MFF UK

WS 2023/24

Petr Gregor (KTIML MFF UK) [Propositional and Predicate Logic - VIII](#page-26-0) WS 2023/24 1/27

メロメメ 倒 メメ きょくきょう

画

Extensions by definition of a relation symbol

Let *T* be a theory of *L*, $\psi(x_1, \ldots, x_n)$ be a formula of *L* in free variables x_1, \ldots, x_n and L' denote the language L with a new n -ary relation symbol R .

The *extension* of T *by definition of R* with the formula ψ is the theory T' of L' obtained from *T* by adding the axiom

 $R(x_1, \ldots, x_n) \leftrightarrow \psi(x_1, \ldots, x_n)$

Observation *Every model of T can be uniquely expanded to a model of T* ′ *.* **Corollary** *T* ′ *is a conservative extension of T.*

Proposition For every formula φ' of L' there is φ of L s.t. $T' \models \varphi' \leftrightarrow \varphi$. *Proof* Replace each subformula $R(t_1, \ldots, t_n)$ in φ with $\psi'(x_1/t_1, \ldots, x_n/t_n)$, where ψ' is a suitable variant of ψ allowing all substitutions. **TERM**

For example, the symbol ≤ *can be defined in arithmetics by the axiom*

$$
x \leq y \ \leftrightarrow \ (\exists z)(x+z=y)
$$

Extensions by definition of a function symbol

Let *T* be a theory of a language *L* and $\psi(x_1, \ldots, x_n, y)$ be a formula of *L* in free variables x_1, \ldots, x_n, y such that

 $T \models (\exists y) \psi(x_1, \ldots, x_n, y)$ (existence)

 $T \models \psi(x_1, \ldots, x_n, \gamma) \land \psi(x_1, \ldots, x_n, z) \rightarrow \gamma = z$ (uniqueness)

Let *L* ′ denote the language *L* with a new *n*-ary function symbol *f* .

The *extension* of T *by definition of* f *with the formula* ψ *is the theory* T' *of* L' obtained from *T* by adding the axiom

$$
f(x_1,\ldots,x_n)=y\ \leftrightarrow\ \psi(x_1,\ldots,x_n,y)
$$

Remark In particular, if ψ *is* $t(x_1, \ldots, x_n) = \gamma$ *where t is a term and* x_1, \ldots, x_n *are the variables in t, both the conditions of existence and uniqueness hold. For example binary* − *can be defined using* + *and unary* − *by the axiom*

$$
x - y = z \ \leftrightarrow \ x + (-y) = z
$$

Extensions by definition of a function symbol (cont.)

Observation *Every model of T can be uniquely expanded to a model of T* ′ *.* **Corollary** *T* ′ *is a conservative extension of T.*

Proposition For every formula φ' of L' there is φ of L s.t. $T' \models \varphi' \leftrightarrow \varphi$.

Proof It suffices to consider φ' with a single occurrence of f. If φ' has more, we may proceed inductively. Let φ^* denote the formula obtained from φ' by replacing the term $f(t_1, \ldots, t_n)$ with a new variable *z*. Let φ be the formula

 $(\exists z)(\varphi^* \land \psi'(x_1/t_1, \ldots, x_n/t_n, y/z)),$

where ψ' is a suitable variant of ψ allowing all substitutions.

Let $\mathcal A$ be a model of T', e be an assignment, and $a = f^A(t_1, \ldots, t_n)[e]$. By the two conditions, $\mathcal{A} \models \psi'(x_1/t_1, \ldots, x_n/t_n, y/z)[e]$ if and only if $e(z) = a$. Thus $\mathcal{A} \models \varphi[e] \Leftrightarrow \mathcal{A} \models \varphi^*[e(z/a)] \Leftrightarrow \mathcal{A} \models \varphi'[e]$

for every assignment e , i.e. $\mathcal{A} \models \varphi' \leftrightarrow \varphi$ and so $T' \models \varphi' \leftrightarrow \varphi$. \Box

KOD KARD KED KEL YOUR

Extensions by definitions

A theory *T* ′ of *L* ′ is called an *extension* of a theory *T* of *L by definitions* if it is obtained from *T* by successive definitions of relation and function symbols. **Corollary** *Let T* ′ *be an extension of a theory T by definitions. Then*

- *every model of T can be uniquely expanded to a model of T* ′ *,*
- *T* ′ *is a conservative extension of T,*
- *for every formula* φ' *of* L' *there is a formula* φ *of* L *such that* $T' \models \varphi' \leftrightarrow \varphi.$

For example, in $T = \{(\exists y)(x + y = 0), (x + y = 0) \land (x + z = 0) \rightarrow y = z\}$ *of* $L = \langle +, 0, \le \rangle$ *with equality we can define* \langle *and unary – by the axioms*

$$
-x = y \leftrightarrow x + y = 0
$$

$$
x < y \leftrightarrow x \le y \land \neg(x = y)
$$

Then the formula −*x* < *y is equivalent in this extension to a formula*

$$
(\exists z)((z \leq y \ \land \ \neg(z = y)) \ \land \ x + z = 0).
$$

イロト イ母 トイヨ トイヨ トー

Definable sets

We interested in which sets can be defined within a given structure.

• A set defined by a formula $\varphi(x_1, \ldots, x_n)$ in structure A is the set

 $\varphi^{A}(x_{1},...,x_{n}) = \{ (a_{1},...,a_{n}) \in A^{n} | A \models \varphi [e(x_{1}/a_{1},...,x_{n}/a_{n})] \}.$

Shortly, $\varphi^{\mathcal{A}}(\overline{x}) = \{ \overline{a} \in A^{|\overline{x}|} \mid \mathcal{A} \models \varphi[e(\overline{x}/\overline{a})] \}$, where $|\overline{x}| = n$.

A set defined by a formula $\varphi(\overline{x}, \overline{y})$ *with parameters* $\overline{b} \in A^{|\overline{y}|}$ in A is

 $\varphi^{\mathcal{A},b}(\overline{x},\overline{y}) = \{\overline{a} \in A^{|\overline{x}|} \mid \mathcal{A} \models \varphi[e(\overline{x}/\overline{a},\overline{y}/\overline{b})]\}.$

Example: $E(x, y)^{\mathcal{G}, b}$ *is the set of neighbors of a vertex b in a graph* $\mathcal{G}.$

For a structure A, a set $B \subseteq A$, and $n \in \mathbb{N}$ let $\mathrm{Df}^n(\mathcal{A}, B)$ denote the class of definable sets $D \subseteq A^n$ in the structure $\mathcal A$ with parameters from B .

Observation Df*ⁿ* (A, *B*) *is closed under complements, union, intersection* and it contains \emptyset , A^n . Thus it forms a subalgebra of the set algebra $\underline{P}(A^n)$.

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - ' 큰' - K) Q Q @

Example - database queries

Where and when can I see a movie with J. Tříska?

select *Program.cinema, Program.time* **from** *Movie, Program* **where** *Movie.name* = Program.name **and** actor = 'J. Tříska';

Equivalently, it is the set $\varphi^{\mathcal{D}}(x, y)$ defined by the formula $\varphi(x, y)$

 $(\exists n)(\exists d)(P(x, n, v) \wedge M(n, d, \mathcal{F})$. Tříska'))

in the structure $\mathcal{D} = \langle D, Movie, Program, c^D \rangle_{c \in D}$ of $L = \langle M, P, c \rangle_{c \in D}$, where $D = \{$ Po strništi bos', 'J. Tříska', 'Mat', '13:15', . . . } and $c^D = c$ for any $c \in D$.

イロト イ母 トイラ トイラトー

Boolean algebras

The theory of *Boolean algebras* has the language $L = \langle -, \wedge, \vee, 0, 1 \rangle$ with equality and the following axioms.

$$
x \land (y \land z) = (x \land y) \land z
$$
 (associativity of \land)
\n
$$
x \lor (y \lor z) = (x \lor y) \lor z
$$
 (associativity of \land)
\n
$$
x \land y = y \land x
$$
 (commutativity of \land)
\n
$$
x \lor y = y \lor x
$$
 (commutativity of \land)
\n
$$
x \land (y \lor z) = (x \land y) \lor (x \land z)
$$
 (distributivity of \land over \lor)
\n
$$
x \lor (y \land z) = (x \lor y) \land (x \lor z)
$$
 (distributivity of \lor over \land)
\n
$$
x \land (x \lor y) = x, \quad x \lor (x \land y) = x
$$
 (absorption)
\n
$$
x \lor (-x) = 1, \quad x \land (-x) = 0
$$
 (complementation)
\n
$$
0 \neq 1
$$
 (non-triviality)

The smallest model is $\underline{2} = \langle \{0, 1\}, -1, \wedge_1, \vee_1, 0, 1 \rangle$. Finite Boolean algebras are (up to isomorphism) $\langle \{0,1\}^n, -_n, \wedge_n, \vee_n, 0_n, 1_n \rangle$ for $n \in \mathbb{N}^+$, where the operations *(on binary n-tuples)* are the coordinate-wise operations of 2.

イロメ イ母メ イヨメ イヨメ

Relations of propositional and predicate logic

- Propositional formulas over connectives \neg , \wedge , \vee (eventually with \top , \bot) can be viewed as Boolean terms. Then the truth value of φ in a given assignment is the value of the term in the Boolean algebra 2.
- \bullet Lindenbaum-Tarski algebra over $\mathbb P$ is Boolean algebra (also for $\mathbb P$ infinite).
- **If we represent atomic subformulas in an open formula** φ (without equality) with propositional letters, we obtain a proposition that is valid if and only if φ is valid.
- Propositional logic can be introduced as a fragment of predicate logic using nullary relation symbols (*syntax*) and nullary relations (*semantics*) since $A^0 = \{\emptyset\} = 1$, so $R^A \subseteq A^0$ is either $R^A = \emptyset = 0$ or $R^A = \{\emptyset\} = 1$.

Tableau method in propositional logic - a review

- A tableau is a binary tree that represents a search for a *counterexample*.
- Nodes are labeled by entries, i.e. formulas with a sign *T* / *F* that represents an assumption that the formula is true / false in some model.
- **If this assumption is correct, then it is correct also for all the entries in** some branch below that came from this entry.
- A branch is contradictory (it fails) if it contains $T\psi$, $F\psi$ for some ψ .
- **•** A proof of formula φ is a contradictory tableau with root $F\varphi$, i.e. a tableau in which every branch is contradictory. If φ has a proof, it is valid.
- If a counterexample exists, there will be a branch in a finished tableau that provides us with this counterexample, but this branch can be infinite.
- We can construct a systematic tableau that is always finished.
- **If** φ is valid, the systematic tableau for φ is contradictory, i.e. it is a proof of φ ; and in this case, it is also finite.

イロメ イ母メ イヨメ イヨメ

Þ

Tableau method in predicate logic - what is different

- **•** Formulas in entries will always be sentences (closed formulas), i.e. formulas without free variables.
- We add new atomic tableaux for quantifiers.
- In these tableaux we substitute ground terms for quantified variables following certain rules.
- We extend the language by new (auxiliary) constant symbols (countably many) to represent *"witnesses"* of entries $T(\exists x)\varphi(x)$ and $F(\forall x)\varphi(x)$.
- **In a finished noncontradictory branch containing an entry** $T(\forall x)\varphi(x)$ **or** *F*($\exists x$) $\varphi(x)$ we have instances $T\varphi(x/t)$ resp. $F\varphi(x/t)$ for every ground term *t* (of the extended language).

イロト イ押ト イヨト イヨトー

Assumptions

1) *The formula* φ *that we want to prove (or refute) is a sentence.* If not, we can replace φ with its universal closure φ' , since for every theory $T,$

 $T \models \varphi$ if and only if $T \models \varphi'.$

2) *We prove from a theory in a closed form, i.e. every axiom is a sentence.* By replacing every axiom ψ with its universal closure ψ' we obtain an equivalent theory since for every structure A (of the given language *L*),

 $\mathcal{A} \models \psi$ if and only if $\mathcal{A} \models \psi'.$

- 3) *The language L is countable.* Then every theory of *L* is countable. We denote by L_C the extension of L by new constant symbols c_0, c_1, \ldots (countably many). Then there are countably many ground terms of *L^C* . Let t_i denote the *i*-th ground term (in some fixed enumeration).
- 4) *First, we assume that the language is without equality.*

KOD KARD KED KEL YOUR

Tableaux in predicate logic - examples

(□) (@)

画

Atomic tableaux - previous

An *atomic tableau* is one of the following trees (labeled by entries), where α is any atomic sentence and φ , ψ are any sentences, all of language L_C .

K ロ ▶ K 御 ▶ K 君 ▶ K 君 ▶ ...

Atomic tableaux - new

Atomic tableaux are also the following trees (labeled by entries), where φ is any formula of the language L_C with a free variable x , t is any ground term of L_C and c is a new constant symbol from $L_C \setminus L$.

Remark The constant symbol c represents a "witness" of the entry $T(\exists x)\varphi(x)$ *or* $F(\forall x) \varphi(x)$ *. Since we need that no prior demands are put on c, we specify (in the definition of a tableau) which constant symbols c may be used.*

イロト イ母 トイラ トイラトー

Tableau

A *finite tableau* from a theory *T* is a binary tree labeled with entries described

- (*i*) every atomic tableau is a finite tableau from *T*, whereas in case (∗) we may use any constant symbol $c \in L_c \setminus L$,
- (iii) if P is an entry on a branch V in a finite tableau from T, then by adjoining the atomic tableau for *P* at the end of branch *V* we obtain (again) a finite tableau from *T*, whereas in case (∗) we may use only a constant symbol $c \in L_c \setminus L$ that does not appear on *V*,
- (*iii*) if V is a branch in a finite tableau from T and $\varphi \in T$, then by adjoining *T*φ at the end of branch *V* we obtain (again) a finite tableau from *T*.
- (*iv*) every finite tableau from *T* is formed by finitely many steps (*i*), (*ii*), (*iii*).

A *tableau* from *T* is a sequence $\tau_0, \tau_1, \ldots, \tau_n, \ldots$ of finite tableaux from *T* such that τ_{n+1} is formed from τ_n by (*ii*) or (*iii*), formally $\tau = \cup \tau_n$.

Construction of tableaux

イロト イ部 トイヨ トイヨ トー

Convention

We will not write the entry that is expanded again on the branch, except in cases when the entry is in the form of $T(\forall x)\varphi(x)$ or $F(\exists x)\varphi(x)$.

イロト イ押ト イヨト イヨトー

画

Tableau proof

- **•** A branch *V* in a tableau τ is *contradictory* if it contains entries $T\varphi$ and $F\varphi$ for some sentence φ, otherwise *V* is *noncontradictory*.
- **•** A tableau τ is *contradictory* if every branch in τ is contradictory.
- A *tableau proof* (*proof by tableau*) of a sentence φ from a theory *T* is a contradictory tableau from *T* with $F\varphi$ in the root.
- **•** A sentence φ is *(tableau) provable* from *T*, denoted by $T \vdash \varphi$, if it has a tableau proof from *T*.
- \bullet A *refutation* of a sentence φ by *tableau* from a theory T is a contradictory tableau from *T* with the root entry $T\varphi$.
- A sentence φ is *(tableau) refutable* from T if it has a refutation by tableau from *T*, i.e. $T \vdash \neg \varphi$.

イロト イ母 トイヨ トイヨ トー

Examples

Finished tableau

A finished noncontradictory branch should provide us with a counterexample. An occurrence of an entry P in a node ν of a tableau τ is *i-th* if ν has exactly

- *i* − 1 predecessors labeled by *P*; and is *reduced* on a branch *V* through *v* if
	- *a*) *P* is neither in form of $T(\forall x) \varphi(x)$ nor $F(\exists x) \varphi(x)$ and *P* occurs on *V* as a root of an atomic tableau, i.e. it was already expanded on *V* , or
	- *b*) *P* is in form of $T(\forall x) \varphi(x)$ or $F(\exists x) \varphi(x)$, *P* has an $(i + 1)$ -th occurrence on V , and V contains an entry $T\varphi(x/t_i)$ resp. $F\varphi(x/t_i)$ where t_i is the *i*-th ground term (of the language L_C).
- Let *V* be a branch in a tableau τ from a theory *T*. We say that
	- *V* is *finished* if it is contradictory, or every occurrence of an entry on *V* is reduced on *V* and, moreover, *V* contains $T\varphi$ for every $\varphi \in T$,
	- \bullet τ is *finished* if every branch in τ is finished.

イロト イ押ト イヨト イヨトー

Systematic tableau - construction

Let *R* be an entry and $T = {\varphi_0, \varphi_1, \dots}$ be a (possibly infinite) theory.

- (1) We take the atomic tableau for *R* as τ_0 . In case (*) we choose any $c \in L_c \setminus L$, in case (\sharp) we take t_1 for t . Till possible, proceed as follows.
- (2) Let *v* be the leftmost node in the smallest level as possible in tableau τ_n containing an occurrence of an entry *P* that is not reduced on some noncontradictory branch through ν . (If ν does not exist, we take $\tau'_n = \tau_n$.)
- (3*a*) If *P* is neither $T(\forall x)\varphi(x)$ nor $F(\exists x)\varphi(x)$, let τ'_n be the tableau obtained from τ_n by adjoining the atomic tableau for P to every noncontradictory branch through ν . In case $(*)$ we choose c_i for the smallest possible i .
- (3*b*) If *P* is $T(\forall x)\varphi(x)$ or $F(\exists x)\varphi(x)$ and it has *i*-th occurrence in *v*, let τ'_n be the tableau obtained from τ_n by adjoining atomic tableau for *P* to every noncontradictory branch through *v*, where we take the term *tⁱ* for *t*.
	- (4) Let τ_{n+1} be the tableau obtained from τ'_n by adjoining $T\varphi_n$ to every noncontradictory branch that does not contain $T\varphi_n$ yet. (If φ_n does not exist, we take $\tau_{n+1} = \tau'_n$.)

T[h](#page-19-0)e*systematic [t](#page-22-0)ableau* f[o](#page-8-0)r *R* from *T* [is](#page-20-0) the result $\tau = \bigcup_{i \in \mathbb{N}} \tau_i$ [of](#page-21-0) this [c](#page-24-0)on[str](#page-26-0)[uc](#page-0-0)[tio](#page-26-0)n.

Systematic tableau - an example

AD > Y B > Y B >

4 0 8 ×. Ξ

Systematic tableau - being finished

Proposition *Every systematic tableau is finished.*

Proof Let $\tau = \cup \tau_n$ be a systematic tableau from $T = {\varphi_0, \varphi_1, \dots}$ with root R and let *P* be an entry in a node ν of the tableau τ .

- **•** There are only finitely many entries in τ in levels up to the level of ν .
- \bullet If the occurrence of *P* in *v* was unreduced on some noncontradictory branch in τ , it would be found in some step (2) and reduced by (3*a*), (3*b*).
- **•** By step (4) every $\varphi_n \in T$ will be (no later than) in τ_{n+1} on every noncontradictory branch.
- **•** Hence the systematic tableau τ has all branches finished. П

Proposition *If a systematic tableau* τ *is a proof (from a theory T), it is finite. Proof* Suppose that τ is infinite. Then by König's lemma, τ contains an infinite branch. This branch is noncontradictory since in the construction only noncontradictory branches are prolonged. But this contradicts the assumption that τ is a contradictory tableau.

イロト イ母 トイラ トイラトー

Equality

Axioms of equality for a language *L* with equality are

 (i) $x = x$

- (iii) $x_1 = y_1 \land \cdots \land x_n = y_n \rightarrow f(x_1, \ldots, x_n) = f(y_1, \ldots, y_n)$ for each *n*-ary function symbol *f* of the language *L*.
- (iii) $x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow (R(x_1, \ldots, x_n) \rightarrow R(y_1, \ldots, y_n))$ for each *n*-ary relation symbol *R* of the language *L* including $=$.

A *tableau proof* from a theory *T* in a language *L with equality* is a tableau proof from *T* [∗] where *T* [∗] denotes the extension of *T* by adding axioms of equality for *L (resp. their universal closures).*

Remark In context of logic programming the equality often has other meaning than in mathematics (identity). For example in Prolog, $t_1 = t_2$ *means that* t_1 *and t*² *are unifiable.*

Congruence and quotient structure

Let \sim be an equivalence on $A, f : A^n \to A$, and $R \subseteq A^n$ for $n \in \mathbb{N}$. Then \sim is

• a *congruence for the function* f if for every $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$

*x*₁ ∼ *y*₁ ∧ ··· ∧ *x_n* ∼ *y_n* \Rightarrow *f*(*x*₁, ..., *x_n*) ∼ *f*(*y*₁, ..., *y_n*),

• a *congruence for the relation R* if for every $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$ $x_1 \sim y_1 \land \cdots \land x_n \sim y_n \Rightarrow (R(x_1, \ldots, x_n) \Leftrightarrow R(y_1, \ldots, y_n)).$

Let an equivalence ∼ on *A* be a congruence for every function and relation in a structure $\mathcal{A} = \langle A, \mathcal{F}^A, \mathcal{R}^A \rangle$ of language $L = \langle \mathcal{F}, \mathcal{R} \rangle$. Then the *quotient* (*structure*) of $\mathcal A$ by \sim is the structure $\mathcal A/\sim$ = $\langle A/\sim, \mathcal F^{A/\sim}, \mathcal R^{A/\sim} \rangle$ where

$$
f^{A/\sim}([x_1]_\sim,\ldots,[x_n]_\sim)=[f^A(x_1,\ldots,x_n)]_\sim
$$

R^{*A*} \sim $([x_1]_{\sim}, \ldots, [x_n]_{\sim}) \Leftrightarrow R^A(x_1, \ldots, x_n)$

for each $f \in \mathcal{F}$, $R \in \mathcal{R}$, and $x_1, \ldots, x_n \in A$, i.e. the functions and relations are defined from A using representatives.

Example: $\underline{\mathbb{Z}}_p$ *is the quotient of* $\underline{\mathbb{Z}} = \langle \mathbb{Z}, +, -, 0 \rangle$ *by the congruence modulo p.*

Role of axioms of equality

Let A be a structure of a language *L* in which the equality is interpreted as a relation =*^A* satisfying the axioms of equality for *L*, i.e. not necessarily the identity relation.

- 1) From axioms (*i*) and (*iii*) it follows that the relation $=$ ^{A} is an equivalence.
- $\left(2\right) \,$ Axioms (*ii*) and (*iii*) express that the relation $=^A$ is a congruence for every function and relation in A.
- 3) If $A \models T^*$ then also $(A/\preceq^A) \models T^*$ where A/\preceq^A is the quotient of A by
	- $=$ ^A. Moreover, the equality is interpreted in $A/$ $=$ ^{A} as the identity relation.

On the other hand, in every model in which the equality is interpreted as the identity relation, all axioms of equality evidently hold.