Propositional and Predicate Logic - IX

Petr Gregor

KTIML MFF UK

WS 2023/2024

Finished tableau

A finished noncontradictory branch should provide us with a counterexample.

An occurrence of an entry P in a node v of a tableau τ is i-th if v has exactly i-1 predecessors labeled by P; and is reduced on a branch V through v if

- *a*) P is neither in form of $T(\forall x)\varphi(x)$ nor $F(\exists x)\varphi(x)$ and P occurs on V as a root of an atomic tableau, i.e. it was already expanded on V, or
- b) P is in form of $T(\forall x)\varphi(x)$ or $F(\exists x)\varphi(x)$, P has an (i+1)-th occurrence on V, and V contains an entry $T\varphi(x/t_i)$ resp. $F\varphi(x/t_i)$ where t_i is the i-th ground term (of the language L_C).

Let V be a branch in a tableau τ from a theory T. We say that

- V is *finished* if it is contradictory, or every occurrence of an entry on V is reduced on V and, moreover, V contains $T\varphi$ for every $\varphi \in T$,
- τ is *finished* if every branch in τ is finished.

Systematic tableau - construction

Let R be an entry and $T = \{\varphi_0, \varphi_1, \dots\}$ be a (possibly infinite) theory.

- (1) We take the atomic tableau for R as τ_0 . In case (*) we choose any $c \in L_C \setminus L$, in case (\sharp) we take t_1 for t. Till possible, proceed as follows.
- (2) Let v be the leftmost node in the smallest level as possible in tableau τ_n containing an occurrence of an entry P that is not reduced on some noncontradictory branch through v. (If v does not exist, we take $\tau_n' = \tau_n$.)
- (3*a*) If *P* is neither $T(\forall x)\varphi(x)$ nor $F(\exists x)\varphi(x)$, let τ'_n be the tableau obtained from τ_n by adjoining the atomic tableau for *P* to every noncontradictory branch through v. In case (*) we choose c_i for the smallest possible i.
- (3b) If P is $T(\forall x)\varphi(x)$ or $F(\exists x)\varphi(x)$ and it has i-th occurrence in v, let τ'_n be the tableau obtained from τ_n by adjoining atomic tableau for P to every noncontradictory branch through v, where we take the term t_i for t.
 - (4) Let τ_{n+1} be the tableau obtained from τ'_n by adjoining $T\varphi_n$ to every noncontradictory branch that does not contain $T\varphi_n$ yet. (If φ_n does not exist, we take $\tau_{n+1} = \tau'_n$.)

The *systematic tableau* for *R* from *T* is the result $\tau = \bigcup \tau_n$ of this construction.

Systematic tableau - an example

4/21

Systematic tableau - being finished

Proposition Every systematic tableau is finished.

Proof Let $\tau = \cup \tau_n$ be a systematic tableau from $T = \{\varphi_0, \varphi_1, \dots\}$ with root R and let P be an entry in a node v of the tableau τ .

- There are only finitely many entries in τ in levels up to the level of v.
- If the occurrence of P in v was unreduced on some noncontradictory branch in τ , it would be found in some step (2) and reduced by (3a), (3b).
- By step (4) every $\varphi_n \in T$ will be (no later than) in τ_{n+1} on every noncontradictory branch.
- Hence the systematic tableau τ has all branches finished. \Box

Proposition If a systematic tableau τ is a proof (from a theory T), it is finite. **Proof** Suppose that τ is infinite. Then by König's lemma, τ contains an infinite branch. This branch is noncontradictory since in the construction only noncontradictory branches are prolonged. But this contradicts the assumption that τ is a contradictory tableau.

Equality

Axioms of equality for a language L with equality are

- (i) x = x
- (ii) $x_1 = y_1 \wedge \cdots \wedge x_n = y_n \rightarrow f(x_1, \dots, x_n) = f(y_1, \dots, y_n)$ for each n-ary function symbol f of the language L.
- (iii) $x_1 = y_1 \land \cdots \land x_n = y_n \rightarrow (R(x_1, \dots, x_n) \rightarrow R(y_1, \dots, y_n))$ for each n-ary relation symbol R of the language L including =.

A *tableau proof* from a theory T in a language L *with equality* is a tableau proof from T^* where T^* denotes the extension of T by adding axioms of equality for L (resp. their universal closures).

Remark In context of logic programming the equality often has other meaning than in mathematics (identity). For example in Prolog, $t_1 = t_2$ means that t_1 and t_2 are unifiable.

Congruence and quotient structure

Let \sim be an equivalence on $A, f: A^n \to A$, and $R \subseteq A^n$ for $n \in \mathbb{N}$. Then \sim is

- a congruence for the function f if for every $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$ $x_1 \sim y_1 \wedge \cdots \wedge x_n \sim y_n \Rightarrow f(x_1, \ldots, x_n) \sim f(y_1, \ldots, y_n),$
- a congruence for the relation R if for every $x_1, \ldots, x_n, y_1, \ldots, y_n \in A$ $x_1 \sim y_1 \wedge \cdots \wedge x_n \sim y_n \Rightarrow (R(x_1, \ldots, x_n) \Leftrightarrow R(y_1, \ldots, y_n)).$

Let an equivalence \sim on A be a congruence for every function and relation in a structure $\mathcal{A} = \langle A, \mathcal{F}^A, \mathcal{R}^A \rangle$ of language $L = \langle \mathcal{F}, \mathcal{R} \rangle$. Then the *quotient* (*structure*) of \mathcal{A} by \sim is the structure $\mathcal{A}/\sim = \langle A/\sim, \mathcal{F}^{A/\sim}, \mathcal{R}^{A/\sim} \rangle$ where $f^{A/\sim}([x_1]_\sim, \dots, [x_n]_\sim) = [f^A(x_1, \dots, x_n)]_\sim$ $R^{A/\sim}([x_1]_\sim, \dots, [x_n]_\sim) \Leftrightarrow R^A(x_1, \dots, x_n)$

for each $f \in \mathcal{F}$, $R \in \mathcal{R}$, and $x_1, \dots, x_n \in A$, i.e. the functions and relations are defined from A using representatives.

Example: $\underline{\mathbb{Z}}_p$ is the quotient of $\underline{\mathbb{Z}} = \langle \mathbb{Z}, +, -, 0 \rangle$ by the congruence modulo p.

Role of axioms of equality

Let A be a structure of a language L in which the equality is interpreted as a relation = satisfying the axioms of equality for L, i.e. not necessarily the identity relation.

- 1) From axioms (i) and (iii) it follows that the relation =^A is an equivalence.
- 2) Axioms (*ii*) and (*iii*) express that the relation $=^A$ is a congruence for every function and relation in A.
- 3) If $\mathcal{A} \models T^*$ then also $(\mathcal{A}/=^A) \models T^*$ where $\mathcal{A}/=^A$ is the quotient of \mathcal{A} by $=^A$. Moreover, the equality is interpreted in $\mathcal{A}/=^A$ as the identity relation.

On the other hand, in every model in which the equality is interpreted as the identity relation, all axioms of equality evidently hold.

Soundness

We say that a model \mathcal{A} agrees with an entry P, if P is $T\varphi$ and $\mathcal{A} \models \varphi$ or if P is $F\varphi$ and $\mathcal{A} \models \neg \varphi$, i.e. $\mathcal{A} \not\models \varphi$. Moreover, \mathcal{A} agrees with a branch V if \mathcal{A} agrees with every entry on V.

Lemma Let A be a model of a theory T of a language L that agrees with the root entry R in a tableau $\tau = \cup \tau_n$ from T. Then A can be expanded to the language L_C so that it agrees with some branch V in τ .

Remark It suffices to expand A only by constants c^A such that $c \in L_C \setminus L$ occurs on V, other constants may be defined arbitrarily.

Proof By induction on n we find a branch V_n in τ_n and an expansion \mathcal{A}_n of \mathcal{A} by constants c^A for all $c \in L_C \setminus L$ on V_n s.t. \mathcal{A}_n agrees with V_n and $V_{n-1} \subseteq V_n$.

Assume we have a branch V_n in τ_n and an expansion A_n that agrees with V_n .

- If τ_{n+1} is formed from τ_n without extending the branch V_n , we take $V_{n+1} = V_n$ and $\mathcal{A}_{n+1} = \mathcal{A}_n$.
- If τ_{n+1} is formed from τ_n by appending $T\varphi$ to V_n for some $\varphi \in T$, let V_{n+1} be this branch and $\mathcal{A}_{n+1} = \mathcal{A}_n$. Since $\mathcal{A} \models \varphi$, \mathcal{A}_{n+1} agrees with V_{n+1} .

Soundness - proof (cont.)

- Otherwise τ_{n+1} is formed from τ_n by appending an atomic tableau to V_n for some entry P on V_n . By induction we know that A_n agrees with P.
- (i) If P is formed by a logical connective, we take $A_{n+1} = A_n$ and verify that V_n can always be extended to a branch V_{n+1} agreeing with A_{n+1} .
- (ii) If P is in form $T(\forall x)\varphi(x)$, let V_{n+1} be the (unique) extension of V_n to a branch in τ_{n+1} , i.e. by the entry $T\varphi(x/t)$. Let \mathcal{A}_{n+1} be any expansion by new constants from t. Since $\mathcal{A}_n \models (\forall x)\varphi(x)$, we have $\mathcal{A}_{n+1} \models \varphi(x/t)$. Analogously for P in form $F(\exists x)\varphi(x)$.
- (iii) If P is in form $T(\exists x)\varphi(x)$, let V_{n+1} be the (unique) extension of V_n to a branch in τ_{n+1} , i.e. by the entry $T\varphi(x/c)$. Since $\mathcal{A}_n \models (\exists x)\varphi(x)$, there is some $a \in A$ with $\mathcal{A}_n \models \varphi(x)[e(x/a)]$ for every assignment e. Let \mathcal{A}_{n+1} be the expansion of \mathcal{A}_n by a new constant $c^A = a$. Then $\mathcal{A}_{n+1} \models \varphi(x/c)$. Analogously for P in form $F(\forall x)\varphi(x)$.

The base step for n=0 follows from similar analysis of atomic tableaux for the root entry R applying the assumption that A agrees with R.

Theorem on soundness

We will show that the tableau method in predicate logic is sound.

Theorem For every theory T and sentence φ , if φ is tableau provable from T, then φ is valid in T, i.e. $T \vdash \varphi \Rightarrow T \models \varphi$.

Proof

- Let φ be tableau provable from a theory T, i.e. there is a contradictory tableau τ from T with the root entry $F\varphi$.
- Suppose for a contradiction that φ is not valid in T, i.e. there exists a model \mathcal{A} of the theory T in which φ is not true (a counterexample).
- Since \mathcal{A} agrees with the root entry $F\varphi$, by the previous lemma, \mathcal{A} can be expanded to the language L_C so that it agrees with some branch in τ .
- But this is impossible, since every branch of τ is contradictory, i.e. it contains a pair of entries $T\psi$, $F\psi$ for some sentence ψ . \square

The canonical model

From a noncontradictory branch V of a finished tableau we build a model that agrees with V. We build it on available (syntactical) objects - ground terms.

Let V be a noncontradictory branch of a finished tableau from a theory T of a language $L=\langle \mathcal{F},\mathcal{R}\rangle$. The *canonical model* from V is the L_C -structure $\mathcal{A}=\langle A,\mathcal{F}^A,\mathcal{R}^A\rangle$ where

- (1) A is the set of all ground terms of the language L_C ,
- (2) $f^A(t_{i_1},\ldots,t_{i_n})=f(t_{i_1},\ldots,t_{i_n})$ for every n-ary function symbol $f\in\mathcal{F}\cup(L_C\setminus L)$ and $t_{i_1},\ldots,t_{i_n}\in A$.
- (3) $R^A(t_{i_1}, \ldots, t_{i_n}) \Leftrightarrow TR(t_{i_1}, \ldots, t_{i_n})$ is an entry on V for every n-ary relation symbol $R \in \mathcal{R}$ or equality and $t_{i_1}, \ldots, t_{i_n} \in A$.

Remark The expression $f(t_{i_1}, \ldots, t_{i_n})$ on the right side of (2) is a ground term of L_C , i.e. an element of A. Informally, to indicate that it is a syntactical object

$$f^A(t_{i_1},\ldots,t_{i_n})= "f(t_{i_1},\ldots,t_{i_n})"$$

The canonical model - an example

Let $T = \{(\forall x)R(f(x))\}$ be a theory of a language $L = \langle R, f, d \rangle$. The systematic tableau for $F \neg R(d)$ from T contains a single branch V, which is noncontradictory.

The canonical model $\mathcal{A}=\langle A,R^A,f^A,d^A,c_i^A\rangle_{i\in\mathbb{N}}$ from V is for language L_C and

$$A = \{d, f(d), f(f(d)), \dots, c_0, f(c_0), f(f(c_0)), \dots, c_1, f(c_1), f(f(c_1)), \dots\},$$
 $d^A = d, \quad c_i^A = c_i \text{ for } i \in \mathbb{N},$
 $f^A(d) = \text{``}f(d)\text{''}, \quad f^A(f(d)) = \text{``}f(f(d))\text{''}, \quad f^A(f(f(d))) = \text{``}f(f(f(d)))\text{''}, \dots$
 $R^A = \{d, f(d), f(f(d)), \dots, f(c_0), f(f(c_0)), \dots, f(c_1), f(f(c_1)), \dots\}.$

The reduct of A to the language L is $A' = \langle A, R^A, f^A, d^A \rangle$.

The canonical model with equality

If L is with equality, T^* is the extension of T by the axioms of equality for L.

If we require that the equality is interpreted as the identity, we have to take the quotient of the canonical model A by the congruence $=^A$.

By (3), for the relation $=^A$ in \mathcal{A} from V it holds that for every $s, t \in A$,

$$s = A t \Leftrightarrow T(s = t)$$
 is an entry on V .

Since V is finished and contains the axioms of equality, the relation $=^A$ is a congruence for all functions and relations in A.

The *canonical model with equality* from V is the quotient A/=A.

Observation For every formula φ ,

$$\mathcal{A} \models \varphi \iff (\mathcal{A}/=^A) \models \varphi,$$

where = is interpreted in A by the relation $=^A$, while in $A/=^A$ by the identity.

Remark A is a countably infinite model, but A/=A can be finite.

WS 2023/2024

The canonical model with equality - an example

Let $T = \{(\forall x)R(f(x)), (\forall x)(x = f(f(x)))\}$ be of $L = \langle R, f, d \rangle$ with equality. The systematic tableau for $F \neg R(d)$ from T^* contains a noncontradictory V.

In the canonical model $A = \langle A, R^A, =^A, f^A, d^A, c_i^A \rangle_{i \in \mathbb{N}}$ from V we have that $s = A t \Leftrightarrow t = f(\cdots(f(s)\cdots)) \text{ or } s = f(\cdots(f(t)\cdots)),$

where f is applied 2i-times for some $i \in \mathbb{N}$.

The canonical model with equality from V is

$$\mathcal{B} = (\mathcal{A}/=^{A}) = \langle A/=^{A}, R^{B}, f^{B}, d^{B}, c_{i}^{B} \rangle_{i \in \mathbb{N}} \text{ where}$$

$$(A/=^{A}) = \{[d]_{=^{A}}, [f(d)]_{=^{A}}, [c_{0}]_{=^{A}}, [f(c_{0})]_{=^{A}}, [c_{1}]_{=^{A}}, [f(c_{1})]_{=^{A}}, \dots \},$$

$$d^{B} = [d]_{=^{A}}, \quad c_{i}^{B} = [c_{i}]_{=^{A}} \text{ for } i \in \mathbb{N},$$

$$f^{B}([d]_{=^{A}}) = [f(d)]_{=^{A}}, \quad f^{B}([f(d)]_{=^{A}}) = [f(f(d))]_{=^{A}} = [d]_{=^{A}}, \quad \dots$$

$$R^{B} = (A/=^{A}).$$

The reduct of \mathcal{B} to the language L is $\mathcal{B}' = \langle A/=^A, R^B, f^B, d^B \rangle$.

Completeness

Lemma The canonical model A from a noncontr. finished V agrees with V. *Proof* By induction on the structure of a sentence in an entry on V.

- For atomic φ , if $T\varphi$ is on V, then $A \models \varphi$ by (3). If $F\varphi$ is on V, then $T\varphi$ is not on V since V is noncontradictory, so $A \models \neg \varphi$ by (3).
- If $T(\varphi \wedge \psi)$ is on V, then $T\varphi$ and $T\psi$ are on V since V is finished. By induction, $A \models \varphi$ and $A \models \psi$, and thus $A \models \varphi \wedge \psi$.
- If $F(\varphi \wedge \psi)$ is on V, then $F\varphi$ or $F\psi$ is on V since V is finished. By induction, $\mathcal{A} \models \neg \varphi$ or $\mathcal{A} \models \neg \psi$, and thus $\mathcal{A} \models \neg (\varphi \wedge \psi)$.
- For other connectives similarly as in previous two cases.
- If $T(\forall x)\varphi(x)$ is on V, then $T\varphi(x/t)$ is on V for every $t\in A$ since V is finished. By induction, $A\models\varphi(x/t)$ for every $t\in A$, and thus $A\models(\forall x)\varphi(x)$. Similarly for $F(\exists x)\varphi(x)$ on V.
- If $T(\exists x)\varphi(x)$ is on V, then $T\varphi(x/c)$ is on V for some $c \in A$ since V is finished. By induction, $\mathcal{A} \models \varphi(x/c)$, and thus $\mathcal{A} \models (\exists x)\varphi(x)$. Similarly for $F(\forall x)\varphi(x)$ on V.

Theorem on completeness

We will show that the tableau method in predicate logic is complete.

Theorem For every theory T and sentence φ , if φ is valid in T, then φ is tableau provable from T, i.e. $T \models \varphi \Rightarrow T \vdash \varphi$.

Proof Let φ be valid in T. We will show that an arbitrary finished tableau (e.g. systematic) τ from a theory T with the root entry $F\varphi$ is contradictory.

- If not, then there is some noncontradictory branch V in τ .
- By the previous lemma, there is a structure \mathcal{A} for L_C that agrees with V, in particular with the root entry $F\varphi$, i.e. $\mathcal{A} \models \neg \varphi$.
- Let \mathcal{A}' be the reduct of \mathcal{A} to the language L. Then $\mathcal{A}' \models \neg \varphi$.
- Since V is finished, it contains $T\psi$ for every $\psi \in T$.
- Thus \mathcal{A}' is a model of T (as \mathcal{A}' agrees with $T\psi$ for every $\psi \in T$).
- But this contradicts the assumption that φ is valid in T.

Therefore the tableau τ is a proof of φ from T.

Properties of theories

We introduce syntactic variants of previous semantical definitions.

Let T be a theory of a language L. If a sentence φ is provable from T, we say that φ is a *theorem* of T. The set of theorems of T is denoted by

$$Thm^{L}(T) = \{ \varphi \in Fm_{L} \mid T \vdash \varphi \}.$$

We say that a theory T is

- *inconsistent* if $T \vdash \bot$, otherwise T is *consistent*,
- *complete* if it is consistent and every sentence is provable or refutable from T, i.e. $T \vdash \varphi$ or $T \vdash \neg \varphi$.
- an *extension* of a theory T' of L' if $L' \subseteq L$ and $\mathrm{Thm}^{L'}(T') \subseteq \mathrm{Thm}^{L}(T)$, we say that an extension T of a theory T' is *simple* if L = L'; and *conservative* if $\mathrm{Thm}^{L'}(T') = \mathrm{Thm}^{L}(T) \cap \mathrm{Fm}_{L'}$,
- equivalent with a theory T' if T is an extension of T' and vice-versa.

Corollaries

From the soundness and completeness of the tableau method it follows that these syntactic definitions agree with their semantic variants.

Corollary For every theory T and sentences φ , ψ of a language L,

- $T \vdash \varphi$ if and only if $T \models \varphi$,
- Thm^L $(T) = \theta^L(T)$,
- T is inconsistent if and only if T is unsatisfiable, i.e. it has no model,
- T is complete if and only if T is semantically complete, i.e. it has a single model, up to elementarily equivalence,
- $T, \varphi \vdash \psi$ if and only if $T \vdash \varphi \rightarrow \psi$ (Deduction theorem).

Remark Deduction theorem can be proved directly by transformations of tableaux.

Existence of a countable model and compactness

Theorem Every consistent theory T of a countable language L without equality has a countably infinite model.

Proof Let τ be the systematic tableau from T with $F\bot$ in the root. Since τ is finished and contains a noncontradictory branch V as \bot is not provable from T, there exists a canonical model $\mathcal A$ from V. Since $\mathcal A$ agrees with V, its reduct to the language L is a desired countably infinite model of T. \square

Remark This is a weak version of so called Löwenheim-Skolem theorem. In a countable language with equality the canonical model with equality is countable (i.e. finite or countably infinite).

Theorem A theory T has a model iff every finite subset of T has a model.

Proof The implication from left to right is obvious. If T has no model, then it is inconsistent, i.e. \bot is provable by a systematic tableau τ from T. Since τ is finite, \bot is provable from some finite $T' \subseteq T$, i.e. T' has no model. \Box

WS 2023/2024

Non-standard model of natural numbers

Let $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ be the standard model of natural numbers.

Let $\overline{\operatorname{Th}}(\underline{\mathbb{N}})$ denote the set of all sentences that are valid in $\underline{\mathbb{N}}$. For $n \in \mathbb{N}$ let \underline{n} denote the term $S(S(\cdots(S(0))\cdots))$, so called the *n-th numeral*, where S is applied n-times.

Consider the following theory T where c is a new constant symbol.

$$T = \operatorname{Th}(\underline{\mathbb{N}}) \cup \{\underline{n} < c \mid n \in \mathbb{N}\}\$$

Observation Every finite subset of T has a model.

Thus by the compactness theorem, T has a model A. It is a non-standard model of natural numbers. Every sentence from $\operatorname{Th}(\underline{\mathbb{N}})$ is valid in A but it contains an element c^A that is greater then every $n \in \mathbb{N}$ (i.e. the value of the term \underline{n} in A).

