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Completeness Corollaries

Properties of theories
We introduce syntactic variants of previous semantical definitions.

Let T be a theory of a language L. If a sentence φ is provable from T , we say
that φ is a theorem of T . The set of theorems of T is denoted by

ThmL
(T ) = {φ ∈ FmL | T ⊢ φ}.

We say that a theory T is
inconsistent if T ⊢ ⊥, otherwise T is consistent,

complete if it is consistent and every sentence is provable or refutable
from T , i.e. T ⊢ φ or T ⊢ ¬φ.

an extension of a theory T ′ of L′ if L′ ⊆ L and ThmL′
(T ′) ⊆ ThmL

(T ),
we say that an extension T of a theory T ′ is simple if L = L′; and

conservative if ThmL′
(T ′) = ThmL

(T ) ∩ FmL′ ,

equivalent with a theory T ′ if T is an extension of T ′ and vice-versa.
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Completeness Corollaries

Corollaries

From the soundness and completeness of the tableau method it follows that
these syntactic definitions agree with their semantic variants.

Corollary For every theory T and sentences φ, ψ of a language L,

T ⊢ φ if and only if T |= φ,

ThmL
(T ) = θL(T ),

T is inconsistent if and only if T is unsatisfiable, i.e. it has no model,

T is complete if and only if T is semantically complete, i.e. it has
a single model, up to elementarily equivalence,

T , φ ⊢ ψ if and only if T ⊢ φ→ ψ (Deduction theorem).

Remark Deduction theorem can be proved directly by transformations of
tableaux.
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Completeness Corollaries

Existence of a countable model and compactness
Theorem Every consistent theory T of a countable language L without
equality has a countably infinite model.

Proof Let τ be the systematic tableau from T with F⊥ in the root. Since τ is
finished and contains a noncontradictory branch V as ⊥ is not provable from
T , there exists a canonical model A from V . Since A agrees with V , its reduct
to the language L is a desired countably infinite model of T .

Remark This is a weak version of so called Löwenheim-Skolem theorem.
In a countable language with equality the canonical model with equality is
countable (i.e. finite or countably infinite).

Theorem A theory T has a model iff every finite subset of T has a model.

Proof The implication from left to right is obvious. If T has no model, then
it is inconsistent, i.e. ⊥ is provable by a systematic tableau τ from T . Since τ
is finite, ⊥ is provable from some finite T ′ ⊆ T , i.e. T ′ has no model.
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Completeness Corollaries

Non-standard model of natural numbers

Let N = ⟨N, S,+, ·, 0,≤⟩ be the standard model of natural numbers.

Let Th(N) denote the set of all sentences that are valid in N. For n ∈ N let n

denote the term S(S(· · · (S(0)) · · · )), so called the n-th numeral, where S is
applied n-times.

Consider the following theory T where c is a new constant symbol.

T = Th(N) ∪ {n < c | n ∈ N}

Observation Every finite subset of T has a model.

Thus by the compactness theorem, T has a model A. It is a non-standard
model of natural numbers. Every sentence from Th(N) is valid in A but it
contains an element cA that is greater then every n ∈ N (i.e. the value of
the term n in A).
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Skolemization Introduction

Equisatisfiability
We will see that the problem of satisfiability can be reduced to open theories.

Theories T , T ′ are equisatisfiable if T has a model ⇔ T ′ has a model.

A formula φ is in the prenex (normal) form (PNF) if it is written as

(Q1x1) . . . (Qnxn)φ
′,

where Qi denotes ∀ or ∃, variables x1, . . . , xn are all distinct and φ′ is an
open formula, called the matrix. (Q1x1) . . . (Qnxn) is called the prefix.

In particular, if all quantifiers are ∀, then φ is a universal formula.

To find an open theory equisatisfiable with T we proceed as follows.

(1) We replace axioms of T by equivalent formulas in the prenex form.

(2) We transform them, using new function symbols, to equisatisfiable
universal formulas, so called Skolem variants.

(3) We take their matrices as axioms of a new theory.
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Skolemization Prenex normal form

Conversion rules for quantifiers
Let Q denote ∀ or ∃ and let Q denote the complementary quantifier.
For every formulas φ, ψ such that x is not free in the formula ψ,

|= ¬(Qx)φ ↔ (Qx)¬φ
|= ((Qx)φ ∧ ψ) ↔ (Qx)(φ ∧ ψ)
|= ((Qx)φ ∨ ψ) ↔ (Qx)(φ ∨ ψ)
|= ((Qx)φ→ ψ) ↔ (Qx)(φ→ ψ)

|= (ψ → (Qx)φ) ↔ (Qx)(ψ → φ)

The above equivalences can be verified semantically or proved by the tableau
method (by taking the universal closure if it is not a sentence).

Remark The assumption that x is not free in ψ is necessary in each rule
above (except the first one) for some quantifier Q. For example,

̸|= ((∃x)P(x) ∧ P(x)) ↔ (∃x)(P(x) ∧ P(x))
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Skolemization Prenex normal form

Conversion to the prenex normal form
Proposition Let φ′ be the formula obtained from φ by replacing some
occurrences of a subformula ψ with ψ′. If T |= ψ ↔ ψ′, then T |= φ↔ φ′.

Proof Easily by induction on the structure of the formula φ.

Proposition For every formula φ there is an equivalent formula φ′ in the
prenex normal form, i.e. |= φ↔ φ′.

Proof By induction on the structure of φ applying the conversion rules for
quantifiers, replacing subformulas with their variants if needed, and applying
the above proposition on equivalent transformations.

For example, ((∀z)P(x, z) ∧ P(y, z)) → ¬(∃x)P(x, y)

((∀u)P(x,u) ∧ P(y, z)) → (∀x)¬P(x, y)

(∀u)(P(x,u) ∧ P(y, z)) → (∀v)¬P(v, y)

(∃u)((P(x,u) ∧ P(y, z)) → (∀v)¬P(v, y))

(∃u)(∀v)((P(x,u) ∧ P(y, z)) → ¬P(v, y))
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Skolemization Skolem variants

Skolem variants

Let φ be a sentence of a language L in the prenex normal form, let y1, . . . , yn

be the existentially quantified variables in φ (in this order), and for every i ≤ n

let x1, . . . , xni be the variables that are universally quantified in φ before yi.
Let L′ be an extension of L with new ni-ary function symbols fi for all i ≤ n.

Let φS denote the formula of L′ obtained from φ by removing all (∃yi)’s from
the prefix and by replacing each occurrence of yi with the term fi(x1, . . . , xni ).
Then φS is called a Skolem variant of φ.

For example, for the formula φ

(∃y1)(∀x1)(∀x2)(∃y2)(∀x3)R(y1, x1, x2, y2, x3)

the following formula φS is a Skolem variant of φ

(∀x1)(∀x2)(∀x3)R(f1, x1, x2, f2(x1, x2), x3),

where f1 is a new constant symbol and f2 is a new binary function symbol.
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Skolemization Skolem variants

Properties of Skolem variants
Lemma Let φ be a sentence (∀x1) . . . (∀xn)(∃y)ψ of L and φ′ be a sentence
(∀x1) . . . (∀xn)ψ(y/f (x1, . . . , xn)) where f is a new function symbol. Then

(1) the reduct A of every model A′ of φ′ to the language L is a model of φ,

(2) every model A of φ can be expanded into a model A′ of φ′.

Remark Compared to extensions by definition of a function symbol, the
expansion in (2) does not need to be unique now.

Proof (1) Let A′ |= φ′ and A be the reduct of A′ to L. Since A |= ψ[e(y/a)]

for every assignment e where a = (f (x1, . . . , xn))
A′
[e], we have also A |= φ.

(2) Let A |= φ. There exists a function f A : An → A such that for every
assignment e it holds A |= ψ[e(y/a)] where a = f A(e(x1), . . . , e(xn)), and thus
the expansion A′ of A by the function f A is a model of φ′.

Corollary If φ′ is a Skolem variant of φ, then both statements (1) and (2)

hold for φ, φ′ as well. Hence φ, φ′ are equisatisfiable.
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Skolemization Skolem’s theorem

Skolem’s theorem

Theorem Every theory T has an open conservative extension T ∗.

Proof We may assume that T is in a closed form. Let L be its language.

By replacing each axiom of T with an equivalent formula in the prenex
normal form we obtain an equivalent theory T ◦.

By replacing each axiom of T ◦ with its Skolem variant we obtain a theory
T ′ in an extended language L′ ⊇ L.

Since the reduct of every model of T ′ to the language L is a model of T ,
the theory T ′ is an extension of T .

Furthermore, since every model of T can be expanded to a model of T ′,
it is a conservative extension.

Since every axiom of T ′ is a universal sentence, by replacing them
with their matrices we obtain an open theory T ∗ equivalent to T ′.

Corollary For every theory there is an equisatisfiable open theory.
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Herbrand’s theorem Introduction

Reduction of unsatisfiability to propositional logic

If an open theory is unsatisfiable, we can demonstrate it “via ground terms”.

For example, in the language L = ⟨P,R, f , c⟩ the theory

T = {P(x, y) ∨ R(x, y), ¬P(c, y), ¬R(x, f (x))}

is unsatisfiable, and this can be demonstrated by an unsatisfiable conjunction
of finitely many instances of (some) axioms of T in ground terms

(P(c, f (c)) ∨ R(c, f (c))) ∧ ¬P(c, f (c)) ∧ ¬R(c, f (c)),

which may be seen as an unsatisfiable propositional formula

(p ∨ r) ∧ ¬p ∧ ¬r.

An instance φ(x1/t1, . . . , xn/tn) of an open formula φ in free variables
x1, . . . , xn is a ground instance if all terms t1, . . . , tn are ground terms (i.e.
terms without variables).
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Herbrand’s theorem Herbrand model

Herbrand model

Let L = ⟨R,F⟩ be a language with at least one constant symbol. (If needed,
we add a new constant symbol to L.)

The Herbrand universe for L is the set of all ground terms of L.
For example, for L = ⟨P, f , c⟩ with f binary function sym., c constant sym.

A = {c, f (c, c), f (f (c, c), c), f (c, f (c, c)), f (f (c, c), f (c, c)), . . . }

An L-structure A is a Herbrand structure if its domain A is the Herbrand
universe for L and for each n-ary function symbol f ∈ F , t1, . . . , tn ∈ A,

f A(t1, . . . , tn) = f (t1, . . . , tn)

(including n = 0, i.e. cA = c for every constant symbol c).
Remark Compared to a canonical model, the relations are not specified.
E.g. A = ⟨A,PA, f A, cA⟩ with PA = ∅, cA = c, f A(c, c) = f (c, c), . . . .

A Herbrand model of a theory T is a Herbrand structure that models T .
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Herbrand’s theorem Theorem and corollaries

Herbrand’s theorem

Theorem Let T be an open theory of a language L without equality and with
at least one constant symbol. Then
(a) either T has a Herbrand model, or
(b) there are finitely many ground instances of axioms of T whose

conjunction is unsatisfiable, and thus T has no model.

Proof Let T ′ be the set of all ground instances of axioms of T . Consider a
finished (e.g. systematic) tableau τ from T ′ in the language L (without adding
new constant symbols) with the root entry F⊥.

If the tableau τ contains a noncontradictory branch V , the canonical
model from V is a Herbrand model of T .
Else, τ is contradictory, i.e. T ′ ⊢ ⊥. Moreover, τ is finite, so ⊥ is provable
from finitely many formulas of T ′, i.e. their conjunction is unsatisfiable.

Remark If the language L is with equality, we extend T to T ∗ by axioms of
equality for L and if T ∗ has a Herbrand model A, we take its quotient by =A.
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Herbrand’s theorem Theorem and corollaries

Corollaries of Herbrand’s theorem

Let L be a language containing at least one constant symbol.

Corollary For every open φ(x1, . . . , xn) of L, the formula (∃x1) . . . (∃xn)φ is
valid if and only if there exist mn ground terms tij of L for some m such that

φ(x1/t11, . . . , xn/t1n) ∨ · · · ∨ φ(x1/tm1, . . . , xn/tmn)

is a (propositional) tautology.

Proof (∃x1) . . . (∃xn)φ is valid ⇔ (∀x1) . . . (∀xn)¬φ is unsatisfiable ⇔ ¬φ is
unsatisfiable. The rest follows from Herbrand’s theorem for {¬φ}.

Corollary An open theory T of L is satisfiable if and only if the theory T ′

of all ground instances of axioms of T is satisfiable.

Proof If T has a model A, every instance of each axiom of T is valid in A,
thus A is a model of T ′. If T is unsatisfiable, by H. theorem there are (finitely)
formulas of T ′ whose conjunction is unsatisfiable, thus T ′ is unsatisfiable.
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Resolution method in predicate logic Introduction

Resolution method in predicate logic - introduction

A refutation procedure - its aim is to show that a given formula (or theory)
is unsatisfiable.

It assumes open formulas in CNF (and in clausal form).

A literal is (now) an atomic formula or its negation.

A clause is a finite set of literals, □ denotes the empty clause.

A formula (in clausal form) is a (possibly infinite) set of clauses.

Remark Every formula (theory) can be converted to an equisatisfiable
open formula (theory) in CNF, and then to a formula in clausal form.

The resolution rule is more general - it allows to resolve through literals
that are unifiable.

Resolution in predicate logic is based on resolution in propositional logic
and unification.
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Resolution method in predicate logic Introduction

Local scope of variables

Variables can be renamed locally within clauses.

Let φ be an (input) open formula in CNF.
φ is satisfiable if and only if its universal closure φ′ is satisfiable.

For every two formulas ψ, χ and a variable x

|= (∀x)(ψ ∧ χ) ↔ (∀x)ψ ∧ (∀x)χ

(also in the case that x is free both in ψ and χ).

Every clause in φ can thus be replaced by its universal closure.

We can then take any variants of clauses (to rename variables apart).

For example, by renaming variables in the second clause of (1) we obtain
an equisatisfiable formula (2).
(1) {{P(x),Q(x, y)}, {¬P(x),¬Q(y, x)}}
(2) {{P(x),Q(x, y)}, {¬P(v),¬Q(u, v)}}
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Resolution method in predicate logic Introduction

Reduction to propositional level (grounding)
Herbrand’s theorem gives us the following (inefficient) method.

Let S be the (input) formula in clausal form.

We can assume that the language contains at least one constant symbol.

Let S′ be the set of all ground instances of all clauses from S.

By introducing propositional letters representing atomic sentences we
may view S′ as a (possibly infinite) propositional formula in clausal form.

We may verify that it is unsatisfiable by resolution on propositional level.

For example, for S = {{P(x, y),R(x, y)}, {¬P(c, y)}, {¬R(x, f (x))}} the set

S′ = {{P(c, c),R(c, c)}, {P(c, f (c)),R(c, f (c))}, {P(f (c), f (c)),R(f (c), f (c))} . . . ,
{¬P(c, c)}, {¬P(c, f (c))}, . . . , {¬R(c, f (c))}, {¬R(f (c), f (f (c)))}, . . . }

is unsatisfiable since on propositional level

S′ ⊇ {{P(c, f (c)),R(c, f (c))}, {¬P(c, f (c))}, {¬R(c, f (c))}} ⊢R □.
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Resolution method in predicate logic Resolution proof

The general resolution rule

Let C1, C2 be clauses with distinct variables such that

C1 = C ′
1 ⊔ {A1, . . . ,An}, C2 = C ′

2 ⊔ {¬B1, . . . ,¬Bm},

where S = {A1, . . . ,An,B1, . . . ,Bm} is unifiable and n,m ≥ 1. Then the clause

C = C ′
1σ ∪ C ′

2σ,

where σ is a most general unification of S, is the resolvent of C1 and C2.

For example, in clauses {P(x),Q(x, z)} and {¬P(y),¬Q(f (y), y)} we can
unify S = {Q(x, z),Q(f (y), y)} applying a most general unification
σ = {x/f (y), z/y}, and then resolve to a clause {P(f (y)),¬P(y)}.

Remark The condition on distinct variables can be satisfied by renaming
variables apart. This is sometimes necessary, e.g. from {{P(x)}, {¬P(f (x))}}
after renaming we can get □, but {P(x),P(f (x))} is not unifiable.
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Resolution method in predicate logic Resolution proof

Resolution proof

We have the same notions as in propositional logic, up to renaming variables.

Resolution proof (deduction) of a clause C from a formula S is a finite
sequence C0, . . . ,Cn = C such that for every i ≤ n, we have Ci = C ′

iσ

for some C ′
i ∈ S and a renaming of variables σ, or Ci is a resolvent of

some previous clauses.

A clause C is (resolution) provable from S, denoted by S ⊢R C , if it has
a resolution proof from S.

A (resolution) refutation of a formula S is a resolution proof of □ from S.

S is (resolution) refutable if S ⊢R □.

Remark Elimination of several literals at once is sometimes necessary, e.g.
S = {{P(x),P(y)}, {¬P(x),¬P(y)}} is resolution refutable, but it has no
refutation that eliminates only a single literal in each resolution step.
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Resolution method in predicate logic Resolution proof

Resolution in predicate logic - an example

Consider T = {¬P(x, x), P(x, y) → P(y, x), P(x, y) ∧ P(y, z) → P(x, z)}.

Is T |= (∃x)¬P(x, f (x)) ? Equivalently, is the following T ′ unsatisfiable?

T ′ = {{¬P(x, x)}, {¬P(x, y),P(y, x)}, {¬P(x, y),¬P(y, z),P(x, z)}, {P(x, f (x))}}

{¬P (x, y),¬P (y, z), P (x, z)} {P (x′, f(x′))}

{¬P (f(x), z), P (x, z)}

{P (x′, f(x′))}{¬P (x, y), P (y, x)}

{P (f(x′), x′)}

{P (x, x)} {¬P (x′, x′)}

x′/x

z/x, x′/x

x/x′, y/f(x′)y/f(x), x′/x

T ′ `R
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