Propositional and Predicate Logic - X

Petr Gregor

KTIML MFF UK

WS 2023/2024

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - X

WS 2023/2024

・ロト ・ 日 ・ ・ ヨ ・ ・

1/21

Corollaries

Properties of theories

We introduce syntactic variants of previous semantical definitions.

Let T be a theory of a language L. If a sentence φ is provable from T, we say that φ is a *theorem* of T. The set of theorems of T is denoted by

Thm^{*L*}(*T*) = { $\varphi \in \operatorname{Fm}_L \mid T \vdash \varphi$ }.

We say that a theory T is

- *inconsistent* if $T \vdash \bot$, otherwise T is *consistent*,
- complete if it is consistent and every sentence is provable or refutable from T, i.e. $T \vdash \varphi$ or $T \vdash \neg \varphi$.
- an *extension* of a theory T' of L' if $L' \subseteq L$ and $\text{Thm}^{L'}(T') \subseteq \text{Thm}^{L}(T)$, we say that an extension T of a theory T' is simple if L = L': and *conservative* if Thm^{L'}(T') = Thm^L(T) \cap Fm_{L'},
- equivalent with a theory T' if T is an extension of T' and vice-versa.

Corollaries

Corollaries

From the soundness and completeness of the tableau method it follows that these syntactic definitions agree with their semantic variants.

Corollary For every theory T and sentences φ, ψ of a language L,

•
$$T \vdash \varphi$$
 if and only if $T \models \varphi$,

- Thm^L(T) = $\theta^{L}(T)$,
- T is inconsistent if and only if T is unsatisfiable, i.e. it has no model,
- T is complete if and only if T is semantically complete, i.e. it has a single model, up to elementarily equivalence,
- $T, \varphi \vdash \psi$ if and only if $T \vdash \varphi \rightarrow \psi$ (Deduction theorem).

Remark Deduction theorem can be proved directly by transformations of tableaux.

Corollaries

Existence of a countable model and compactness

Theorem Every consistent theory *T* of a countable language *L* without equality has a countably infinite model.

Proof Let τ be the systematic tableau from T with $F \perp$ in the root. Since τ is finished and contains a noncontradictory branch V as \perp is not provable from T, there exists a canonical model A from V. Since A agrees with V, its reduct to the language L is a desired countably infinite model of T.

Remark This is a weak version of so called Löwenheim-Skolem theorem. In a countable language with equality the canonical model with equality is countable (i.e. finite or countably infinite).

Theorem A theory *T* has a model iff every finite subset of *T* has a model. *Proof* The implication from left to right is obvious. If *T* has no model, then it is inconsistent, i.e. \perp is provable by a systematic tableau τ from *T*. Since τ is finite, \perp is provable from some finite $T' \subseteq T$, i.e. *T'* has no model.

Non-standard model of natural numbers

Let $\underline{\mathbb{N}} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ be the standard model of natural numbers.

Let $\operatorname{Th}(\underline{\mathbb{N}})$ denote the set of all sentences that are valid in $\underline{\mathbb{N}}$. For $n \in \mathbb{N}$ let \underline{n} denote the term $S(S(\cdots(S(0))\cdots))$, so called the *n*-th numeral, where *S* is applied *n*-times.

Consider the following theory *T* where *c* is a new constant symbol. $T = \text{Th}(\underline{\mathbb{N}}) \cup \{\underline{n} < c \mid n \in \mathbb{N}\}$

Observation Every finite subset of T has a model.

Thus by the compactness theorem, T has a model A. It is a non-standard model of natural numbers. Every sentence from $\text{Th}(\underline{\mathbb{N}})$ is valid in A but it contains an element c^A that is greater then every $n \in \mathbb{N}$ (i.e. the value of the term \underline{n} in A).

Equisatisfiability

We will see that the problem of satisfiability can be reduced to open theories.

- Theories T, T' are *equisatisfiable* if T has a model \Leftrightarrow T' has a model.
- A formula φ is in the *prenex (normal) form (PNF)* if it is written as $(Q_1x_1)\dots(Q_nx_n)\varphi'$,

where Q_i denotes \forall or \exists , variables x_1, \ldots, x_n are all distinct and φ' is an open formula, called the *matrix*. $(Q_1x_1) \ldots (Q_nx_n)$ is called the *prefix*.

• In particular, if all quantifiers are \forall , then φ is a *universal* formula.

To find an open theory equisatisfiable with T we proceed as follows.

- (1) We replace axioms of T by equivalent formulas in the prenex form.
- (2) We transform them, using new function symbols, to equisatisfiable universal formulas, so called Skolem variants.
- (3) We take their matrices as axioms of a new theory.

Conversion rules for quantifiers

Let Q denote \forall or \exists and let \overline{Q} denote the complementary quantifier. For every formulas φ , ψ such that x is not free in the formula ψ ,

> $\models \neg(Qx)\varphi \leftrightarrow (\overline{Q}x)\neg\varphi$ $\models ((Qx)\varphi \wedge \psi) \leftrightarrow (Qx)(\varphi \wedge \psi)$ $\models ((Qx)\varphi \vee \psi) \leftrightarrow (Qx)(\varphi \vee \psi)$ $\models ((Qx)\varphi \rightarrow \psi) \leftrightarrow (\overline{Q}x)(\varphi \rightarrow \psi)$ $\models (\psi \rightarrow (Qx)\varphi) \leftrightarrow (Qx)(\psi \rightarrow \varphi)$

The above equivalences can be verified semantically or proved by the tableau method (*by taking the universal closure if it is not a sentence*).

Remark The assumption that *x* is not free in ψ is necessary in each rule above (except the first one) for some quantifier *Q*. For example,

 $\not\models ((\exists x) P(x) \land P(x)) \leftrightarrow (\exists x) (P(x) \land P(x))$

・ロン ・四 と ・ 回 と ・ 日 と

Conversion to the prenex normal form

Proposition Let φ' be the formula obtained from φ by replacing some occurrences of a subformula ψ with ψ' . If $T \models \psi \leftrightarrow \psi'$, then $T \models \varphi \leftrightarrow \varphi'$.

Proof Easily by induction on the structure of the formula φ .

Proposition For every formula φ there is an equivalent formula φ' in the prenex normal form, i.e. $\models \varphi \leftrightarrow \varphi'$.

Proof By induction on the structure of φ applying the conversion rules for quantifiers, replacing subformulas with their variants if needed, and applying the above proposition on equivalent transformations.

For example,

$$\begin{array}{rcl} ((\forall z)P(x,z) \land P(y,z)) & \rightarrow & \neg (\exists x)P(x,y) \\ ((\forall u)P(x,u) \land P(y,z)) & \rightarrow & (\forall x)\neg P(x,y) \\ (\forall u)(P(x,u) \land P(y,z)) & \rightarrow & (\forall v)\neg P(v,y) \\ (\exists u)((P(x,u) \land P(y,z)) & \rightarrow & (\forall v)\neg P(v,y)) \\ (\exists u)(\forall v)((P(x,u) \land P(y,z)) & \rightarrow & \neg P(v,y)) \end{array}$$

・ロン ・四 と ・ 回 と ・ 日 と

э.

Skolem variants

Let φ be a sentence of a language *L* in the prenex normal form, let y_1, \ldots, y_n be the existentially quantified variables in φ (in this order), and for every $i \leq n$ let x_1, \ldots, x_{n_i} be the variables that are universally quantified in φ before y_i . Let *L*' be an extension of *L* with new n_i -ary function symbols f_i for all $i \leq n$.

Let φ_S denote the formula of L' obtained from φ by removing all $(\exists y_i)$'s from the prefix and by replacing each occurrence of y_i with the term $f_i(x_1, \ldots, x_{n_i})$. Then φ_S is called a *Skolem variant* of φ .

For example, for the formula φ

 $(\exists y_1)(\forall x_1)(\forall x_2)(\exists y_2)(\forall x_3)R(y_1, x_1, x_2, y_2, x_3)$

the following formula φ_S is a Skolem variant of φ

 $(\forall x_1)(\forall x_2)(\forall x_3)R(f_1, x_1, x_2, f_2(x_1, x_2), x_3),$

where f_1 is a new constant symbol and f_2 is a new binary function symbol.

Properties of Skolem variants

Lemma Let φ be a sentence $(\forall x_1) \dots (\forall x_n) (\exists y) \psi$ of *L* and φ' be a sentence

 $(\forall x_1) \dots (\forall x_n) \psi(y/f(x_1, \dots, x_n))$ where *f* is a new function symbol. Then

(1) the reduct A of every model A' of φ' to the language L is a model of φ ,

(2) every model A of φ can be expanded into a model A' of φ' .

Remark Compared to extensions by definition of a function symbol, the expansion in (2) does not need to be unique now.

Proof (1) Let $\mathcal{A}' \models \varphi'$ and \mathcal{A} be the reduct of \mathcal{A}' to *L*. Since $\mathcal{A} \models \psi[e(y/a)]$ for every assignment *e* where $a = (f(x_1, \ldots, x_n))^{\mathcal{A}'}[e]$, we have also $\mathcal{A} \models \varphi$. (2) Let $\mathcal{A} \models \varphi$. There exists a function $f^A \colon \mathcal{A}^n \to A$ such that for every assignment *e* it holds $\mathcal{A} \models \psi[e(y/a)]$ where $a = f^A(e(x_1), \ldots, e(x_n))$, and thus the expansion \mathcal{A}' of \mathcal{A} by the function f^A is a model of φ' . \Box

Corollary If φ' is a Skolem variant of φ , then both statements (1) and (2) hold for φ , φ' as well. Hence φ , φ' are equisatisfiable.

Skolem's theorem

Theorem Every theory T has an open conservative extension T^* .

Proof We may assume that T is in a closed form. Let L be its language.

- By replacing each axiom of T with an equivalent formula in the prenex normal form we obtain an equivalent theory T°.
- By replacing each axiom of T° with its Skolem variant we obtain a theory T' in an extended language $L' \supseteq L$.
- Since the reduct of every model of *T'* to the language *L* is a model of *T*, the theory *T'* is an extension of *T*.
- Furthermore, since every model of *T* can be expanded to a model of *T'*, it is a conservative extension.
- Since every axiom of *T'* is a universal sentence, by replacing them with their matrices we obtain an open theory *T*^{*} equivalent to *T'*.

Corollary For every theory there is an equisatisfiable open theory.

Petr Gregor (KTIML MFF UK)

Reduction of unsatisfiability to propositional logic

If an open theory is unsatisfiable, we can demonstrate it "via ground terms". For example, in the language $L = \langle P, R, f, c \rangle$ the theory

 $T = \{P(x, y) \lor R(x, y), \neg P(c, y), \neg R(x, f(x))\}$

is unsatisfiable, and this can be demonstrated by an unsatisfiable conjunction of finitely many instances of (some) axioms of T in ground terms

 $(P(c, f(c)) \lor R(c, f(c))) \land \neg P(c, f(c)) \land \neg R(c, f(c)),$

which may be seen as an unsatisfiable propositional formula

 $(p \lor r) \land \neg p \land \neg r.$

An instance $\varphi(x_1/t_1, \ldots, x_n/t_n)$ of an open formula φ in free variables x_1, \ldots, x_n is a *ground instance* if all terms t_1, \ldots, t_n are ground terms (i.e. terms without variables).

Herbrand model

Let $L = \langle \mathcal{R}, \mathcal{F} \rangle$ be a language with at least one constant symbol. (If needed, we add a new constant symbol to L.)

- The *Herbrand universe* for *L* is the set of all ground terms of *L*. For example, for $L = \langle P, f, c \rangle$ with *f* binary function sym., *c* constant sym. $A = \{c, f(c, c), f(f(c, c), c), f(c, f(c, c)), f(f(c, c), f(c, c)), \dots\}$
- An *L*-structure A is a *Herbrand structure* if its domain A is the Herbrand universe for L and for each *n*-ary function symbol *f* ∈ F, *t*₁,..., *t_n* ∈ A,
 *f^A(t*₁,..., *t_n) = f(t*₁,..., *t_n)*

(including n = 0, i.e. $c^A = c$ for every constant symbol c).

Remark Compared to a canonical model, the relations are not specified. E.g. $\mathcal{A} = \langle A, P^A, f^A, c^A \rangle$ with $P^A = \emptyset$, $c^A = c$, $f^A(c, c) = f(c, c)$,

• A *Herbrand model* of a theory *T* is a Herbrand structure that models *T*.

イロン イヨン イヨン

э.

Theorem and corollaries

Herbrand's theorem

Theorem Let T be an open theory of a language L without equality and with at least one constant symbol. Then

- (a) either T has a Herbrand model, or
- (b) there are finitely many ground instances of axioms of T whose conjunction is unsatisfiable, and thus T has no model.

Proof Let T' be the set of all ground instances of axioms of T. Consider a finished (e.g. systematic) tableau τ from T' in the language L (without adding new constant symbols) with the root entry $F \perp$.

- If the tableau τ contains a noncontradictory branch V, the canonical model from V is a Herbrand model of T.
- Else, τ is contradictory, i.e. $T' \vdash \bot$. Moreover, τ is finite, so \bot is provable from finitely many formulas of T', i.e. their conjunction is unsatisfiable.

Remark If the language L is with equality, we extend T to T^* by axioms of equality for L and if T^* has a Herbrand model A, we take its quotient by $=^A$.

Corollaries of Herbrand's theorem

Let L be a language containing at least one constant symbol.

Corollary For every open $\varphi(x_1, ..., x_n)$ of *L*, the formula $(\exists x_1) ... (\exists x_n) \varphi$ is valid if and only if there exist *mn* ground terms t_{ij} of *L* for some *m* such that

 $\varphi(x_1/t_{11},\ldots,x_n/t_{1n}) \lor \cdots \lor \varphi(x_1/t_{m1},\ldots,x_n/t_{mn})$

is a (propositional) tautology.

Proof $(\exists x_1) \dots (\exists x_n) \varphi$ is valid $\Leftrightarrow (\forall x_1) \dots (\forall x_n) \neg \varphi$ is unsatisfiable $\Leftrightarrow \neg \varphi$ is unsatisfiable. The rest follows from Herbrand's theorem for $\{\neg \varphi\}$. \Box

Corollary An open theory T of L is satisfiable if and only if the theory T' of all ground instances of axioms of T is satisfiable.

Proof If *T* has a model A, every instance of each axiom of *T* is valid in A, thus A is a model of *T'*. If *T* is unsatisfiable, by H. theorem there are (finitely) formulas of *T'* whose conjunction is unsatisfiable, thus *T'* is unsatisfiable.

イロン イボン イヨン 一日

Resolution method in predicate logic - introduction

- A refutation procedure its aim is to show that a given formula (or theory) is unsatisfiable.
- It assumes open formulas in CNF (and in clausal form).

A *literal* is (now) an atomic formula or its negation.

A *clause* is a finite set of literals, \Box denotes the empty clause.

A formula (in clausal form) is a (possibly infinite) set of clauses.

Remark Every formula (theory) can be converted to an equisatisfiable open formula (theory) in CNF, and then to a formula in clausal form.

- The resolution rule is more general it allows to resolve through literals that are unifiable.
- Resolution in predicate logic is based on resolution in propositional logic and unification.

Local scope of variables

Variables can be renamed locally within clauses.

Let φ be an *(input)* open formula in CNF.

- φ is satisfiable if and only if its universal closure φ' is satisfiable.
- For every two formulas ψ , χ and a variable x

$\models \quad (\forall x)(\psi \land \chi) \leftrightarrow \ (\forall x)\psi \land (\forall x)\chi$

(also in the case that x is free both in ψ and χ).

- Every clause in φ can thus be replaced by its universal closure.
- We can then take any variants of clauses (to rename variables apart).

For example, by renaming variables in the second clause of (1) we obtain an equisatisfiable formula (2).

- (1) {{P(x), Q(x, y)}, { $\neg P(x), \neg Q(y, x)$ }
- (2) {{P(x), Q(x, y)}, { $\neg P(v), \neg Q(u, v)$ }

Reduction to propositional level (grounding)

Herbrand's theorem gives us the following (inefficient) method.

- Let S be the (input) formula in clausal form.
- We can assume that the language contains at least one constant symbol.
- Let S' be the set of all ground instances of all clauses from S.
- By introducing propositional letters representing atomic sentences we may view S' as a (possibly infinite) propositional formula in clausal form.
- We may verify that it is unsatisfiable by resolution on propositional level.

For example, for $S = \{\{P(x, y), R(x, y)\}, \{\neg P(c, y)\}, \{\neg R(x, f(x))\}\}$ the set $S' = \{\{P(c, c), R(c, c)\}, \{P(c, f(c)), R(c, f(c))\}, \{P(f(c), f(c)), R(f(c), f(c))\} \dots, \{P(f(c), f(c)), R(f(c), f(c))\} \} \dots \}$ $\{\neg P(c,c)\}, \{\neg P(c,f(c))\}, \ldots, \{\neg R(c,f(c))\}, \{\neg R(f(c),f(f(c)))\}, \ldots\}$

is unsatisfiable since on propositional level

 $S' \supset \{\{P(c, f(c)), R(c, f(c))\}, \{\neg P(c, f(c))\}, \{\neg R(c, f(c))\}\} \vdash_{R} \Box.$

The general resolution rule

Let C_1 , C_2 be clauses with distinct variables such that

 $C_1 = C'_1 \sqcup \{A_1, \ldots, A_n\}, \quad C_2 = C'_2 \sqcup \{\neg B_1, \ldots, \neg B_m\},$

where $S = \{A_1, \dots, A_n, B_1, \dots, B_m\}$ is unifiable and $n, m \ge 1$. Then the clause $C = C_1' \sigma \cup C_2' \sigma$,

where σ is a most general unification of *S*, is the *resolvent* of *C*₁ and *C*₂.

For example, in clauses $\{P(x), Q(x, z)\}$ and $\{\neg P(y), \neg Q(f(y), y)\}$ we can unify $S = \{Q(x, z), Q(f(y), y)\}$ applying a most general unification $\sigma = \{x/f(y), z/y\}$, and then resolve to a clause $\{P(f(y)), \neg P(y)\}$.

Remark The condition on distinct variables can be satisfied by renaming variables apart. This is sometimes necessary, e.g. from $\{\{P(x)\}, \{\neg P(f(x))\}\}$ after renaming we can get \Box , but $\{P(x), P(f(x))\}$ is not unifiable.

Resolution proof

We have the same notions as in propositional logic, up to renaming variables.

- *Resolution proof (deduction)* of a clause *C* from a formula *S* is a finite sequence C₀,..., C_n = C such that for every *i* ≤ *n*, we have C_i = C'_iσ for some C'_i ∈ S and a renaming of variables σ, or C_i is a resolvent of some previous clauses.
- A clause *C* is (resolution) *provable* from *S*, denoted by $S \vdash_R C$, if it has a resolution proof from *S*.
- A (resolution) *refutation* of a formula *S* is a resolution proof of \Box from *S*.
- *S* is (resolution) *refutable* if $S \vdash_R \Box$.

Remark Elimination of several literals at once is sometimes necessary, e.g. $S = \{\{P(x), P(y)\}, \{\neg P(x), \neg P(y)\}\}$ is resolution refutable, but it has no refutation that eliminates only a single literal in each resolution step.

20/21

・ロン ・回 と ・ ヨ と ・

Resolution in predicate logic - an example

Consider $T = \{\neg P(x, x), P(x, y) \rightarrow P(y, x), P(x, y) \land P(y, z) \rightarrow P(x, z)\}.$ Is $T \models (\exists x) \neg P(x, f(x))$? Equivalently, is the following T' unsatisfiable? $T' = \{\{\neg P(x, x)\}, \{\neg P(x, y), P(y, x)\}, \{\neg P(x, y), \neg P(y, z), P(x, z)\}, \{P(x, f(x))\}\}$

