Propositional and Predicate Logic - Xl

Petr Gregor
KTIML MFF UK
WS 2023/2024

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - XI

Resolution method in predicate logic - introduction

@ A refutation procedure - its aim is to show that a given formula (or theory)
is unsatisfiable.

@ It assumes open formulas in CNF (and in clausal form).
A literal is (now) an atomic formula or its negation.
A clause is a finite set of literals, [(J denotes the empty clause.
A formula (in clausal form) is a (possibly infinite) set of clauses.

Remark Every formula (theory) can be converted to an equisatisfiable
open formula (theory) in CNF, and then to a formula in clausal form.

@ The resolution rule is more general - it allows to resolve through literals
that are unifiable.

@ Resolution in predicate logic is based on resolution in propositional logic
and unification.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 2/23

Local scope of variables

Variables can be renamed locally within clauses.

Let © be an (input) open formula in CNF.
@ ¢ is satisfiable if and only if its universal closure ¢’ is satisfiable.

@ For every two formulas v, x and a variable x
F (V)@ AX) < (VX9 A (VX)X
(also in the case that x is free both in i) and).

@ Every clause in ¢ can thus be replaced by its universal closure.

@ We can then take any variants of clauses (to rename variables apart).

For example, by renaming variables in the second clause of (1) we obtain
an equisatisfiable formula (2).

(1) {{P(x), Q(x,y)},{~P(x),~Q(y,)} }
(2) {{P(x), Q(x,y)}, {~P(v), ~Q(u, v)}}

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024

3/23

Reduction to propositional level (grounding)

Herbrand’s theorem gives us the following (inefficient) method.
@ Let S be the (input) formula in clausal form.
@ We can assume that the language contains at least one constant symbol.
@ Let S be the set of all ground instances of all clauses from S.

@ By introducing propositional letters representing atomic sentences we
may view S’ as a (possibly infinite) propositional formula in clausal form.

@ We may verify that it is unsatisfiable by resolution on propositional level.

For example, for S = {{P(x,y),R(x,y)},{=P(c,y)},{—R(x, f(x))}} the set

§" = {{P(c,c),R(c, o)}, {P(c, f(c)), R(c, f(e)}, {P(f(c), f(c), R(f(¢). f(e))} - ..,
{=P(c,)}, {=P(c. f(c)}- -, {~R(c. f(e)}, {-R(f(e), f(f(c))}- - }

is unsatisfiable since on propositional level

§" 2 {{P(c.f(c), R(c. f(e)} {~P(c. f(e)}, {=R(c. f(¢)}} Fr O

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 4/23

tion method in predicate logic Substitutions

Substitutions - examples

It is more efficient to use suitable substitutions. For example, in

a) {P(x),Q(x,a)}, {-P(y),~Q(b,y)} substituting x/b, y/a gives
{P(b),Q(b,a)}, {—~P(a),-Q(b, a)}, which resolves to {P(b),—P(a)}.

Or, substituting x/y and resolving through P(y) gives {Q(y,a). ~Q(b,y)}.

b) {P(x),Q(x,a),Q(b,y)}, {—~P(v),~Q(u,v)} substituting x/b, y/a, u/b,
v/agives {P(b), Q(b,a)}, {—-P(a),-Q(b,a)}, resolving to { P(b),—P(a)}.
)

¢) {P(x). Q(x.2)}, (~P(). ~QUf(y).)} substituting x/f (z), y/= gives
{P(f(2)), Qf (2). 2)}, {~P(2), ~Q(f (2), 2)}, resolving to {P(f(2)), ~P(2)}.

Alternatively, substituting x/f(a), y/a, z/a gives {P(f(a)), Q(f(a), a)},
{=P(a),~Q(f(a),a)}, which resolves to { P(f(a)), ~P(a)}. But the
previous substitution is more general.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 5/23

Substitutions

@ A substitution is a (finite) set o = {x;/t, ..., x,/t,}, where x;’s are
distinct variables, t;’s are terms, and the term ¢; is not x;.

@ If all #;’s are ground terms, then o is a ground substitution.
@ If all #s are distinct variables, then o is a renaming of variables.
@ An expression is a literal or a term.

@ An instance of an expression E by substitution o = {x/t1, ..., Xp/t,} IS
the expression Ec obtained from E by simultaneous replacing all
occurrences of all x;’s for t;’s, respectively.

@ For a set S of expressions, let So = {Eo | E € S}.

Remark Since we substitute for all variables simultaneously, a possible
occurrence of x; in t; does not lead to a chain of substitutions.

For example, for S = {P(x),R(y,2)} and o = {x/f(y,2),y/x,z/c} we have
So ={P(f(y,2)),R(x,c)}.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 6/23

Composing substitutions

For substitutions o = {x; /11, ..., x,/t,} and 7 = {y1/s1.....Vn/Sn} We define
or ={x;/tir | x; € X, risnot x;} U{y;/si |y € Y\ X}
to be the composition of o and 7, where X = {x1,...,x,}, Y ={3,..., Ym}-

For example, foro = {x/f(y),w/v}, 7 = {x/a,y/g(x),v/w, u/c} we have
ot = {x/f(g(x)),y/8(x),v/w,u/c}.

Proposition (without proof) For every expression E and substitutions o, T, o,
(i) (Eo)T = E(o7),
(ii) (o1)o = o(70).

Remark Composition of substitutions is not commutative, for the above o, T,

To ={x/a,y/g(f(y)), u/c, w/v} # o.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 7/23

Unification

Let S = {E,..., E,} be a (finite) set of expressions.

@ A unification of S is a substitution ¢ such that Eyoc = E,o = --- = E,0,
i.e. So is a singleton.

@ Sis unifiable if it has a unification.
@ A unification o of S is a most general unification (mgu) if for every
unification 7 of S there is a substitution X such that = = o A.

For example, S = {P(f(x),y), P(f(a), w)} is unifiable by a most general
unification o = {x/a, y/w}. A unification 7 = {x/a, y/b, w/b} is obtained as
o) for A = {w/b}. T is not mgu, it cannot give us o = {x/a,y/c, w/c}.

Observation If o, T are two most general unifications of S, they differ
only in renaming of variables.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 8/23

Unification algorithm

Let S be a (finite) nonempty set of expressions and p be the leftmost position
in which some expressions of S differ. Then the difference in S is the set D(S)
of subexpressions of all expressions from S starting at the position p.

For example, S = {P(x,y), P(f(x),z), P(z,f(x))} has D(S) = {x, f(x), z}.
Input Nonempty (finite) set of expressions S.

Output A most general unification o of S or “S is not unifiable”.

(0) Let Sy :=S,00:=0, k:=0. (initialization)
(1) If S is a singleton, output the substitution o = ogo; - - - 0. (mgu of S)
(2) Find if D(S) contains a variable x and a term ¢ with no occurrence of x.
(3) If not, output “S is not unifiable”.

(4) Otherwise, let o1 := {x/t}, Sk11 := Skoks1, k:=k+ 1 and goto (1).
Remark The occurrence check of x in t in step (2) can be “expensive”.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 9/23

Resolution method in predicate logic Unification

Unification algorithm - an example

§={P(f(y.&(2)), h(D)), P(f(h(w), g(a)),t), P(f(h(b),&(2)),y)}
1) Sy = Sis not a singleton and D(S) = {y, h(w), h(b)} has a term h(w)
and a variable y not occurring in h(w). Let o1 = {y/h(w)}, S1 = Soo1, i.e.

S1 = {P(f(h(w),g(2)), h(b)), P(f(h(w),g(a)),1), P(f(h(b),g(2)), h(w))}.

2) D(S1) = {w, b}, o2 = {w/b}, S = S102, i.e.

Sa = {P(f(h(b),g(2)), h(b)), P(f(h(D),g(a)), 1)}
3) D(S;) ={z,a}, o3 ={z/a}, S3 = Sy03, i.e.

Ss = {P(f(h(D),g(a)), h(D)), P(f(h(b),g(a)),t)}.
4) D(S3) = {h(b),t}, o4 = {t/h(b)}, Sa = S304, i.e.

Sy = {P(f(h(b),g(a)), h(D))}.

5) S, is a singleton and a most general unification of S is

o ={y/Mw){w/b}{z/a}{t/h(b)} = {y/h(b), w/b,z/a,t/h(b)}.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 10/23

Unification algorithm - correctness

Proposition The unification algorithm outputs a correct answer in finite time
for any input S, i.e. a most general unification o of S or it detects that S is not
unifiable. (x) Moreover, for every unification T of S it holds that T = o.

Proof It eliminates one variable in each round, so it ends in finite time.
@ If it ends negatively after k rounds, D(S;) is not unifiable, thus also S.
If it outputs o = ogo - - - 0y, Clearly o is a unification of S.
If we show the property (x) for o, then o is a most general unification of S.
Let 7 be a unification of S. We show that 7 = ooy -+ - o7 forall i < k.
For i = 0t holds. Let o;1; = {x/t} and assume that 7 = ogo7 - - - 07

(1)

(2)

(3) It suffices to show that vo;, 17 = vr for every variable v.

(4) If v # x, voi1 = v, S0 (3) holds. Otherwise v = x and vo | = Xo;11 = L.
(5)

Since 7 unifies S; = Soyo, - - - 0; and both the variable x and the term ¢
are in D(S;), 7 has to unify x and ¢, i.e. t7 = x7, as required for (3). O

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 11/23

The general resolution rule

Let Gy, G be clauses with distinct variables such that
C=CU{A,...,A)}, G =CU{~Bi,...,~By},
where S = {A,,..., Ay, Bi,..., By} is unifiable and n, m > 1. Then the clause
C = ClocUCCjo,
where ¢ is a most general unification of S, is the resolvent of C; and G,.
For example, in clauses {P(x), Q(x, z)} and {—P(y),-Q(f(y),y)} we can

unify S = {Q(x, z), Q(f(y),y)} applying a most general unification
o ={x/f(y),z/y}, and then resolve to a clause {P(f(y)),~P(y)}.

Remark The condition on distinct variables can be satisfied by renaming
variables apart. This is sometimes necessary, e.g. from {{P(x)},{—-P(f(x))}}
after renaming we can get O, but { P(x), P(f(x))} is not unifiable.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 12/23

Resolution method in predicate logic Resolution proof

Resolution proof

We have the same notions as in propositional logic, up to renaming variables.

@ Resolution proof (deduction) of a clause C from a formula S is a finite
sequence (, ..., C, = C such that for every i < n, we have C; = C/o
for some C; € S and a renaming of variables ¢, or C; is a resolvent of
some previous clauses.

@ Aclause C is (resolution) provable from S, denoted by S kg C, if it has
a resolution proof from S.

@ A (resolution) refutation of a formula S is a resolution proof of (1 from S.

@ Sis (resolution) refutable if S Fg O1.

Remark Elimination of several literals at once is sometimes necessary, e.g.
S={{P(x),P(y)},{-P(x),~P(y)}} is resolution refutable, but it has no
refutation that eliminates only a single literal in each resolution step.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 13/23

Resolution in predicate logic - an example

Consider T'= {—=P(x,x), P(x,y) — P(y,x), P(x,y) NP(y,z) — P(x,2)}.
Is T = (3x)-P(x, f(x)) ? Equivalently, is the following T” unsatisfiable?
T" = {{=P(x,x)},{~P(x,¥), P(y,X)}, {~P(x,y), ~P(y, 2), P(x, 2) }, { P(x, f(x)) }}

T"‘RD / \
xa:

{P({=P(z', ")}
{ﬂP(f(a:),z)7P(x7z)} {P(f(l’,),l‘,)}

W@ T

{=P(z,y),~P(y,2), P(x,2)} {P@, f(@))} {=Px,y), Ply,x)} {P(, f(x)}

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 14/23

Soundness of resolution

First we show soundness of the general resolution rule.

Proposition Let C be a resolvent of clauses C;, C,. For every L-structure A,
AE=C and AEG = AEC.

@ Since Cy, G, are open, it holds also A | Cyo and A E Go.
@ We have Cio = C{o U {So}and G0 = Cio U {~(So)}.
@ We show A = Cle] for every e. If A |= So[e], then A = Cjole], and thus
A = Cle]. Otherwise A [~ So[e], so A = Cjole], and thus A |= Cle]. [
Theorem (soundness) If S is resolution refutable, then S is unsatisfiable.

Proof Let S kg O. Suppose A |= S for some structure A. By soundness
of the general resolution rule we have A = O, which is impossible. W

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 15/23

Soundness and complteness
Lifting lemma

A resolution proof on propositional level can be “lifted” to predicate level.

Lemma Let Cf = Gy, C = G be ground instances of clauses C;, C,
with distinct variables and C* be a resolvent of C; a C;. Then there exists
a resolvent C of C, and G, such that C* = Crm, is a ground instance of C.

Proof Assume that C* is a resolvent of C;, C; through a literal P(t, .. ., &).
@ Wehave C, = C{ U{A;,..., A} and G, = C) U {=By,...,— By}, where

{Al,.. -7An}71 = {P(tl,...,tk)} and {ﬁBl.. --7_‘Bm}7-2 = {_‘P(tl,.. .,tk)}

@ Thus (172) unifies S = {A,,...,As, B1,..., By} and if o is mgu of S from
the unification algorithm, then C = C/o U Cjo is a resolvent of C;, G,.
@ Moreover, (1172) = o(m172) by the property (x) for o, and hence
Crima = (Clo U Co)nimo = Clomima U Corime = Cim U Gy
=(G\{A, ..., A})1 U(CG\{-B1,...,7Bn})72

= (G\{P(tr, ..,) V(G \{=P(n,...,) }) = C*. [

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 16/23

Completeness

Corollary Let S’ be the set of all ground instances of clauses of formula S.
IfS" g C’ (on prop. level) where C' is a ground clause, then C' = Co for
some clause C and a ground substitution o such that S Fr C (on pred. level).

Proof By induction on the length of resolution proof using lifting lemma. [

Theorem (completeness) IfS is unsatisfiable, then S kg .

Proof If S is unsatisfiable, then by the (corollary of) Herbrand’s theorem, also
the set S’ of all ground instances of clauses of S is unsatisfiable.

@ By completeness of resolution in prop. logic, S’ - O (on prop. level).

@ By the above corollary, there is a clause C and a ground substitution o
such that 0 = Co and S+ C (on pred. level).

@ The only clause that has (1 as a ground instance istheclause C=0. N

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 17/23

Resolution method in predicate logic Linear resolution and LI-resolution

Linear resolution

Resolution can be significantly refined (without loss of completeness).
@ A linear proof of a clause C from a formula S is a finite sequence of pairs
(Co, Bo), ..., (Cy,By) s.t. Gy is avariant of a clause from Sandfori < n
i) B;is avariant of a clause from S or B; = C; for some j < i,
ii) Ciy1 is aresolvent of C; and B;, and C,,, = C.
@ Ciis linearly provable from S, S+ C, if it has a linear proof from S,
@ a linear refutation of S is a linear proof of (I from S,

@ Sis linearly refutable if S - [J.

Theorem S is linearly refutable if and only if S is unsatisfiable.

Proof (=) Every linear proof can be transformed to a resolution proof.
(<) Follows from completeness of linear resolution in prop. logic (omitted)
since the lifting lemma preserves linearity of resolution proofs. [

Petr Gregor (KTIML MFF UK)

Propositional and Predicate Logic - XI WS 2023/2024 18/23

LI-resolution

For Horn formulas we can refine the linear resolution further.

@ Ll-resolution (“linear input”) from a formula S is a linear resolution where
each side clause B; is a variant of a clause from the (input) formula S,
S 1 C denotes that C is provable by Ll-resolution from S,
a Horn formula is a set (possibly infinite) of Horn clauses,
a Horn clause is a clause containing at most one positive literal,
a factis a (Horn) clause with exactly one positive and no negative literal,
a rule is a (Horn) clause with exactly one positive and at least one
negative literal, rules and facts are called program clauses,
@ a goalis a nonempty (Horn) clause without positive literals.

Theorem If a Horn formula T is satisfiable and T U { G} is unsatisfiable for
a goal G, then T U {G} can be refuted by LI-resolution starting with clause G.

Proof Follows by Herbrand’s theorem, the same statement in prop. logic and
the lifting lemma. O

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 19/23

Program in Prolog

A program (in Prolog) is a Horn formula containing only program clauses,
i.e. only facts or rules.

son(X,Y) :— father(Y, X),man(X). {son(X,Y), = father(Y, X),~man(X)}
son(X,Y) :— mother(Y, X), man(X). {son(X,Y), -mother(Y, X), ~man(X)}
man(jan). {man(jan)}

father(jiri, jan). {father(jiri, jan)}

mother(julie, jan). {mother(julie, jan)}

?— son(jan, X) P (3X)son(jan, X) ? {=son(jan, X)}

We are interested whether a given existential query holds in a given program.

Corollary Foraprogram P and a goal G = {—A;,...,~A,} invar. Xy,..., Xn
(1) PE(3X)... 3Xn) (AL A ... ANAy), ifand only if
(2) PU{G} can be refuted by Li-resolution starting with (a variant of) G.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 20/23

Resolution method in predicate logic Linear resolution and LI-resolution

LI-resolution over a program
If the answer is positive, we want to know the output substitution.

The output substitution o of a Ll-refutation from P U { G} starting with a goal
G ={-4,...,~A,} is a composition of mgu’s in all steps (restricted only to
variables in G). It holds that

PE (AL N...NAy)o.

{=son(jan, X)} {son(X",Y"), =~ father(Y', X"), =man(X')}
X'/jan|Y'/X
{—father(X,jan), ~man(jan)} {man(jan)} {—son(jan,X)} {son(X',Y’),—~mother(Y’', X"),~man(X')}

/ X'/jan|Y'/X

{—~father(X,jan)} {father(jiri,jan)} {—mother(X, jan), ~man(jan)} {man(jan)}

X/jiri ‘ / ‘

] {—=mother(X,jan)} {mother(julie, jan)}

X/julie ‘ /
a) b) H

The output substitutions a) X = jiri, b) X = julie.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 21/23

Hilbert’s calculus in predicate logic

@ basic connectives and quantifier: -, —, (Vx) (others are derived)
@ allows to prove any formula (not just sentences)
@ /logical axioms (schemes of axioms):

() = (¥ —=9)
(it) (p—= W —=x) = ((p—=9) = (¢ —=X)
(i) (o=) = (¥ = ¢)
(iv) (Vx)p = p(x/1) if ¢ is substitutable for x to ¢

(v) (Vx)(p =) = (p — (Vx)y) if xis notfreein ¢
where ¢, 1, x are any formulas (of a given language), ¢ is any term,
and x is any variable

@ in a language with equality we include also the axioms of equality
@ rules of inference
0, =Y
(G

(modus ponens), v (generalization)

(Vx)p

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 22/23

Hilbert-style proofs

A proof (in Hilbert-style) of a formula ¢ from a theory T is a finite sequence
©o, - - -, pn = of formulas such that for every i < n

@ ¢; is alogical axiom or ¢; € T (an axiom of the theory), or

@ ¢; can be inferred from the previous formulas applying a rule of inference.

A formula ¢ is provable from T if it has a proof from T, denoted by T g .

Theorem (soundness) Forevery theory T and formula o, Tty ¢ = T |E .
Proof
@ If pis an axiom (logical or from T), then T = ¢ (l. axioms are tautologies),
oifTEypand T = ¢ — ¢, then T =1, i.e. modus ponens is sound,
o if T |= ¢, then T |= (Vx)y, i.e. generalization is sound,
@ thus every formula in a proof from T isvalidin T. [

Remark The completeness holds as well, i.e. T = ¢ = T by .

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 23/23

	Resolution in method in predicate logic
	Resolution method in predicate logic
	Introduction
	Substitutions
	Unification
	Resolution proof
	Soundness and completeness
	Linear resolution and LI-resolution

	Hilbert's calculus
	Introduction

