
Propositional and Predicate Logic - XI

Petr Gregor

KTIML MFF UK

WS 2023/2024

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 1 / 23

Resolution method in predicate logic Introduction

Resolution method in predicate logic - introduction

A refutation procedure - its aim is to show that a given formula (or theory)
is unsatisfiable.

It assumes open formulas in CNF (and in clausal form).

A literal is (now) an atomic formula or its negation.

A clause is a finite set of literals, □ denotes the empty clause.

A formula (in clausal form) is a (possibly infinite) set of clauses.

Remark Every formula (theory) can be converted to an equisatisfiable
open formula (theory) in CNF, and then to a formula in clausal form.

The resolution rule is more general - it allows to resolve through literals
that are unifiable.

Resolution in predicate logic is based on resolution in propositional logic
and unification.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 2 / 23

Resolution method in predicate logic Introduction

Local scope of variables

Variables can be renamed locally within clauses.

Let φ be an (input) open formula in CNF.
φ is satisfiable if and only if its universal closure φ′ is satisfiable.

For every two formulas ψ, χ and a variable x

|= (∀x)(ψ ∧ χ) ↔ (∀x)ψ ∧ (∀x)χ

(also in the case that x is free both in ψ and χ).

Every clause in φ can thus be replaced by its universal closure.

We can then take any variants of clauses (to rename variables apart).

For example, by renaming variables in the second clause of (1) we obtain
an equisatisfiable formula (2).
(1) {{P(x),Q(x, y)}, {¬P(x),¬Q(y, x)}}
(2) {{P(x),Q(x, y)}, {¬P(v),¬Q(u, v)}}

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 3 / 23

Resolution method in predicate logic Introduction

Reduction to propositional level (grounding)
Herbrand’s theorem gives us the following (inefficient) method.

Let S be the (input) formula in clausal form.

We can assume that the language contains at least one constant symbol.

Let S′ be the set of all ground instances of all clauses from S.

By introducing propositional letters representing atomic sentences we
may view S′ as a (possibly infinite) propositional formula in clausal form.

We may verify that it is unsatisfiable by resolution on propositional level.

For example, for S = {{P(x, y),R(x, y)}, {¬P(c, y)}, {¬R(x, f (x))}} the set

S′ = {{P(c, c),R(c, c)}, {P(c, f (c)),R(c, f (c))}, {P(f (c), f (c)),R(f (c), f (c))} . . . ,
{¬P(c, c)}, {¬P(c, f (c))}, . . . , {¬R(c, f (c))}, {¬R(f (c), f (f (c)))}, . . . }

is unsatisfiable since on propositional level

S′ ⊇ {{P(c, f (c)),R(c, f (c))}, {¬P(c, f (c))}, {¬R(c, f (c))}} ⊢R □.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 4 / 23

Resolution method in predicate logic Substitutions

Substitutions - examples

It is more efficient to use suitable substitutions. For example, in

a) {P(x),Q(x,a)}, {¬P(y),¬Q(b, y)} substituting x/b, y/a gives
{P(b),Q(b,a)}, {¬P(a),¬Q(b,a)}, which resolves to {P(b),¬P(a)}.

Or, substituting x/y and resolving through P(y) gives {Q(y,a),¬Q(b, y)}.

b) {P(x),Q(x,a),Q(b, y)}, {¬P(v),¬Q(u, v)} substituting x/b, y/a, u/b,
v/a gives {P(b),Q(b,a)}, {¬P(a),¬Q(b,a)}, resolving to {P(b),¬P(a)}.

c) {P(x),Q(x, z)}, {¬P(y),¬Q(f (y), y)} substituting x/f (z), y/z gives
{P(f (z)),Q(f (z), z)}, {¬P(z),¬Q(f (z), z)}, resolving to {P(f (z)),¬P(z)}.

Alternatively, substituting x/f (a), y/a, z/a gives {P(f (a)),Q(f (a),a)},
{¬P(a),¬Q(f (a),a)}, which resolves to {P(f (a)),¬P(a)}. But the
previous substitution is more general.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 5 / 23

Resolution method in predicate logic Substitutions

Substitutions
A substitution is a (finite) set σ = {x1/t1, . . . , xn/tn}, where xi ’s are
distinct variables, ti ’s are terms, and the term ti is not xi.

If all ti ’s are ground terms, then σ is a ground substitution.

If all ti ’s are distinct variables, then σ is a renaming of variables.

An expression is a literal or a term.

An instance of an expression E by substitution σ = {x1/t1, . . . , xn/tn} is
the expression Eσ obtained from E by simultaneous replacing all
occurrences of all xi ’s for ti ’s, respectively.

For a set S of expressions, let Sσ = {Eσ | E ∈ S}.

Remark Since we substitute for all variables simultaneously, a possible
occurrence of xi in tj does not lead to a chain of substitutions.

For example, for S = {P(x),R(y, z)} and σ = {x/f (y, z), y/x, z/c} we have

Sσ = {P(f (y, z)),R(x, c)}.
Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 6 / 23

Resolution method in predicate logic Substitutions

Composing substitutions

For substitutions σ = {x1/t1, . . . , xn/tn} and τ = {y1/s1, . . . , yn/sn} we define

στ = {xi/tiτ | xi ∈ X , tiτ is not xi} ∪ {yj/sj | yj ∈ Y \ X}

to be the composition of σ and τ , where X = {x1, . . . , xn}, Y = {y1, . . . , ym}.

For example, for σ = {x/f (y),w/v}, τ = {x/a, y/g(x), v/w,u/c} we have
στ = {x/f (g(x)), y/g(x), v/w,u/c}.

Proposition (without proof) For every expression E and substitutions σ, τ , ϱ,
(i) (Eσ)τ = E(στ),
(ii) (στ)ϱ = σ(τϱ).

Remark Composition of substitutions is not commutative, for the above σ, τ ,

τσ = {x/a, y/g(f (y)),u/c,w/v} ≠ στ.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 7 / 23

Resolution method in predicate logic Unification

Unification

Let S = {E1, . . . ,En} be a (finite) set of expressions.

A unification of S is a substitution σ such that E1σ = E2σ = · · · = Enσ,
i.e. Sσ is a singleton.

S is unifiable if it has a unification.

A unification σ of S is a most general unification (mgu) if for every
unification τ of S there is a substitution λ such that τ = σλ.

For example, S = {P(f (x), y),P(f (a),w)} is unifiable by a most general
unification σ = {x/a, y/w}. A unification τ = {x/a, y/b,w/b} is obtained as
σλ for λ = {w/b}. τ is not mgu, it cannot give us ϱ = {x/a, y/c,w/c}.

Observation If σ, τ are two most general unifications of S, they differ
only in renaming of variables.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 8 / 23

Resolution method in predicate logic Unification

Unification algorithm
Let S be a (finite) nonempty set of expressions and p be the leftmost position
in which some expressions of S differ. Then the difference in S is the set D(S)

of subexpressions of all expressions from S starting at the position p.

For example, S = {P(x, y),P(f (x), z),P(z, f (x))} has D(S) = {x, f (x), z}.

Input Nonempty (finite) set of expressions S.
Output A most general unification σ of S or “S is not unifiable”.
(0) Let S0 := S, σ0 := ∅, k := 0. (initialization)

(1) If Sk is a singleton, output the substitution σ = σ0σ1 · · ·σk . (mgu of S)

(2) Find if D(Sk) contains a variable x and a term t with no occurrence of x.

(3) If not, output “S is not unifiable”.

(4) Otherwise, let σk+1 := {x/t}, Sk+1 := Skσk+1, k := k + 1 and go to (1).

Remark The occurrence check of x in t in step (2) can be “expensive”.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 9 / 23

Resolution method in predicate logic Unification

Unification algorithm - an example
S = {P(f (y, g(z)),h(b)), P(f (h(w), g(a)), t), P(f (h(b), g(z)), y)}

1) S0 = S is not a singleton and D(S0) = {y,h(w),h(b)} has a term h(w)

and a variable y not occurring in h(w). Let σ1 = {y/h(w)}, S1 = S0σ1, i.e.

S1 = {P(f (h(w), g(z)),h(b)), P(f (h(w), g(a)), t), P(f (h(b), g(z)),h(w))}.

2) D(S1) = {w,b}, σ2 = {w/b}, S2 = S1σ2, i.e.

S2 = {P(f (h(b), g(z)),h(b)), P(f (h(b), g(a)), t)}.

3) D(S2) = {z,a}, σ3 = {z/a}, S3 = S2σ3, i.e.

S3 = {P(f (h(b), g(a)),h(b)), P(f (h(b), g(a)), t)}.

4) D(S3) = {h(b), t}, σ4 = {t/h(b)}, S4 = S3σ4, i.e.

S4 = {P(f (h(b), g(a)),h(b))}.

5) S4 is a singleton and a most general unification of S is

σ = {y/h(w)}{w/b}{z/a}{t/h(b)} = {y/h(b),w/b, z/a, t/h(b)}.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 10 / 23

Resolution method in predicate logic Unification

Unification algorithm - correctness
Proposition The unification algorithm outputs a correct answer in finite time
for any input S, i.e. a most general unification σ of S or it detects that S is not
unifiable. (∗) Moreover, for every unification τ of S it holds that τ = στ .

Proof It eliminates one variable in each round, so it ends in finite time.
If it ends negatively after k rounds, D(Sk) is not unifiable, thus also S.

If it outputs σ = σ0σ1 · · ·σk , clearly σ is a unification of S.

If we show the property (∗) for σ, then σ is a most general unification of S.

(1) Let τ be a unification of S. We show that τ = σ0σ1 · · ·σiτ for all i ≤ k.

(2) For i = 0 it holds. Let σi+1 = {x/t} and assume that τ = σ0σ1 · · ·σiτ .

(3) It suffices to show that vσi+1τ = vτ for every variable v.

(4) If v ̸= x, vσi+1 = v, so (3) holds. Otherwise v = x and vσi+1 = xσi+1 = t .

(5) Since τ unifies Si = Sσ0σ1 · · ·σi and both the variable x and the term t
are in D(Si), τ has to unify x and t , i.e. tτ = xτ , as required for (3).

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 11 / 23

Resolution method in predicate logic Resolution proof

The general resolution rule

Let C1, C2 be clauses with distinct variables such that

C1 = C ′
1 ⊔ {A1, . . . ,An}, C2 = C ′

2 ⊔ {¬B1, . . . ,¬Bm},

where S = {A1, . . . ,An,B1, . . . ,Bm} is unifiable and n,m ≥ 1. Then the clause

C = C ′
1σ ∪ C ′

2σ,

where σ is a most general unification of S, is the resolvent of C1 and C2.

For example, in clauses {P(x),Q(x, z)} and {¬P(y),¬Q(f (y), y)} we can
unify S = {Q(x, z),Q(f (y), y)} applying a most general unification
σ = {x/f (y), z/y}, and then resolve to a clause {P(f (y)),¬P(y)}.

Remark The condition on distinct variables can be satisfied by renaming
variables apart. This is sometimes necessary, e.g. from {{P(x)}, {¬P(f (x))}}
after renaming we can get □, but {P(x),P(f (x))} is not unifiable.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 12 / 23

Resolution method in predicate logic Resolution proof

Resolution proof

We have the same notions as in propositional logic, up to renaming variables.

Resolution proof (deduction) of a clause C from a formula S is a finite
sequence C0, . . . ,Cn = C such that for every i ≤ n, we have Ci = C ′

iσ

for some C ′
i ∈ S and a renaming of variables σ, or Ci is a resolvent of

some previous clauses.

A clause C is (resolution) provable from S, denoted by S ⊢R C , if it has
a resolution proof from S.

A (resolution) refutation of a formula S is a resolution proof of □ from S.

S is (resolution) refutable if S ⊢R □.

Remark Elimination of several literals at once is sometimes necessary, e.g.
S = {{P(x),P(y)}, {¬P(x),¬P(y)}} is resolution refutable, but it has no
refutation that eliminates only a single literal in each resolution step.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 13 / 23

Resolution method in predicate logic Resolution proof

Resolution in predicate logic - an example

Consider T = {¬P(x, x), P(x, y) → P(y, x), P(x, y) ∧ P(y, z) → P(x, z)}.

Is T |= (∃x)¬P(x, f (x)) ? Equivalently, is the following T ′ unsatisfiable?

T ′ = {{¬P(x, x)}, {¬P(x, y),P(y, x)}, {¬P(x, y),¬P(y, z),P(x, z)}, {P(x, f (x))}}

{¬P (x, y),¬P (y, z), P (x, z)} {P (x′, f(x′))}

{¬P (f(x), z), P (x, z)}

{P (x′, f(x′))}{¬P (x, y), P (y, x)}

{P (f(x′), x′)}

{P (x, x)} {¬P (x′, x′)}

x′/x

z/x, x′/x

x/x′, y/f(x′)y/f(x), x′/x

T ′ `R

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 14 / 23

Resolution method in predicate logic Soundness and completeness

Soundness of resolution
First we show soundness of the general resolution rule.

Proposition Let C be a resolvent of clauses C1, C2. For every L-structure A,

A |= C1 and A |= C2 ⇒ A |= C .

Proof Let C1 = C ′
1 ⊔ {A1, . . . ,An}, C2 = C ′

2 ⊔ {¬B1, . . . ,¬Bm}, σ be a most
general unification for S = {A1, . . . ,An,B1, . . . ,Bm}, and C = C ′

1σ ∪ C ′
2σ.

Since C1, C2 are open, it holds also A |= C1σ and A |= C2σ.

We have C1σ = C ′
1σ ∪ {Sσ} and C2σ = C ′

2σ ∪ {¬(Sσ)}.

We show A |= C [e] for every e. If A |= Sσ[e], then A |= C ′
2σ[e], and thus

A |= C [e]. Otherwise A ̸|= Sσ[e], so A |= C ′
1σ[e], and thus A |= C [e].

Theorem (soundness) If S is resolution refutable, then S is unsatisfiable.

Proof Let S ⊢R □. Suppose A |= S for some structure A. By soundness
of the general resolution rule we have A |= □, which is impossible.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 15 / 23

Resolution method in predicate logic Soundness and completeness

Lifting lemma
A resolution proof on propositional level can be “lifted” to predicate level.

Lemma Let C∗
1 = C1τ1, C∗

2 = C2τ2 be ground instances of clauses C1, C2

with distinct variables and C∗ be a resolvent of C∗
1 a C∗

2 . Then there exists
a resolvent C of C1 and C2 such that C∗ = Cτ1τ2 is a ground instance of C .

Proof Assume that C∗ is a resolvent of C∗
1 , C∗

2 through a literal P(t1, . . . , tk).

We have C1 = C ′
1 ⊔ {A1, . . . ,An} and C2 = C ′

2 ⊔ {¬B1, . . . ,¬Bm}, where
{A1, . . . ,An}τ1 = {P(t1, . . . , tk)} and {¬B1, . . . ,¬Bm}τ2 = {¬P(t1, . . . , tk)}
Thus (τ1τ2) unifies S = {A1, . . . ,An,B1, . . . ,Bm} and if σ is mgu of S from
the unification algorithm, then C = C ′

1σ ∪ C ′
2σ is a resolvent of C1, C2.

Moreover, (τ1τ2) = σ(τ1τ2) by the property (∗) for σ, and hence

Cτ1τ2 = (C ′
1σ ∪ C ′

2σ)τ1τ2 = C ′
1στ1τ2 ∪ C ′

2στ1τ2 = C ′
1τ1 ∪ C ′

2τ2

= (C1 \ {A1, . . . ,An})τ1 ∪ (C2 \ {¬B1, . . . ,¬Bm})τ2

= (C∗
1 \ {P(t1, . . . , tk)}) ∪ (C∗

2 \ {¬P(t1, . . . , tk)}) = C∗.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 16 / 23

Resolution method in predicate logic Soundness and completeness

Completeness

Corollary Let S′ be the set of all ground instances of clauses of formula S.
If S′ ⊢R C ′ (on prop. level) where C ′ is a ground clause, then C ′ = Cσ for
some clause C and a ground substitution σ such that S ⊢R C (on pred. level).

Proof By induction on the length of resolution proof using lifting lemma.

Theorem (completeness) If S is unsatisfiable, then S ⊢R □.

Proof If S is unsatisfiable, then by the (corollary of) Herbrand’s theorem, also
the set S′ of all ground instances of clauses of S is unsatisfiable.

By completeness of resolution in prop. logic, S′ ⊢R □ (on prop. level).

By the above corollary, there is a clause C and a ground substitution σ
such that □ = Cσ and S ⊢R C (on pred. level).

The only clause that has □ as a ground instance is the clause C = □.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 17 / 23

Resolution method in predicate logic Linear resolution and LI-resolution

Linear resolution

Resolution can be significantly refined (without loss of completeness).
A linear proof of a clause C from a formula S is a finite sequence of pairs
(C0,B0), . . . , (Cn,Bn) s.t. C0 is a variant of a clause from S and for i ≤ n

i) Bi is a variant of a clause from S or Bi = Cj for some j < i,

ii) Ci+1 is a resolvent of Ci and Bi, and Cn+1 = C .

C is linearly provable from S, S ⊢L C , if it has a linear proof from S,

a linear refutation of S is a linear proof of □ from S,

S is linearly refutable if S ⊢L □.

Theorem S is linearly refutable if and only if S is unsatisfiable.

Proof (⇒) Every linear proof can be transformed to a resolution proof.
(⇐) Follows from completeness of linear resolution in prop. logic (omitted)
since the lifting lemma preserves linearity of resolution proofs.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 18 / 23

Resolution method in predicate logic Linear resolution and LI-resolution

LI-resolution
For Horn formulas we can refine the linear resolution further.

LI-resolution (“linear input”) from a formula S is a linear resolution where
each side clause Bi is a variant of a clause from the (input) formula S,
S ⊢LI C denotes that C is provable by LI-resolution from S,
a Horn formula is a set (possibly infinite) of Horn clauses,
a Horn clause is a clause containing at most one positive literal,
a fact is a (Horn) clause with exactly one positive and no negative literal,
a rule is a (Horn) clause with exactly one positive and at least one
negative literal, rules and facts are called program clauses,
a goal is a nonempty (Horn) clause without positive literals.

Theorem If a Horn formula T is satisfiable and T ∪ {G} is unsatisfiable for
a goal G, then T ∪ {G} can be refuted by LI-resolution starting with clause G.

Proof Follows by Herbrand’s theorem, the same statement in prop. logic and
the lifting lemma.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 19 / 23

Resolution method in predicate logic Linear resolution and LI-resolution

Program in Prolog
A program (in Prolog) is a Horn formula containing only program clauses,
i.e. only facts or rules.

son(X, Y) :− father(Y,X),man(X).

{¬son(jan,X)}

father(jiri, jan).

mother(julie, jan).

?− son(jan,X)

man(jan).

son(X, Y) :− mother(Y,X),man(X).

{son(X, Y),¬father(Y,X),¬man(X)}
{son(X, Y),¬mother(Y,X),¬man(X)}

{father(jiri, jan)}
{mother(julie, jan)}

{man(jan)}

P |= (∃X)son(jan,X) ?

We are interested whether a given existential query holds in a given program.

Corollary For a program P and a goal G = {¬A1, . . . ,¬An} in var. X1, . . . ,Xm

(1) P |= (∃X1) . . . (∃Xm)(A1 ∧ . . . ∧ An), if and only if

(2) P ∪ {G} can be refuted by LI-resolution starting with (a variant of) G.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 20 / 23

Resolution method in predicate logic Linear resolution and LI-resolution

LI-resolution over a program
If the answer is positive, we want to know the output substitution.

The output substitution σ of a LI-refutation from P ∪ {G} starting with a goal
G = {¬A1, . . . ,¬An} is a composition of mgu’s in all steps (restricted only to
variables in G). It holds that

P |= (A1 ∧ . . . ∧ An)σ.

{¬son(jan,X)} {son(X ′, Y ′),¬father(Y ′, X ′),¬man(X ′)}

{son(X ′, Y ′),¬mother(Y ′, X ′),¬man(X ′)}

{father(jiri, jan)}

{man(jan)}{¬father(X, jan),¬man(jan)}

{¬father(X, jan)}

{¬son(jan,X)}

{mother(julie, jan)}

{man(jan)}{¬mother(X, jan),¬man(jan)}

{¬mother(X, jan)}
X/jiri

X ′/jan Y ′/X

X/julie

X ′/jan Y ′/X

a) b)

The output substitutions a) X = jiri, b) X = julie.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 21 / 23

Hilbert’s calculus Introduction

Hilbert’s calculus in predicate logic
basic connectives and quantifier: ¬, →, (∀x) (others are derived)
allows to prove any formula (not just sentences)
logical axioms (schemes of axioms):

(i) φ→ (ψ → φ)

(ii) (φ→ (ψ → χ)) → ((φ→ ψ) → (φ→ χ))

(iii) (¬φ→ ¬ψ) → (ψ → φ)

(iv) (∀x)φ→ φ(x/t) if t is substitutable for x to φ
(v) (∀x)(φ→ ψ) → (φ→ (∀x)ψ) if x is not free in φ

where φ, ψ, χ are any formulas (of a given language), t is any term,
and x is any variable
in a language with equality we include also the axioms of equality
rules of inference

φ, φ→ ψ

ψ
(modus ponens),

φ

(∀x)φ
(generalization)

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 22 / 23

Hilbert’s calculus Introduction

Hilbert-style proofs

A proof (in Hilbert-style) of a formula φ from a theory T is a finite sequence
φ0, . . . , φn = φ of formulas such that for every i ≤ n

φi is a logical axiom or φi ∈ T (an axiom of the theory), or
φi can be inferred from the previous formulas applying a rule of inference.

A formula φ is provable from T if it has a proof from T , denoted by T ⊢H φ.

Theorem (soundness) For every theory T and formula φ, T ⊢H φ ⇒ T |= φ.

Proof
If φ is an axiom (logical or from T), then T |= φ (l. axioms are tautologies),
if T |= φ and T |= φ→ ψ, then T |= ψ, i.e. modus ponens is sound,
if T |= φ, then T |= (∀x)φ, i.e. generalization is sound,
thus every formula in a proof from T is valid in T .

Remark The completeness holds as well, i.e. T |= φ⇒ T ⊢H φ.

Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - XI WS 2023/2024 23 / 23

	Resolution in method in predicate logic
	Resolution method in predicate logic
	Introduction
	Substitutions
	Unification
	Resolution proof
	Soundness and completeness
	Linear resolution and LI-resolution

	Hilbert's calculus
	Introduction

