Propositional and Predicate Logic - XII

Petr Gregor

KTIML MFF UK

WS 2023/2024

Petr Gregor (KTIML MFF UK) [Propositional and Predicate Logic - XII](#page-18-0) WS 2023/2024 1/19

メロメメ 倒 メメ きょくきょう

画

Hilbert's calculus in predicate logic

- **•** basic connectives and quantifier: \neg , \neg , $(\forall x)$ (others are derived)
- allows to prove any formula (not just sentences)
- *logical axioms* (schemes of axioms):

(*i*) $\varphi \to (\psi \to \varphi)$ (iii) $(\varphi \rightarrow (\psi \rightarrow \chi)) \rightarrow ((\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow \chi))$ (iii) $(\neg \varphi \rightarrow \neg \psi) \rightarrow (\psi \rightarrow \varphi)$ (*iv*) $(\forall x) \varphi \rightarrow \varphi(x/t)$ if *t* is substitutable for *x* to φ (v) $(\forall x)(\varphi \rightarrow \psi) \rightarrow (\varphi \rightarrow (\forall x)\psi)$ if *x* is not free in φ where φ , ψ , χ are any formulas (of a given language), *t* is any term,

and *x* is any variable

- in a language with equality we include also the axioms of equality
- *rules of inference*

$$
\frac{\varphi, \; \varphi \to \psi}{\psi} \quad \text{(modus ponens)},
$$

$$
\frac{\varphi}{(\forall x)\varphi} \quad \text{(generalization)}
$$

イロト イ母 トイヨ トイヨ トー

Hilbert-style proofs

A *proof* (in *Hilbert-style*) of a formula φ from a theory *T* is a finite sequence $\varphi_0, \ldots, \varphi_n = \varphi$ of formulas such that for every $i \leq n$

- $\varphi_{\bm i}$ is a logical axiom or $\varphi_{\bm i} \in T$ (an axiom of the theory), or
- \bullet φ_i can be inferred from the previous formulas applying a rule of inference.

A formula φ is *provable* from *T* if it has a proof from *T*, denoted by $T \vdash_H \varphi$.

Theorem (soundness) *For every theory T* and formula φ , $T \vdash_H \varphi \Rightarrow T \models \varphi$. *Proof*

- **If** φ is an axiom (logical or from *T*), then $T \models \varphi$ (*l.* axioms are tautologies),
- if $T \models \varphi$ and $T \models \varphi \rightarrow \psi$, then $T \models \psi$, i.e. modus ponens is sound,
- if $T \models \varphi$, then $T \models (\forall x) \varphi$, i.e. generalization is sound,
- thus every formula in a proof from *T* is valid in *T*.

Remark The completeness holds as well, i.e. $T \models \varphi \Rightarrow T \vdash_H \varphi$.

Theories of structures

What holds in particular structures?

The *theory of a structure* A is the set $Th(A)$ of all sentences (of the same language) that are valid in \mathcal{A} .

Observation For every structure A *and a theory T of a language L,*

- (*i*) Th(A) *is a complete theory,*
- (iii) *if* $A \models T$, then $Th(A)$ *is a simple (complete) extension of T*,
- (iii) *if* $A \models T$ *and T is complete, then* $Th(A)$ *is equivalent with T*, *i.e.* $\theta^L(T) = \text{Th}(\mathcal{A})$ *.*

E.g. Th(N) where $\mathbb{N} = \langle \mathbb{N}, S, +, \cdot, 0, \leq \rangle$ is the arithmetics of natural numbers.

Remark Later, we will see that Th(N) *is (algorithmically) undecidable although it is complete.*

Elementary equivalence

- Structures A and B of a language *L* are *elementarily equivalent*, denoted $A \equiv B$, if they satisfy the same sentences (of L), i.e. Th $(A) = Th(B)$. *For example,* $\langle \mathbb{R}, \le \rangle \equiv \langle \mathbb{Q}, \le \rangle$ *and* $\langle \mathbb{Q}, \le \rangle \not\equiv \langle \mathbb{Z}, \le \rangle$ *since every element has an immediate successor in* ⟨Z, ≤⟩ *but not in* ⟨Q, ≤⟩*.*
- *T* is complete iff it has a single model, up to elementary equivalence. *For example, the theory of dense linear orders without ends (DeLO).*

How to describe models of a given theory (up to elementary equivalence)? Observation For every models A, B of a theory T , $A \equiv B$ if and only if Th(A), Th(B) are *equivalent* (simple complete extensions of *T*).

Remark If we can describe effectively (recursively) for a given theory T all simple complete extensions of T, then T is (algorithmically) decidable.

イロメ イ母メ イヨメ イヨメ

Þ

Simple complete extensions - an example

The theory *DeLO*[∗] of dense linear orders of $L = \langle \langle \rangle$ with equality has axioms

where ' $x < y$ ' is a shortcut for ' $x < y \land x \neq y'$ '.

Let φ, ψ be the sentences $(\exists x)(\forall y)(x \leq y)$, resp. $(\exists x)(\forall y)(y \leq x)$. We will see

 $DeLO = DeLO^* \cup {\neg \varphi, \neg \psi}, \qquad DeLO^{\pm} = DeLO^* \cup {\varphi, \psi},$ $DeLO^+ = DeLO^* \cup {\neg \varphi, \psi}, \qquad DeLO^- = DeLO^* \cup {\varphi, \neg \psi}$

are the all (nonequivalent) simple complete extensions of the theory *DeLO*[∗] .

イロト イ母 トイヨ トイヨ トー

Corollary of the Löwenheim-Skolem theorem

We already know the following theorem, by a canonical model (with equality). **Theorem** *Let T be a consistent theory of a countable language L. If L is without equality, then T has a countably infinite model. If L is with equality, then T has a model that is countable (finite or countably infinite).*

Corollary *For every structure* A *of a countable language without equality there exists a countably infinite structure B with* $A \equiv B$.

Proof $\text{Th}(\mathcal{A})$ is consistent since it has a model \mathcal{A} . By the previous theorem, it has a countably inf. model B. Since Th(A) is complete, we have $A \equiv B$. \Box

Corollary *For every infinite structure* A *of a countable language with equality there exists a countably infinite structure B with* $A \equiv B$.

Proof Similarly as above. Since the sentence *"there is exactly n elements"* is false in A for all *n* and $A \equiv B$, it follows that *B* is infinite. П

イロト イ母 トイラ トイラトー

A countable algebraically closed field

We say that a field A is *algebraically closed* if every polynomial (of nonzero degree) has a root in A; that is, for every $n > 1$ we have

 $\mathcal{A} \models (\forall x_{n-1}) \dots (\forall x_0)(\exists y)(y^n + x_{n-1} \cdot y^{n-1} + \dots + x_1 \cdot y + x_0 = 0)$

where y^k is a shortcut for the term $y \cdot y \cdot \cdots \cdot y$ (\cdot applied ($k-1$)-times).

For example, the field $\mathbb{C} = \langle \mathbb{C}, +, -, \cdot, 0, 1 \rangle$ *is algebraically closed, whereas the fields* \mathbb{R} *and* \mathbb{Q} *are not (since the polynomial* $x^2 + 1$ *has no root in them).*

Corollary *There exists a countable algebraically closed field*.

Proof By the previous corollary, there is a countable structure elementarily equivalent with the field C. Hence it is algebraically closed as well.

Isomorphisms of structures

Let A and B be structures of a language $L = \langle \mathcal{F}, \mathcal{R} \rangle$.

- A bijection $h: A \rightarrow B$ is an *isomorphism* of structures A and B if both
	- $h(f^A(a_1, \ldots, a_n)) = f^B(h(a_1), \ldots, h(a_n))$

for every *n*-ary function symbol $f \in \mathcal{F}$ and every $a_1, \ldots, a_n \in A$, $\mathbb{R}^B(h(a_1),\ldots,a_n) \Leftrightarrow \mathbb{R}^B(h(a_1),\ldots,h(a_n))$

for every *n*-ary relation symbol $R \in \mathcal{R}$ and every $a_1, \ldots, a_n \in A$.

- A and B are *isomorphic* (via *h*), denoted A ≃ B (A ≃*^h* B), if there is an isomorphism *h* of A and B. We also say that A is *isomorphic with* B.
- An *automorphism* of a structure A is an isomorphism of A with A.

For example, the power set algebra $\mathcal{P}(X) = \langle \mathcal{P}(X), -, \cap, \cup, \emptyset, X \rangle$ *with* $|X| = n$ *is isomorphic to the Boolean algebra* $\langle \{0,1\}^n,-_n,\wedge_n,\vee_n,0_n,1_n\rangle$ via $h: A \mapsto \chi_A$ where χ_A *is the characteristic function of the set* $A \subseteq X$ *.*

Isomorphisms and semantics

We will see that isomorphism preserves semantics.

Proposition Let A and B be structures of a language $L = \langle F, \mathcal{R} \rangle$. A bijection $h: A \rightarrow B$ *is an isomorphism of* A and B *if and only if both*

 (h) $h(t^A[e]) = t^B$ *for every term t and e:* Var \rightarrow *A*, and (*ii*) $A \models \varphi[e] \Leftrightarrow B \models \varphi[e \circ h]$ *for every formula* φ *and* $e: \text{Var} \rightarrow A$ *.*

Proof (\Rightarrow) By induction on the structure of the term *t*, resp. the formula φ . (←) By applying (*i*) for each term $f(x_1, \ldots, x_n)$ or (*ii*) for each atomic formula $R(x_1, \ldots, x_n)$ and assigning $e(x_i) = a_i$ we verify that *h* is an isomorphism. \square

Corollary *For every structures* A *and* B *of the same language,*

 $A \sim B \Rightarrow A = B$.

Remark The other implication (⇐*) does not hold in general. For example,* $\langle \mathbb{Q}, \le \rangle \equiv \langle \mathbb{R}, \le \rangle$ *but* $\langle \mathbb{Q}, \le \rangle \neq \langle \mathbb{R}, \le \rangle$ *since* $|\mathbb{Q}| = \omega$ *and* $|\mathbb{R}| = 2^{\omega}$.

KOD KARD KED KEL YOUR

Definability and automorphisms

We show that definable sets are invariant under automorphisms.

Proposition *Let D* ⊆ *A ⁿ be a set definable in a structure* ^A *from parameters* \overline{b} and *h* be an *automorphism* of A that pointwise preserves \overline{b} . Then $h[D] = D$.

Proof Let
$$
D = \varphi^{A,\overline{b}}(\overline{x}, \overline{y})
$$
. Then for every $\overline{a} \in A^{|\overline{x}|}$
\n $\overline{a} \in D \Leftrightarrow A \models \varphi[e(\overline{x}/\overline{a}, \overline{y}/\overline{b})] \Leftrightarrow A \models \varphi[(e \circ h)(\overline{x}/\overline{a}, \overline{y}/\overline{b})]$
\n $\Leftrightarrow A \models \varphi[e(\overline{x}/h(\overline{a}), \overline{y}/h(\overline{b}))] \Leftrightarrow A \models \varphi[e(\overline{x}/h(\overline{a}), \overline{y}/\overline{b})] \Leftrightarrow h(\overline{a}) \in D$.

Ex.: the graph G *has exactly one nontrivial automorphism h that preserves* 0*.*

$$
\begin{array}{c}\n\begin{array}{c}\n1 & 2 \\
4 & 3\n\end{array}\n\end{array}\n\quad\nh(0) = 0, \quad\nh(1) = 4, \quad\nh(2) = 3, \quad\nh(3) = 2, \quad\nh(4) = 1
$$
\n
$$
\begin{array}{c}\n\{0\} = (x = y)^{\mathcal{G},0}, \{1,4\} = (E(x, y))^{\mathcal{G},0}, \{2,3\} = (x \neq y \land \neg E(x, y))^{\mathcal{G},0}\n\end{array}
$$

Moreover, the sets {0}*,* {1, 4}*,* {2, 3} *are definable with parameter* 0*. Thus* $\mathrm{Df}^{1}(\mathcal{G},\{0\})=\{\emptyset,\{0\},\{1,4\},\{2,3\},\{0,1,4\},\{0,2,3\},\{1,4,2,3\},\{0,1,2,3,4\}\}.$ $\mathrm{Df}^{1}(\mathcal{G},\{0\})=\{\emptyset,\{0\},\{1,4\},\{2,3\},\{0,1,4\},\{0,2,3\},\{1,4,2,3\},\{0,1,2,3,4\}\}.$ $\mathrm{Df}^{1}(\mathcal{G},\{0\})=\{\emptyset,\{0\},\{1,4\},\{2,3\},\{0,1,4\},\{0,2,3\},\{1,4,2,3\},\{0,1,2,3,4\}\}.$ $\mathrm{Df}^{1}(\mathcal{G},\{0\})=\{\emptyset,\{0\},\{1,4\},\{2,3\},\{0,1,4\},\{0,2,3\},\{1,4,2,3\},\{0,1,2,3,4\}\}.$ $\mathrm{Df}^{1}(\mathcal{G},\{0\})=\{\emptyset,\{0\},\{1,4\},\{2,3\},\{0,1,4\},\{0,2,3\},\{1,4,2,3\},\{0,1,2,3,4\}\}.$

Finite models in language with equality

Proposition *For every finite structures* A*,* B *of a language with equality,*

 $A = B \Rightarrow A \sim B$.

Proof It holds $|A| = |B|$ since we can express *"there are exactly n elements"*.

- Let A' be expansion of A to $L' = L \cup \{c_a\}_{a \in A}$ by names of elements of A .
- We show that B has an expansion B' to L' such that $A' \equiv B'$. Then clearly $h\colon a\mapsto c_a^{B'}$ is an isomorfism of $\mathcal A'$ to $\mathcal B',$ and thus also of $\mathcal A$ to $\mathcal B.$
- If suffices to find $b \in B$ for every $c_a^{A'} = a \in A$ such that $\langle A, a \rangle \equiv \langle B, b \rangle$.
- Let Ω be set of all formulas $\varphi(x)$ s.t. $\langle A, a \rangle \models \varphi(x/c_a)$, i.e. $A \models \varphi[e(x/a)]$
- **Since** *A* is finite, there are finitely many formulas $\varphi_0(x), \ldots, \varphi_m(x)$ such that for every $\varphi \in \Omega$ it holds $\mathcal{A} \models \varphi \leftrightarrow \varphi_i$ for some *i*.
- Since $B \equiv A \models (\exists x) \bigwedge_{i \leq m} \varphi_i$, there exists $b \in B$ s.t. $B \models \bigwedge_{i \leq m} \varphi_i[e(x/b)].$
- Hence for every $\varphi \in \Omega$ it holds $\mathcal{B} \models \varphi[e(x/b)],$ i.e. $\langle \mathcal{B}, b \rangle \models \varphi(x/c_a)$. \Box

Corollary *If a complete theory T in a language with equality has a finite model, then all models of T are isomorphic.*

Categoricity

- An (isomorphism) *spectrum* of a theory *T* is given by the number $I(\kappa, T)$ of mutually nonisomorphic models of *T* for every cardinality κ.
- A theory *T* is κ*-categorical* if it has exactly one (up to isomorphism) model of cardinality κ , i.e. $I(\kappa, T) = 1$.

Proposition *The theory DeLO (i.e. "without ends") is* ω*-categorical.*

Proof Let $A, B \models DeLO$ with $A = \{a_i\}_{i \in \mathbb{N}}, B = \{b_i\}_{i \in \mathbb{N}}$. By induction on *n* we can find injective partial functions $h_n \nsubseteq h_{n+1} \nsubseteq A \times B$ preserving the ordering s.t. ${a_i}_{i \leq n} \subseteq \text{dom}(h_n)$ and ${b_i}_{i \leq n} \subseteq \text{rng}(h_n)$. Then $A \simeq B$ via $h = \cup h_n$. \Box

Similarly we obtain that (e.g.) $A = \langle \mathbb{O}, \le \rangle$, $A \upharpoonright (0, 1]$, $A \upharpoonright [0, 1)$, $A \upharpoonright [0, 1]$ *are (up to isomorphism) all countable models of DeLO*[∗] *. Then*

$$
I(\kappa,DeLO^*)=\begin{cases}0 & \text{for } \kappa\in\mathbb{N},\\4 & \text{for } \kappa=\omega.\end{cases}
$$

イロト イ母 トイヨ トイヨ トーヨー

ω -categorical criterium of completeness

Theorem *Let L be at most countable language.*

- (*i*) *If a theory T in L without equality is* ω*-categorical, then it is complete.*
- (iii) If a theory T in L with equality is ω -categorical and without finite *models, then it is complete.*

Proof Every model of *T* is elementarily equivalent with some countably infinite model of *T*, but such model is unique up to isomorphism. Thus all models of *T* are elementarily equivalent, i.e. *T* is complete. H

For example, DeLO, DeLO⁺*, DeLO*[−]*, DeLO*[±] *are complete and they are the all (mutually nonequivalent) simple complete extensions of DeLO*[∗] *.*

Remark A similar criterium holds also for cardinalities bigger than ω*.*

イロト イ母ト イヨト イヨト

Axiomatizability

We are interested if we can describe a class of models by given means.

Let $K \subseteq M(L)$ be a class of structures of a language L. We say that K is

- axiomatizable if there is a theory *T* of language *L* with $M(T) = K$,
- *finitely axiomatizable* if *K* is axiomatizable by a finite theory,
- *openly axiomatizable* if *K* is axiomatizable by an open theory,
- a theory *T* if finitely (openly) axiomatizable if *T* is equivalent to a finite (resp. open) theory.

Observation *If K is axiomatizable, then it is closed under elem. equivalence. For example,*

- *a*) *linear orderings are both finitely and openly axiomatizable,*
- *b*) *fields are finitely axiomatizable, but not openly,*
- *c*) *infinite groups are axiomatizable, but not finitely.*

イロト イ押ト イヨト イヨトー

Application of compactness

Theorem *If a theory T* has at least an *n*-element model for every $n \in \mathbb{N}$, then *it also has an infinite model.*

Proof In a language without equality apply L.-S. theorem. Now assume we have a language with equality.

- Let $T' = T \cup \{c_i \neq c_j \mid \text{for } i \neq j\}$ be an extension of T in a language with additional countably infinitely many new constant symbols *cⁱ* .
- By the assumption, every finite part of *T* ′ has a model.
- By compactness, *T* ′ has a model, which clearly is infinite.
- \bullet Its reduct to the original language is an infinite model of T . \Box

Corollary *If a theory T* has at least an *n*-element model for each $n \in \mathbb{N}$. *the class of all its finite models is not axiomatizable.*

For example, finite groups, finite fields, etc. are not axiomatizable. But infinite models of a theory T in language with equality are axiomatizable.

KONKRAKS KRAU

 \equiv \cap α

Finite axiomatizability

Theorem Let $K \subseteq M(L)$ and $\overline{K} = M(L) \setminus K$ where L is a language. Then K is *finitely axiomatizable if and only if both* K *and* \overline{K} *are axiomatizable.*

Proof (\Rightarrow) If *T* is a finite axiomatization of *K* is a closed form, then the theory with the only axiom $\bigvee_{\varphi\in T}\neg\varphi$ axiomatizes $K.$ Now we show $(\Leftarrow).$

- Let *T*, *S* be theories of language *L* such that $M(T) = K$, $M(S) = \overline{K}$.
- Then $M(T \cup S) = M(T) \cap M(S) = \emptyset$ and by the compactness there exist finite $T' \subseteq T$ and $S' \subseteq S$ such that $\emptyset = M(T' \cup S') = M(T') \cap M(S')$.
- Since

$M(T) \subseteq M(T') \subseteq \overline{M(S')} \subseteq \overline{M(S)} = M(T),$

we have $M(T) = M(T')$, i.e. a finite T' axiomatizes K . \Box

Finite axiomatizability - example

Let *T* be the theory of fields. We say that a field $\mathcal{A} = \langle A, +, -, \cdot, 0, 1 \rangle$ has

- *characteristic* 0 if there is no $p \in \mathbb{N}^+$ such that $\mathcal{A} \models p1 = 0$, where *p*1 denotes the term $1 + 1 + \cdots + 1$ (+ applied (*p* − 1)-times).
- *characteristic p* where *p* is prime, if *p* is the smallest s.t. $A \models p1 = 0$.
- The class of fields of characteristic *p* for prime *p* is finitely axiomatized by the theory $T \cup \{p1 = 0\}$.
- The class *K* of fields of characteristic 0 is axiomatized by the (infinite) theory $T' = T \cup \{p1 \neq 0 \mid p \in \mathbb{N}^+\}.$

Proposition *K is not finitely axiomatizable.*

Proof It suffices to show that \overline{K} is not axiomatizable. Suppose $M(S) = \overline{K}$. Then $S' = S \cup T'$ has a model $\mathcal B$ since every finite $S^* \subseteq S'$ has a model (a field of prime characteristic larger than any *p* occurring in axioms of *S* ∗), But then $\mathcal{B} \in M(S) = \overline{K}$ and $\mathcal{B} \in M(T') = K$, a contradiction.

K ロ ▶ K @ ▶ K ミ ▶ K ミ ▶ - ' 큰' - K) Q Q @

Openly axiomatizable theories

Theorem *If a theory T is openly axiomatizable, then every substructure of a model of T is also a model of T.*

Proof Let *T'* be open axiomatization of $M(T)$, $A \models T'$ and $B \subseteq A$. We know that $\mathcal{B} \models \varphi$ for every $\varphi \in T'$ since φ is open. Thus \mathcal{B} is a model of $T'.$ \Box

Remark The other implication holds as well, i.e. if every substructure of every model of T is also a model of T, then T is openly axiomatizable.

For example, the theory DeLO is not openly axiomatizable since e.g. any finite substructure of a model of DeLO is not a model DeLO.

At most n-element groups for a fixed n > 1 *are openly axiomatized by*

$$
T\cup\{\bigvee_{\substack{i,j\leq n\\i\neq j}}x_i=x_j\},\
$$

where T is the (open) theory of groups.

イロト イ押ト イヨト イヨトー