Propositional and Predicate Logic - Appendix

Petr Gregor

KTIML MFF UK

WS 2023/24

Petr Gregor (KTIML MFF UK) [Propositional and Predicate Logic - Appendix](#page-11-0) WS 2023/24 1/12

メロメメ 倒 メメ ミメメ ヨメ

Þ

Set-theoretical notions

All notions are introduced within a set theory using only the membership predicate and equality (and means of logic).

- A property of sets $\varphi(x)$ defines a *class* $\{x \mid \varphi(x)\}\)$. A class that is not a set is called a *proper* class, eq. $\{x \mid x = x\}$,
- $x \notin y$, $x \neq y$ are shortcuts for $\neg(x \in y)$, $\neg(x = y)$,
- \bullet {*x*₀, . . . , *x*_{*n*}-1</sub>} denotes the set containing exactly *x*₀, . . . , *x*_{*n*}-1, {*x*} is called a *singleton*, {*x*, *y*} is called an *unordered pair*,
- ∅, ∪, ∩, \, △ stand for *empty set*, *union*, *intersection*, *difference*, *symmetric difference* of sets, e.g.

x △ *y* = $(x \setminus y)$ ∪ $(y \setminus x)$ = { $z \mid (z \in x \land z \notin y)$ ∨ $(z \notin x \land z \in y)$ }

- \bullet *x*, *y* are *disjoint* if $x \cap y = \emptyset$, we denote by $x \subseteq y$ that *x* is a *subset* of *y*,
- the *power set* of *x* is $\mathcal{P}(x) = \{y \mid y \subseteq x\},\$
- the *union* of *x* is $\bigcup x = \{z \mid \exists y (z \in y \land y \in x)\},\$
- a *cover* of a set *x* is a set $y \subseteq \mathcal{P}(x) \setminus \{\emptyset\}$ with $\bigcup y = x$. If, moreover, all sets in *y* are mutually disjoint, then *y* is a *partition* of *x*.

Relations

- An *ordered pair* is $(x, y) = \{x, \{x, y\}\}\$, so $(x, x) = \{x, \{x\}\}\$, an *ordered n*-tuple is $(x_0, \ldots, x_{n-1}) = ((x_0, \ldots, x_{n-2}), x_{n-1})$ for $n > 2$,
- the *Cartesian product* of *a* and *b* is $a \times b = \{(x, y) | x \in a, y \in b\}$, the *Cartesian power* of *x* is $x^0 = \{\emptyset\}$, $x^1 = x$, $x^n = x^{n-1} \times x$ for $n > 1$,
- the *disjoint union* of *x* and *y* is $x \oplus y = (\{\emptyset\} \times x) \cup (\{\{\emptyset\}\} \times y)$,
- a *relation* is a set *R* of ordered pairs, instead of $(x, y) \in R$ we usually write $R(x, y)$ or $x R y$,

the *domain* of *R* is dom(*R*) = $\{x \mid \exists y (x, y) \in R\}$, the *range* of *R* is $\text{rng}(R) = \{y \mid \exists x (x, y) \in R\},\$ the *extension* of *x* in *R* is $R[x] = \{y \mid (x, y) \in R\},\$ the *inverse relation* to *R* is $R^{-1} = \{(y, x) | (x, y) \in R\}$, the *restriction* of *R* to the set *z* is $R \restriction z = \{(x, y) \in R \mid x \in z\},\$

• the *composition* of relations *R* and *S* is the relation

$$
R \circ S = \{ (x, z) \mid \exists y \ ((x, y) \in R \land (y, z) \in S) \},
$$

• the *identity* on a set *[z](#page-2-0)* is the relation $Id_z = \{(x, x) | x \in \underline{z}\}.$ $Id_z = \{(x, x) | x \in \underline{z}\}.$

Equivalences

A relation *R* on *X* is an *equivalence* if for every $x, y, z \in X$

 $R(x, x)$ (reflexivity) $R(x, y) \rightarrow R(y, x)$ (symmetry) $R(x, y) \wedge R(y, z) \rightarrow R(x, z)$ (transitivity)

- $R[x]$ is called the *equivalence class* of x in R, denoted also $[x]_R$.
- $X/R = \{R[x] \mid x \in X\}$ is the *quotient set* of *X* by *R*.
- \bullet It holds that X/R is a partition of X since the equivalence classes are mutually disjoint and cover *X*.
- On the other hand, a partition *S* of *X* determines the equivalence (on *X*) $\{(x, y) \mid x \in z, y \in z \text{ for some } z \in S\}.$

イロト イ母 トイヨ トイヨ トー

Orders

Let \leq be a relation on a set *X*. We say that \leq is

a *a partial order* (of the set *X*) if for every $x, y, z \in X$

 $x \leq x$ (reflexivity) $x \le y \land y \le x \rightarrow x = y$ (antisymmetry) $x \leq y \land y \leq z \implies x \leq z$ (transitivity)

a *linear* (*total*) *order* if, moreover, for every $x, y \in X$

 $x \leq v \quad \vee \quad v \leq x$ (dichotomy)

a *well-order* if, moreover, every non-empty subset of *X* has a *least* element.

Let us write ' $x < y$ ' for ' $x < y \wedge x \neq y'$. A linear order \leq on *X* is

• a *dense order* if *X* is not a singleton and for every $x, y \in X$

 $x < y \rightarrow \exists z (x < z \land z < y)$ (density)

K ロ ▶ K 御 ▶ K 重 ▶ K 重 ▶ │ 重 │ K 9 Q Q

Functions

A relation *f* is a function if every $x \in \text{dom}(f)$ has exactly one *y* with $(x, y) \in f$.

- We say that *y* is the *value* of the function *f* at *x*, denoted by $f(x) = y$,
- \bullet *f* : *X* \rightarrow *Y* denotes that *f* is a function with dom(*f*) = *X* and rng(*f*) \subset *Y*,
- a function *f* is a *surjection* (*onto Y*) if $\text{rng}(f) = Y$,
- a function *f* is *injection* (*one-to-one*) if for every $x, y \in \text{dom}(f)$

 $x \neq y \rightarrow f(x) \neq f(y)$

- \bullet $f: X \to Y$ is *bijection* from *X* to *Y* if it is both injection and surjection,
- *if f* : *X* → *Y* is injective, then $f^{-1} = \{(y, x) | (x, y) \in f\}$ is its *inverse*,
- the *image* of the set *A* under *f* is $f[A] = \{y \mid (x, y) \in f \text{ for some } x \in A\},\$
- if $f: X \to Y$ and $g: Y \to Z$, their composition $(f \circ g): X \to Z$ satisfies

 $(f \circ g)(x) = g(f(x))$

^XY denotes the set of all functions from *X* to *Y*.

 $\mathbf{A} \cap \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{A} \oplus \mathbf{B} \rightarrow \mathbf{B} \oplus \mathbf{B} \opl$

Numbers

We give examples of standard formal constructions.

• The natural numbers are defined inductively by $n = \{0, \ldots, n-1\}$, thus

 $0 = \emptyset$, $1 = \{0\} = \{\emptyset\}, 2 = \{0, 1\} = \{\emptyset, \{\emptyset\}\}, \ldots$

- **•** the sef of *natural* numbers N is defined as the smallest set containing Ø which is closed under $S(x) := x \cup \{x\}$ (successor),
- \bullet the set of *integers* is $\mathbb{Z} = (\mathbb{N} \times \mathbb{N}) / \sim$, where \sim is the equivalence (a, b) ∼ (c, d) if and only if $a + d = b + c$
- the set of *rational* numbers is $\mathbb{Q} = (\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})) / \approx$, where \approx is given by $(a, b) \approx (c, d)$ if and only if $a.d = b.c$
- \bullet the set of *real* numbers $\mathbb R$ is the set of *cuts* of rational numbers, that is non-trivial downwards closed subsets of $\mathbb Q$ with no greatest element. $(A ⊂ Q$ is *downwards closed* if $y < x \in A$ implies $y \in A$.)

Cardinalities

- *x* has *cardinality smaller or equal* to the cardinality of *y* if there is an injective function $f: x \to y$, $(x \leq y)$
- *x* has *same cardinality* as *y* if there is a bijection $f: x \to y$, $(x \approx y)$
- *x* has *cardinality strictly smaller* than *y* if $x \le y$ but not $x \approx y$, $(x \le y)$

Theorem (Cantor) $x \prec \mathcal{P}(x)$ for every set *x*.

Proof $f(y) = \{y\}$ for $y \in x$ is an injective function $f: x \to \mathcal{P}(x)$, so $x \preccurlyeq \mathcal{P}(x)$. Suppose for a contradiction that there is an injective $g: \mathcal{P}(x) \to x$. Define

y = { $g(z)$ | $z \subseteq x \land g(z) \notin z$ }

By definition, $g(y) \in y$ if and only if $g(y) \notin y$, a contradiction. \Box

- **•** for every x there is *cardinal number* κ with $x \approx \kappa$, denoted by $|x| = \kappa$,
- *x* is *finite* if $|x| = n$ for some $n \in \mathbb{N}$; otherwise, *x* is *infinite*,
- *x* is *countable* if *x* is finite or $|x| = \mathbb{N} = \omega$; otherwise, *x* is *uncountable*,
- *x* has *cardinality of the continuum* if $|x| = |\mathcal{P}(\mathbb{N})| = c$.

n-ary relations and functions

- A relation of $\textit{arity } n \in \mathbb{N}$ on X is any set $R \subseteq X^n$, so for $n = 0$ we have either $R = \emptyset = 0$ or $R = \{\emptyset\} = 1$, and for $n = 1$ we have $R \subseteq X$,
- A (partial) function of *arity* $n \in \mathbb{N}$ from X to Y is any function $f \subseteq X^n \times Y$. We say that *f* is *total* on X^n if $dom(f) = X^n$, denoted by $f: X^n \to Y$. If, moreover, $Y = X$, we say that f is an *operation* on X.
- A function $f: X^n \to Y$ is *constant* if $\text{rng}(f) = \{y\}$ for some $y \in Y$, for $n = 0$ we have $f = \{(\emptyset, y)\}$ and we identify f with the *constant* y.
- The arity of a relation or function is denoted by $ar(R)$ or $ar(f)$ and we speak about *nullary*, *unary*, *binary*, etc. relations and functions.

イロト イ押ト イヨト イヨトー

[Trees](#page-9-0)

- \bullet A *tree* is a set T with a partial order \lt_T in which there is a unique least element, called the *root*, and the set of predecessors of any element is well ordered by $\leq r$,
- a *branch* of a tree *T* is a maximal linearly ordered subset of *T*,
- we adopt standard terminology on trees from the graph theory, e.g. *a branch in a finite tree is a path from the root to a leaf.*

4 D F

König's lemma

We will consider *(for simplicity)* usually finitely branching trees in which every node except the root has an immediate predecessor (*father*).

- *ⁿ-th level* of a tree *^T* for *ⁿ* [∈] ^N is given by induction, it is the set of sons of nodes from the (*n* − 1)-th level, 0-th level containing exactly the root,
- the *depth* of *T* is the maximal $n \in \mathbb{N}$ of non-empty level; if *T* has infinite branch, then it has *infinite depth* ω.
- a tree *^T* is *ⁿ-ary* for *ⁿ* [∈] ^N if every node has at most *ⁿ* sons. It is *finitely branching*, if every node has only finitely many sons.

Lemma (König) *Every infinite, finitely branching tree contains an infinite branch.*

Proof We start in the root. Since it has only finitely many sons, there exists a son with infinitely many successors. We *choose* him and continue in his subtree. In this way we construct an infinite branch.

イロメ イ母メ イヨメ イヨメ

M

Ordered trees

- An *ordered tree* is a tree *T* with a linear order of sons at each node. These orders are called *left-right orders* and are denoted by <*L*. In comparison with \lt_L , the order \lt_T is called the *tree order*.
- A *labeled tree* is a tree *T* with an arbitrary function (a *labeling function*), that assigns to each node some object (a *label*).

[Trees](#page-9-0)

Labeled ordered trees represent, for example, structure of formulas.

