Practical sessions for Introduction to Complexity and Computability

January 7th, 2020

Extra homeworks

Each of the following problems is for 1 point if not stated otherwise. You can choose only some subproblems to obtain a corresponding proportion of a point.

- 1. Construct a Turing machine M (with all details) that
 - (a) transforms natural numbers in binary encoding (over the alphabet $\{0,1\}$) into quaternary encoding (over the alphabet $\{0,1,2,3\}$),
 - (b) accepts precisely the words of zero's whose length is a power of 2, i.e. $L(M) = \{0^{(2^n)}\}.$
- 2. Show (with all details) that for every TM
 - (a) there is an equivalent TM (up to encoding of the input) with only a single symbol alphabet (aside from λ),
 - (b) there is an equivalent pushdown automata with two stacks (and without input tape).
- 3. (0.5 point) Show that the following language is partially decidable

$$SIZE = \{ \langle M, k \rangle \mid |L(M)| \ge k \}.$$

- 4. (0.5 point) Let A be a partially decidable language. Show that A is decidable if $A \leq_m \overline{A}$.
- 5. Let us define disjoint union \oplus of two languages A and B over the alphabet $\{0,1\}$ by

$$A \oplus B = \{a0 \mid a \in A\} \cup \{b1 \mid b \in B\}.$$

- (a) Show that $A \leq_m A \oplus B$ and $B \leq_m A \oplus B$.
- (b) Show that if C is a language over $\{0,1\}$ such that $A \leq_m C$ and $B \leq_m C$, then also $A \oplus B \leq_m C$.
- 6. Find a partial computable function $g: \mathbb{N} \to \mathbb{N}$ such that dom $\varphi_{q(x)} = \{x\}$ for every $x \in \mathbb{N}$.
- 7. Show that the following languages are undecidable.
 - (a) $A = \{ \langle M, N \rangle \mid L(M) \setminus L(N) \neq \emptyset \}$
 - (b) $B = \{\langle M, x \rangle \mid M(x) \downarrow \text{ and the input tape is empty after M halts} \}$
- 8. Show that the following problems are undecidable.
 - (a) Does the given program return 0 for some input?
 - (b) Do the given two programs compute the same arithmetic function?
- 9. For each pair of complexity classes below decide if there is any inclusion between them, and if it is a proper inclusion (i.e. ⊊) (by using theorems and propositions from the lecture). Note that some relations may not be known.
 - (a) $SPACE(n^3)$ and $TIME(2^{n^3})$
 - (b) TIME(2^n) and NSPACE(\sqrt{n})
 - (c) $NSPACE((\log n)^3)$ and SPACE(n)
 - (d) NTIME (n^3) and SPACE (n^6)

10. A propositional formula in DNF is a disjunction of (any number of) elementary conjunctions, an *elementary conjunction* (also called a *term*) is a conjunction of (any number of) literals, a *literal* is a propositional variable or its negation.

Decide (and show why) which of the following problems are in \mathbf{P} , which are in \mathbf{NP} , resp. in \mathbf{coNP} . Note that some answers may not be known. Given a formula φ in DNF,

- (a) Is φ satisfiable?
- (b) Is $\neg \varphi$ satisfiable?
- (c) Is φ valid (i.e. a tautology)?
- (d) Is φ contradictory (i.e. $\neg \varphi$ is valid)?
- 11. (0.5 point) Decide (and show why) whether the following problem is in **P** or is **NP**-complete. **Instance:** A formula φ in CNF.

Question: Are there two different satisfying assignments of φ ?

- 12. (0.5 point) Show that if there exists a polynomial algorithm deciding SAT problem, then there is also a polynomial algorithm for finding a satisfying assignment (if it exists) for CNF formulas.
- 13. Show that the following problems IP (integer programming) and BIP (binary integer programming) are **NP**-hard by polynomial reductions of some of the above mentioned problems.

Instance (the same for IP and BIP): An $m \times n$ matrix A over integers and a vector b of m integers.

Question (IP): Is there a vector x of n integers such that $Ax \ge b$? Question (BIP): Is there a vector $x \in \{0,1\}^n$ such that $Ax \ge b$?

14. In the optimization version of the vertex cover problem (Min-VC) we ask for a vertex cover of minimal size for a given graph G. Consider the following (greedy) approximation algorithm.

For an arbitrary edge uv of G we add both u, v to a set S (initially empty) and we remove all edges incident to u or v from G. We repeat this step until G is empty. Then we output S as a vertex cover of G.

Determine the approximation ratio of this algorithm.

15. In the Max-SAT problem we ask for an assignment of a given CNF formula that satisfies maximal number of clauses. Show that there is a 2-approximation algorithm running in polynomial time for this problem.