Practical sessions for Introduction to Complexity and Computability - 2

October 18th, 2018

Exercises

- 1. Turing machines: motivation, definition, computation, recognized language, examples.
 - (e) (previous HW) Let J(n) for $n \ge 1$ be the last remaining person when n people gather in a circle and every second person goes out, started by skipping the first person. For example J(5) = 3. Construct TM that computes J(n) for $n \ge 1$ (in binary encoding).
- 2. Modifications of Turing machines.
 - (a) (previous HW) Show that for every TM there is an equivalent TM with only a rightsided tape. Assume that the first cell contains a special symbol # which cannot be rewritten and the head cannot move left from it.
 - (b) Show that for every TM there is an equivalent TM that performs at most two operations in each step (out of three operations: change state, move head, write on tape); that is, it has no instructions of type $(p, a) \rightarrow (q, b, M)$ where $p \neq q$, $a \neq b$, and $M \in \{L, R\}$).
 - (c) Show that for every TM there is an equivalent TM that performs at most one operation in each step (see above).
 - (d) Show that for every TM there is an equivalent TM (up to encoding of the input) with only a single symbol alphabet (aside from λ).
 - (e) Show that for every multi-tape TM there is an equivalent (single-tape) TM.
 - (f) Show that every TM is equivalent to some pushdown automata with two stacks (and without the input tape).
 - (g) Show that for every TM there is an equivalent TM with only two active (i.e. nonaccepting) states. [*]
- 3. Decidable and partially decidable languages, Post's theorem, Gödel number, universal TM.
 - (a) Show that the class of partially decidable languages is closed under union, intersection, concatenation, Kleene star. Show that the class of decidable languages is moreover closed under complement.
 - (b) Find encodings between decision problems, languages, sets of natural numbers, real numbers (between 0 and 1).
 - (c) What happens if we run universal TM U on itself, i.e. what is the result of $U(\langle U, U \rangle)$?
 - (d) Let $h: \mathbb{N} \to \mathbb{N}$ be a Turing computable permutation. Show that the set $D = \{i \mid i \in L_{h(i)}\}$ is partially decidable but not decidable. (Recall that $L_e = L(M_e)$, i.e. L_e is the language (corresponding to a set of natural numbers) accepted by TM with Gödel number e.)
 - (e) Show that the language $L_H = \{ \langle M, x \rangle \mid M(x) \downarrow \}$ is partially decidable but not decidable.
 - (f) Show that the language $L_{\overline{Z}} = \{w \in \{0,1\}^* \mid M_w(x) \downarrow \text{ for some input } x\}$ is partially decidable but not decidable.
 - (g) Show that the language $L_{diff} = \{ \langle a, b \rangle \mid M_a(x) \downarrow, M_b(x) \downarrow \text{ and } M_a(x) \neq M_b(x) \text{ for some input } x \}$ is partially decidable but not decidable.

Homework

Problem 3(d) (for 1 point) and one of Problems 3(f), 3(g) depending on your choice (for 2 points).