Practical sessions for Introduction to Complexity and Computability - 3

November 1st, 2018

Exercises

- 1. Decidable and partially decidable languages, Post's theorem, Gödel number, universal TM.
 - (a) (previous HW) Let $h: \mathbb{N} \to \mathbb{N}$ be a Turing computable permutation. Show that the set $D = \{i \mid i \in L_{h(i)}\}$ is partially decidable but not decidable. (Recall that $L_e = L(M_e)$, i.e. L_e is the language (corresponding to a set of natural numbers) accepted by TM with Gödel number e.)
 - (b) Show that the language $L_H = \{ \langle M, x \rangle \mid M(x) \downarrow \}$ is partially decidable but not decidable.
 - (c) (previous HW) Show that the language $L_{\overline{Z}} = \{w \in \{0,1\}^* \mid M_w(x)\downarrow \text{ for some input } x\}$ is partially decidable but not decidable.
 - (d) (previous HW) Show that the language $L_{diff} = \{\langle a, b \rangle \mid M_a(x) \downarrow, M_b(x) \downarrow \text{ and } M_a(x) \neq M_b(x) \text{ for some input } x\}$ is partially decidable but not decidable.
 - (e) Prove or disprove that the class of decidable (resp. partially decidable) languages is closed under symmetric difference. A symmetric difference of sets A and B is the set $A \triangle B = (A B) \cup (B A)$.
- 2. Enumeration of (partially) decidable languages by computable functions.
 - (a) Show that for every partially decidable language B, the language $A = \{x \mid \exists y \ \langle x, y \rangle \in B\}$ is also partially decidable.
 - (b) Let $D \subseteq \{0,1\}^*$ be finite. Show that the language $\{x \mid D \subseteq L_x\}$ is partially decidable.
 - (c) Show that for every $x \in \mathbb{N}$ the language $A_x = \bigcup_{y \in L_x} L_y$ is enumerable by some computable function.
- 3. Reducibility and completeness.
 - (a) Let A be a partially decidable language. Show that A is decidable if $A \leq_m \overline{A}$.
 - (b) Let A be a decidable language. Show that $A \leq_m C$ for every nontrivial language C (i.e. $C \neq \emptyset$ and $C \neq \{0,1\}^*$).
 - (c) Find examples of languages A, B such that $A \leq_m B$ and $A \not\leq_1 B$.
 - (d) Show that $K \leq_1 Tot$ and $\overline{K} \leq_1 Tot$ where $K = \{x \mid M_x(x) \downarrow\}$ and $Tot = \{x \mid L_x = \{0,1\}^*\}$.
 - (e) Let $D \subseteq \{0,1\}^*$ be finite. Show that $K \leq_1 \{x \mid D \subseteq L_x\}$ and $\overline{K} \leq_1 \{x \mid L_x \subseteq D\}$ where K is defined above.
- 4. The "s-m-n" theorem. Find computable bijections $f: \mathbb{N}^2 \to \mathbb{N}, g: \mathbb{N} \to \mathbb{N}$ such that
 - (a) $\varphi_{f(x,y)}(z) \simeq \varphi_x(z) + \varphi_y(z)$ for every $x, y, z \in \mathbb{N}$,
 - (b) dom $\varphi_{q(x)} = \{x\}$ for every $x \in \mathbb{N}$,
 - (c) dom $\varphi_{q(x)} = \{0, 1, \dots, x\}$ for every $x \in \mathbb{N}$.
- 5. Rice's theorem. Show that the following problems are undecidable.
 - (a) Does the given program always halt (i.e. for every input)?
 - (b) Does the given program return 0 for some input?
 - (c) Do the given two programs compute the same arithmetic function?

Homework

Problems 1(e), 3(a) (both for 1 point), and one of 3(d), 3(e) depending on your choice (for 2 points).