Practical sessions for Introduction to Complexity and Computability - 3

November 1st, 2018

Exercises

1. Decidable and partially decidable languages, Post's theorem, Gödel number, universal TM.
(a) (previous HW) Let $h: \mathbb{N} \rightarrow \mathbb{N}$ be a Turing computable permutation. Show that the set $D=\left\{i \mid i \in L_{h(i)}\right\}$ is partially decidable but not decidable. (Recall that $L_{e}=L\left(M_{e}\right)$, i.e. L_{e} is the language (corresponding to a set of natural numbers) accepted by TM with Gödel number e.)
(b) Show that the language $L_{H}=\{\langle M, x\rangle \mid M(x) \downarrow\}$ is partially decidable but not decidable.
(c) (previous HW) Show that the language $L_{\bar{Z}}=\left\{w \in\{0,1\}^{*} \mid M_{w}(x) \downarrow\right.$ for some input $\left.x\right\}$ is partially decidable but not decidable.
(d) (previous HW) Show that the language $L_{\text {diff }}=\left\{\langle a, b\rangle \mid M_{a}(x) \downarrow, M_{b}(x) \downarrow\right.$ and $M_{a}(x) \neq$ $M_{b}(x)$ for some input $\left.x\right\}$ is partially decidable but not decidable.
(e) Prove or disprove that the class of decidable (resp. partially decidable) languages is closed under symmetric difference. A symmetric difference of sets A and B is the set $A \triangle B=(A-B) \cup(B-A)$.
2. Enumeration of (partially) decidable languages by computable functions.
(a) Show that for every partially decidable language B, the language $A=\{x \mid \exists y\langle x, y\rangle \in$ $B\}$ is also partially decidable.
(b) Let $D \subseteq\{0,1\}^{*}$ be finite. Show that the language $\left\{x \mid D \subseteq L_{x}\right\}$ is partially decidable.
(c) Show that for every $x \in \mathbb{N}$ the language $A_{x}=\bigcup_{y \in L_{x}} L_{y}$ is enumerable by some computable function.
3. Reducibility and completeness.
(a) Let A be a partially decidable language. Show that A is decidable if $A \leq_{m} \bar{A}$.
(b) Let A be a decidable language. Show that $A \leq_{m} C$ for every nontrivial language C (i.e. $C \neq \emptyset$ and $C \neq\{0,1\}^{*}$).
(c) Find examples of languages A, B such that $A \leq_{m} B$ and $A \not 又_{1} B$.
(d) Show that $K \leq_{1}$ Tot and $\bar{K} \leq_{1}$ Tot where $K=\left\{x \mid M_{x}(x) \downarrow\right\}$ and Tot $=\left\{x \mid L_{x}=\right.$ $\left.\{0,1\}^{*}\right\}$.
(e) Let $D \subseteq\{0,1\}^{*}$ be finite. Show that $K \leq_{1}\left\{x \mid D \subseteq L_{x}\right\}$ and $\bar{K} \leq_{1}\left\{x \mid L_{x} \subseteq D\right\}$ where K is defined above.
4. The "s-m-n" theorem. Find computable bijections $f: \mathbb{N}^{2} \rightarrow \mathbb{N}, g: \mathbb{N} \rightarrow \mathbb{N}$ such that
(a) $\varphi_{f(x, y)}(z) \simeq \varphi_{x}(z)+\varphi_{y}(z)$ for every $x, y, z \in \mathbb{N}$,
(b) dom $\varphi_{g(x)}=\{x\}$ for every $x \in \mathbb{N}$,
(c) $\operatorname{dom} \varphi_{g(x)}=\{0,1, \ldots, x\}$ for every $x \in \mathbb{N}$.
5. Rice's theorem. Show that the following problems are undecidable.
(a) Does the given program always halt (i.e. for every input)?
(b) Does the given program return 0 for some input?
(c) Do the given two programs compute the same arithmetic function?

Homework

Problems 1(e), 3(a) (both for 1 point), and one of $3(\mathrm{~d}), 3(\mathrm{e})$ depending on your choice (for 2 points).

