Practical sessions for Introduction to Complexity and Computability - 4

November 15th, 2018

Exercises

1. (previous HW) Prove or disprove that the class of decidable (resp. partially decidable) languages is closed under symmetric difference. A symmetric difference of sets A and B is the set $A \triangle B=(A-B) \cup(B-A)$.
2. Reducibility and completeness.
(a) (previous HW) Let A be a partially decidable language. Show that A is decidable if $A \leq_{m} \bar{A}$.
(b) Let A be a decidable language. Show that $A \leq_{m} C$ for every nontrivial language C (i.e. $C \neq \emptyset$ and $C \neq\{0,1\}^{*}$).
(c) Find examples of languages A, B such that $A \leq_{m} B$ and $A \not \leq_{1} B$.
(d) (previous HW) Show that $K \leq_{1}$ Tot and $\bar{K} \leq_{1}$ Tot where $K=\left\{x \mid M_{x}(x) \downarrow\right\}$ and Tot $=\left\{x \mid L_{x}=\{0,1\}^{*}\right\}$.
(e) (previous HW) Let $D \subseteq\{0,1\}^{*}$ be finite. Show that $K \leq_{1}\left\{x \mid D \subseteq L_{x}\right\}$ and $\bar{K} \leq_{1}$ $\left\{x \mid L_{x} \subseteq D\right\}$ where K is defined above.
3. The "s-m-n" theorem. Find injective computable total functions $f: \mathbb{N}^{2} \rightarrow \mathbb{N}, g: \mathbb{N} \rightarrow \mathbb{N}$ such that
(a) $\varphi_{f(x, y)}(z) \simeq \varphi_{x}(z)+\varphi_{y}(z)$ for every $x, y, z \in \mathbb{N}$,
(b) dom $\varphi_{g(x)}=\{x\}$ for every $x \in \mathbb{N}$,
(c) dom $\varphi_{g(x)}=\{0,1, \ldots, x\}$ for every $x \in \mathbb{N}$.
4. Rice's theorem. Show that the following problems are undecidable.
(a) Does the given program always accept (i.e. for every input)?
(b) Does the given program return 0 for some input?
(c) Do the given two programs compute the same arithmetic function?
5. Let A be a finite problem (i.e. the language of its positive instances is finite). Determine for which functions f the class $\operatorname{TIME}(f(n))$ contains A. Is A in the class \mathbf{P} ?
6. For a language A and $k \in \mathbb{N}$ let $A_{k}=\{x \in A ;|x|=k\}$ be the restriction of A to inputs of size k. Prove or disprove that for any language A, if $A_{k} \in \mathbf{P}$ for every k, then $A \in \mathbf{P}$.
7. Consider a Turing machine M running in the following time $f(n)$ where $k \in \mathbb{N}$. In which cases the language $L(M)$ belongs to \mathbf{P} ? In which cases it belongs to EXP? Explain why.
(a) $f(n)=n^{k}$
(b) $f(n)=k^{n}$
(c) $f(n)=n^{n}$
(d) $f(n)=k^{k \log n}$
(e) $f(n)=n^{\log \log n}$
(f) $f(n)=k^{n^{k}}$
(g) $f(n)=k^{n^{n}}$
(h) $f(n)=n^{n^{k}}$
(i) $f(n)=n^{n^{n}}$

Homework

Problems 5, 6 (both for 1 point), and 7 (all subproblems, up to 2 points).

