Introduction to Artificial Intelligence

 English practicals 3: Constraint satisfaction
Marika Ivanová

Department of Theoretical Computer Science and Mathematical Logic (KTIML) Faculty of Mathematics and Physics

March 1st 2022

Approaches for solving algorithmic problems

Specialized algorithms

- Dijkstra's shortest path algorithm
- Hungarian algorithm for the assignment problem
- Prim's algorithm for minimum spanning tree

Is there an algorithm for every problem?

Approaches for solving algorithmic problems

Specialized algorithms

- Dijkstra's shortest path algorithm
- Hungarian algorithm for the assignment problem
- Prim's algorithm for minimum spanning tree

Is there an algorithm for every problem?

- Infinitely many but countable algorithms

Approaches for solving algorithmic problems

Specialized algorithms

- Dijkstra's shortest path algorithm
- Hungarian algorithm for the assignment problem
- Prim's algorithm for minimum spanning tree

Is there an algorithm for every problem?

- Infinitely many but countable algorithms
- Uncountable decision problems

Approaches for solving algorithmic problems

Specialized algorithms

- Dijkstra's shortest path algorithm
- Hungarian algorithm for the assignment problem
- Prim's algorithm for minimum spanning tree

Is there an algorithm for every problem?

- Infinitely many but countable algorithms
- Uncountable decision problems
- An algorithm does not exist for most of the problems

Approaches for solving algorithmic problems

Specialized algorithms

- Dijkstra's shortest path algorithm
- Hungarian algorithm for the assignment problem
- Prim's algorithm for minimum spanning tree

Is there an algorithm for every problem?

- Infinitely many but countable algorithms
- Uncountable decision problems
- An algorithm does not exist for most of the problems
- There is no algorithm deciding whether a given program stops (The Halting problem)

Approaches for solving algorithmic problems

General approaches for solving problems

- What class of problems to solve?
- How to encode problems of this class?
- Find a general algorithm for solving this class of problems

Approaches for solving algorithmic problems

General approaches for solving problems

- What class of problems to solve?
- How to encode problems of this class?
- Find a general algorithm for solving this class of problems

Examples of problem classes

- (Integer) linear programming (ILP)
- Constraint satisfaction programming (CSP)
- SAT (logical formulae in CNF)

A small reminder

- Problem solving is realized via search
- Tree search vs graph search
- Uninformed search - DFS, BFS, Uniform cost search vs Informed search - Best first search, A*
- Constraint satisfaction problem (CSP) consists of

A small reminder

- Problem solving is realized via search
- Tree search vs graph search
- Uninformed search - DFS, BFS, Uniform cost search vs Informed search - Best first search, A*
- Constraint satisfaction problem (CSP) consists of
- A finite set of variables - feature of the world state (position of a queen, number in sudoku tile)

A small reminder

- Problem solving is realized via search
- Tree search vs graph search
- Uninformed search - DFS, BFS, Uniform cost search vs Informed search - Best first search, A*
- Constraint satisfaction problem (CSP) consists of
- A finite set of variables - feature of the world state (position of a queen, number in sudoku tile)
- Domains - a finite set of values for each variable.

A small reminder

- Problem solving is realized via search
- Tree search vs graph search
- Uninformed search - DFS, BFS, Uniform cost search vs Informed search - Best first search, A*
- Constraint satisfaction problem (CSP) consists of
- A finite set of variables - feature of the world state (position of a queen, number in sudoku tile)
- Domains - a finite set of values for each variable.
- A finite set of constraints - relation over a subset of variables $(X \leq Y)$

A small reminder

- Problem solving is realized via search
- Tree search vs graph search
- Uninformed search - DFS, BFS, Uniform cost search vs Informed search - Best first search, A*
- Constraint satisfaction problem (CSP) consists of
- A finite set of variables - feature of the world state (position of a queen, number in sudoku tile)
- Domains - a finite set of values for each variable.
- A finite set of constraints - relation over a subset of variables $(X \leq Y)$
- A feasible solution to a CSP is a complete consistent assignment of values to variables

A small reminder

- Problem solving is realized via search
- Tree search vs graph search
- Uninformed search - DFS, BFS, Uniform cost search vs Informed search - Best first search, A*
- Constraint satisfaction problem (CSP) consists of
- A finite set of variables - feature of the world state (position of a queen, number in sudoku tile)
- Domains - a finite set of values for each variable.
- A finite set of constraints - relation over a subset of variables $(X \leq Y)$
- A feasible solution to a CSP is a complete consistent assignment of values to variables
- The arc $\left(V_{i}, V_{j}\right)$ is arc consistent iff for each value x from the domain D_{i} there exists a value y in the domain D_{j} such that the assignment $V_{i}=x$ and $V_{j}=y$ satisfies all the binary constraints on V_{i}, V_{j}.

Selected quiz questions

Selected quiz questions

- What is the best uninformed search algorithm to solve the N -queens problem? Why? (POLL!)

Selected quiz questions

- What is the best uninformed search algorithm to solve the N -queens problem? Why? (POLL!)
DFS (backtracking) as tree search

Selected quiz questions

- What is the best uninformed search algorithm to solve the N -queens problem? Why? (POLL!)
DFS (backtracking) as tree search
- Is constraint $X \neq Y$, where domains of X and Y are 1,2, arc consistent?

Selected quiz questions

- What is the best uninformed search algorithm to solve the N -queens problem? Why? (POLL!)
DFS (backtracking) as tree search
- Is constraint $X \neq Y$, where domains of X and Y are 1,2 , arc consistent?

Yes, both values in each variable have a consistent counterpart

Selected quiz questions

- What is the best uninformed search algorithm to solve the N -queens problem? Why? (POLL!)
DFS (backtracking) as tree search
- Is constraint $X \neq Y$, where domains of X and Y are 1,2 , arc consistent?

Yes, both values in each variable have a consistent counterpart

- If arc (X, Y) is consistent, does it mean that $\operatorname{arc}(Y, X)$ is also consistent?

Selected quiz questions

- What is the best uninformed search algorithm to solve the N -queens problem? Why? (POLL!)
DFS (backtracking) as tree search
- Is constraint $X \neq Y$, where domains of X and Y are 1,2 , arc consistent?

Yes, both values in each variable have a consistent counterpart

- If arc (X, Y) is consistent, does it mean that $\operatorname{arc}(Y, X)$ is also consistent? No. Consider $D_{X}=\{1\}$ and $D_{Y}=\{1,2\}$

Selected quiz questions

- What is the best uninformed search algorithm to solve the N -queens problem? Why? (POLL!)
DFS (backtracking) as tree search
- Is constraint $X \neq Y$, where domains of X and Y are 1,2 , arc consistent?

Yes, both values in each variable have a consistent counterpart

- If arc (X, Y) is consistent, does it mean that $\operatorname{arc}(Y, X)$ is also consistent?

No. Consider $D_{X}=\{1\}$ and $D_{Y}=\{1,2\}$

- TRUE/FALSE: If the problem is not arc consistent it has no solution.

Selected quiz questions

- What is the best uninformed search algorithm to solve the N -queens problem? Why? (POLL!)
DFS (backtracking) as tree search
- Is constraint $X \neq Y$, where domains of X and Y are 1,2 , arc consistent?

Yes, both values in each variable have a consistent counterpart

- If arc (X, Y) is consistent, does it mean that $\operatorname{arc}(Y, X)$ is also consistent? No. Consider $D_{X}=\{1\}$ and $D_{Y}=\{1,2\}$
- TRUE/FALSE: If the problem is not arc consistent it has no solution. False

Selected quiz questions

- What is the best uninformed search algorithm to solve the N -queens problem? Why? (POLL!)
DFS (backtracking) as tree search
- Is constraint $X \neq Y$, where domains of X and Y are 1,2, arc consistent?

Yes, both values in each variable have a consistent counterpart

- If arc (X, Y) is consistent, does it mean that $\operatorname{arc}(Y, X)$ is also consistent?

No. Consider $D_{X}=\{1\}$ and $D_{Y}=\{1,2\}$

- TRUE/FALSE: If the problem is not arc consistent it has no solution.

False

- TRUE/FALSE: If the problem is arc consistent it has a solution.

Selected quiz questions

- What is the best uninformed search algorithm to solve the N -queens problem? Why? (POLL!)
DFS (backtracking) as tree search
- Is constraint $X \neq Y$, where domains of X and Y are 1,2, arc consistent?

Yes, both values in each variable have a consistent counterpart

- If arc (X, Y) is consistent, does it mean that $\operatorname{arc}(Y, X)$ is also consistent?

No. Consider $D_{X}=\{1\}$ and $D_{Y}=\{1,2\}$

- TRUE/FALSE: If the problem is not arc consistent it has no solution.

False

- TRUE/FALSE: If the problem is arc consistent it has a solution. False

Selected quiz questions

- What is the best uninformed search algorithm to solve the N -queens problem? Why? (POLL!)
DFS (backtracking) as tree search
- Is constraint $X \neq Y$, where domains of X and Y are 1,2, arc consistent?

Yes, both values in each variable have a consistent counterpart

- If arc (X, Y) is consistent, does it mean that $\operatorname{arc}(Y, X)$ is also consistent?

No. Consider $D_{X}=\{1\}$ and $D_{Y}=\{1,2\}$

- TRUE/FALSE: If the problem is not arc consistent it has no solution.

False

- TRUE/FALSE: If the problem is arc consistent it has a solution.

False

$$
\begin{aligned}
D_{A} & =\{1,2\} \\
D_{B} & =\{1,2\} \\
D_{C} & =\{1,2\}
\end{aligned}
$$

Example: DFS

- Variables: $\{A, B, C\}$
- Domains: $D_{A}=D_{B}=$ $D_{C}=\{1,2,3\}$
- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: DFS

- Variables: $\{A, B, C\}$
- Domains: $D_{A}=D_{B}=$ $D_{C}=\{1,2,3\}$
- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: DFS

- Variables: $\{A, B, C\}$
- Domains: $D_{A}=D_{B}=$ $D_{C}=\{1,2,3\}$
- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: DFS

- Variables: $\{A, B, C\}$
- Domains: $D_{A}=D_{B}=$ $D_{C}=\{1,2,3\}$
- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: DFS

- Variables: $\{A, B, C\}$
- Domains: $D_{A}=D_{B}=$ $D_{C}=\{1,2,3\}$
- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: DFS

- Variables: $\{A, B, C\}$
- Domains: $D_{A}=D_{B}=$ $D_{C}=\{1,2,3\}$
- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: DFS

- Variables: $\{A, B, C\}$
- Domains: $D_{A}=D_{B}=$ $D_{C}=\{1,2,3\}$
- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: DFS

- Variables: $\{A, B, C\}$
- Domains: $D_{A}=D_{B}=$ $D_{C}=\{1,2,3\}$
- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: DFS

- Variables: $\{A, B, C\}$
- Domains: $D_{A}=D_{B}=$ $D_{C}=\{1,2,3\}$
- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: DFS

- Variables: $\{A, B, C\}$
- Domains: $D_{A}=D_{B}=$ $D_{C}=\{1,2,3\}$
- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: DFS

- Variables: $\{A, B, C\}$
- Domains: $D_{A}=D_{B}=$ $D_{C}=\{1,2,3\}$
- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: DFS

- Variables: $\{A, B, C\}$
- Domains: $D_{A}=D_{B}=$ $D_{C}=\{1,2,3\}$
- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: DFS

- Variables: $\{A, B, C\}$
- Domains: $D_{A}=D_{B}=$ $D_{C}=\{1,2,3\}$
- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: DFS

- Variables: $\{A, B, C\}$
- Domains: $D_{A}=D_{B}=$ $D_{C}=\{1,2,3\}$
- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: DFS

- Variables: $\{A, B, C\}$
- Domains: $D_{A}=D_{B}=$ $D_{C}=\{1,2,3\}$
- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: DFS

- Variables: $\{A, B, C\}$
- Domains: $D_{A}=D_{B}=$ $D_{C}=\{1,2,3\}$
- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: DFS

- Variables: $\{A, B, C\}$
- Domains: $D_{A}=D_{B}=$ $D_{C}=\{1,2,3\}$
- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: DFS

- Variables: $\{A, B, C\}$
- Domains: $D_{A}=D_{B}=$ $D_{C}=\{1,2,3\}$
- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$
- Feasible solution:
$A=2$
$B=1$
$C=3$

Example: forward checking

- Variables: $\{A, B, C\}$
- Domains:
$D_{A}=\{1,2,3\}$
$D_{B}=\{1,2,3\}$
$D_{C}=\{1,2,3\}$
- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: forward checking

- Variables: $\{A, B, C\}$
- Domains:

$$
\begin{aligned}
D_{A} & =\{1,2,3\} \\
D_{B} & =\{1,2,3\} \\
D_{C} & =\{1,2,3\}
\end{aligned}
$$

- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: forward checking

- Variables: $\{A, B, C\}$
- Domains:

$$
\begin{aligned}
D_{A} & =\{1,2,3\} \\
D_{B} & =\{1,2,3\} \\
D_{C} & =\{1,2,3\}
\end{aligned}
$$

- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: forward checking

- Variables: $\{A, B, C\}$
- Domains:
$D_{A}=\{1,2,3\}$
$D_{B}=\{, \quad$,
$D_{C}=\{, 2,3\}$
- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: forward checking

- Variables: $\{A, B, C\}$
- Domains:

$$
\begin{aligned}
D_{A} & =\{1,2,3\} \\
D_{B} & =\{1,2,3\} \\
D_{C} & =\{1,2,3\}
\end{aligned}
$$

- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: forward checking

- Variables: $\{A, B, C\}$
- Domains:
$D_{A}=\{1,2,3\}$
$D_{B}=\{1, \quad, \quad\}$

$D_{C}=\{1,, 3\}$
- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: forward checking

- Variables: $\{A, B, C\}$
- Domains:

$$
\begin{aligned}
D_{A} & =\{1,2,3\} \\
D_{B} & =\{1,, \quad\} \\
D_{C} & =\{1,, 3\}
\end{aligned}
$$

- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: forward checking

- Variables: $\{A, B, C\}$
- Domains:

$$
\begin{aligned}
D_{A} & =\{1,2,3\} \\
D_{B} & =\{1,,\} \\
D_{C} & =\{,, 3\}
\end{aligned}
$$

- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

Example: forward checking

- Variables: $\{A, B, C\}$
- Domains:

$$
\begin{aligned}
D_{A} & =\{1,2,3\} \\
D_{B} & =\{1,,\} \\
D_{C} & =\{,, 3\}
\end{aligned}
$$

- Constraints:
- $A>B$
- $B \neq C$
- $A \neq C$

AC-3

- Turn each binary constraint into two arcs
$(A<B$ becomes $A<B$ and $B>A)$
- Add all arcs to queue Q
- Repeat until Q is empty:
- remove an arc $\left(X_{i}, X_{j}\right)$ from Q and check if for every value of X_{i} there is a value in X_{j}
- remove any inconsistent values from X_{i}
- if the domain of X_{i} changed, add all arcs $\left(X_{k}, X_{i}\right)$ to Q

Example: AC-3

- Variables: $\{A, B, C\}$

Q

- Domains:

Arcs:

$$
\begin{aligned}
D_{A} & =\{1,2,3\} \\
D_{B} & =\{1,2,3\} \\
D_{C} & =\{1,2,3\}
\end{aligned}
$$

- Constraints:

$$
\begin{aligned}
& A>B \\
& B=C
\end{aligned}
$$

Example: AC-3

- Variables: $\{A, B, C\}$

Q

- Domains:
$D_{A}=\{1,2,3\}$
$D_{B}=\{1,2,3\}$
$D_{C}=\{1,2,3\}$
- Constraints:

Arcs:

$A>B$
$B<A$
$B=C$
$C=B$

$$
\begin{aligned}
& A>B \\
& B=C
\end{aligned}
$$

Example: AC-3

- Variables:
$\{A, B, C\}$
- Domains:
$D_{A}=\{1,2,3\}$
$D_{B}=\{1,2,3\}$
$D_{C}=\{1,2,3\}$
- Constraints:

Q
$A>B \leftarrow$
$B<A$
$B=C$
$C=B$
$B=C$
$C=B$

$$
\begin{aligned}
& A>B \\
& B=C
\end{aligned}
$$

Example: AC-3

- Variables: $\{A, B, C\}$
- Domains:
$D_{A}=\{, 2,3\}$
$D_{B}=\{1,2,3\}$
$D_{C}=\{1,2,3\}$
- Constraints:

$$
\begin{array}{lr}
A>B \leftarrow & \text { Arcs: } \\
B<A & A>B \\
B=C & B<A \\
C=B & B=C \\
& C=B
\end{array}
$$

$$
\begin{aligned}
& A>B \\
& B=C
\end{aligned}
$$

Example: AC-3

- Variables: $\{A, B, C\}$

Q

- Domains:

$$
\begin{array}{ll}
D_{A}=\{, 2,3\} & B<A \\
D_{B}=\{1,2,3\} & B=C \\
D_{C}=\{1,2,3\} & C=B
\end{array}
$$

- Constraints:

Arcs:

$A>B$
$B<A$
$B=C$
$C=B$
$A>B$

$$
B=C
$$

Example: AC-3

- Variables: $\{A, B, C\}$

Q

- Domains:

$$
\begin{array}{ll}
D_{A}=\{, 2,3\} & B<A \\
D_{B}=\{1,2,\} & B=C \\
D_{C}=\{1,2,3\} & C=B
\end{array}
$$

- Constraints:

Arcs:

$A>B$
$B<A$
$B=C$
$C=B$
$A>B$

$$
B=C
$$

Example: AC-3

- Variables: $\{A, B, C\}$

Q

- Domains:

$$
\begin{aligned}
D_{A} & =\{, 2,3\} \\
D_{B} & =\{1,2,\} \\
D_{C} & =\{1,2,3\}
\end{aligned}
$$

$$
B=C
$$

- Constraints:

$$
\begin{aligned}
& B<A \leftarrow \\
& B=C \\
& C=B \\
& A>B
\end{aligned}
$$

$$
C=B
$$

$$
\begin{aligned}
& A>B \\
& B=C
\end{aligned}
$$

Example: AC-3

- Variables: $\{A, B, C\}$

Q

- Domains:

$$
\begin{aligned}
D_{A} & =\{, 2,3\} \\
D_{B} & =\{1,2,\} \\
D_{C} & =\{1,2,3\}
\end{aligned}
$$

- Constraints:

$$
\begin{aligned}
& B=C \leftarrow \\
& C=B \\
& A>B
\end{aligned}
$$

Arcs:

$A>B$
$B<A$

$$
B=C
$$

$C=B$

$$
\begin{aligned}
& A>B \\
& B=C
\end{aligned}
$$

Example: AC-3

- Variables: $\{A, B, C\}$

Q

- Domains:

$$
\begin{aligned}
D_{A} & =\{, 2,3\} \\
D_{B} & =\{1,2,\} \\
D_{C} & =\{1,2,3\}
\end{aligned}
$$

- Constraints:

$$
\begin{aligned}
& C=B \leftarrow \\
& A>B
\end{aligned}
$$

Arcs:

$A>B$
$B<A$
$B=C$
$C=B$
$A>B$

$$
B=C
$$

Example: AC-3

- Variables: $\{A, B, C\}$

Q

- Domains:

$$
\left.\begin{array}{rl}
D_{A} & =\{, 2,3\} \\
D_{B} & =\{1,2, \quad\} \\
D_{C} & =\{1,2,
\end{array}\right\}
$$

- Constraints:

$$
\begin{aligned}
& C=B \leftarrow \\
& A>B
\end{aligned}
$$

Arcs:

$A>B$
$B<A$
$B=C$
$C=B$

$$
\begin{aligned}
& A>B \\
& B=C
\end{aligned}
$$

Example: AC-3

- Variables: $\{A, B, C\}$

Q

- Domains:

$$
\left.\begin{array}{rl}
D_{A} & =\{, 2,3\} \\
D_{B} & =\{1,2, \quad\} \\
D_{C} & =\{1,2,
\end{array}\right\}
$$

- Constraints:
$A>B$
$B=C$

Example: AC-3

- Variables: $\{A, B, C\}$

Q

- Domains:

$$
\left.\begin{array}{rl}
D_{A} & =\{, 2,3\} \\
D_{B} & =\{1,2, \quad\} \\
D_{C} & =\{1,2,
\end{array}\right\}
$$

- Constraints:

$$
\begin{aligned}
& A>B \\
& B=C
\end{aligned}
$$

Arcs:

$A>B$
$B<A$
$B=C$
$A>B \leftarrow$
$C=B$

$$
B=C
$$

Example: AC-3

- Variables: $\{A, B, C\}$

Q

- Domains:

$$
\left.\begin{array}{rl}
D_{A} & =\{, 2,3\} \\
D_{B} & =\{1,2, \quad\} \\
D_{C} & =\{1,2,
\end{array}\right\}
$$

- Constraints:

$$
\begin{aligned}
& A>B \\
& B=C
\end{aligned}
$$

Example: AC-3

- Variables: $\{A, B, C\}$

Q

- Domains:

$$
\left.\begin{array}{rl}
D_{A} & =\{, 2,3\} \\
D_{B} & =\{1,2, \quad\} \\
D_{C} & =\{1,2,
\end{array}\right\}
$$

- Constraints:

Arcs:

$A>B$
$B<A$
$B=C$
$C=B$

$$
\begin{aligned}
& A>B \\
& B=C
\end{aligned}
$$

Example: AC-3

- Variables: $\{A, B, C\}$

Q

- Domains:

$$
\left.\begin{array}{rl}
D_{A} & =\{, 2,3\} \\
D_{B} & =\{1,2, \quad\} \\
D_{C} & =\{1,2,
\end{array}\right\}
$$

- Constraints:

Arcs:

$$
\begin{aligned}
& A>B \\
& B<A \\
& B=C \\
& C=B
\end{aligned}
$$

$$
\begin{aligned}
& A>B \\
& B=C
\end{aligned}
$$

Empty Q - the problem is arc consistent.

Example: AC-3

- Variables: $\{A, B, C\}$

Q

- Domains:

$$
\left.\begin{array}{rl}
D_{A} & =\{, 2,3\} \\
D_{B} & =\{1,2, \quad\} \\
D_{C} & =\{1,2,
\end{array}\right\}
$$

- Constraints:

Arcs:

$$
\begin{aligned}
& A>B \\
& B<A \\
& B=C \\
& C=B
\end{aligned}
$$

$$
\begin{aligned}
& A>B \\
& B=C
\end{aligned}
$$

Will the algorithm always terminate?

Modelling example: knapsack

Knapsack

The smuggler has a knapsack of capacity 9 units. It can be filled with:

Modelling example: knapsack

Knapsack

The smuggler has a knapsack of capacity 9 units. It can be filled with:

- whisky (takes 4 capacity units, profit is 15 dollars),
- perfume (3 units, 10 dollars)
- cigarettes (2 units, 7 dollars)

Modelling example: knapsack

Knapsack

The smuggler has a knapsack of capacity 9 units. It can be filled with:

- whisky (takes 4 capacity units, profit is 15 dollars),
- perfume (3 units, 10 dollars)
- cigarettes (2 units, 7 dollars)
- Any combination of the goods can be used in any amount

Modelling example: knapsack

Knapsack

The smuggler has a knapsack of capacity 9 units. It can be filled with:

- whisky (takes 4 capacity units, profit is 15 dollars),
- perfume (3 units, 10 dollars)
- cigarettes (2 units, 7 dollars)
- Any combination of the goods can be used in any amount
- The required profit is at least 30 dollars

Modelling example: knapsack

Knapsack

The smuggler has a knapsack of capacity 9 units. It can be filled with:

- whisky (takes 4 capacity units, profit is 15 dollars),
- perfume (3 units, 10 dollars)
- cigarettes (2 units, 7 dollars)
- Any combination of the goods can be used in any amount
- The required profit is at least 30 dollars
- What should be placed in the knapsack?

Modelling example: knapsack

Knapsack

The smuggler has a knapsack of capacity 9 units. It can be filled with:

- whisky (takes 4 capacity units, profit is 15 dollars),
- perfume (3 units, 10 dollars)
- cigarettes (2 units, 7 dollars)
- Any combination of the goods can be used in any amount
- The required profit is at least 30 dollars
- What should be placed in the knapsack?
- Variables: Goods $=\{W, P, C\}$ (amounts of types of goods)

Modelling example: knapsack

Knapsack

The smuggler has a knapsack of capacity 9 units. It can be filled with:

- whisky (takes 4 capacity units, profit is 15 dollars),
- perfume (3 units, 10 dollars)
- cigarettes (2 units, 7 dollars)
- Any combination of the goods can be used in any amount
- The required profit is at least 30 dollars
- What should be placed in the knapsack?
- Variables: Goods $=\{W, P, C\}$ (amounts of types of goods)
- Domains: $D_{i}=\{0, \ldots, 4\}, i=w, p, c$

Modelling example: knapsack

Knapsack

The smuggler has a knapsack of capacity 9 units. It can be filled with:

- whisky (takes 4 capacity units, profit is 15 dollars),
- perfume (3 units, 10 dollars)
- cigarettes (2 units, 7 dollars)
- Any combination of the goods can be used in any amount
- The required profit is at least 30 dollars
- What should be placed in the knapsack?
- Variables: Goods $=\{W, P, C\}$ (amounts of types of goods)
- Domains: $D_{i}=\{0, \ldots, 4\}, i=w, p, c$
- Constraints:

Modelling example: knapsack

Knapsack

The smuggler has a knapsack of capacity 9 units. It can be filled with:

- whisky (takes 4 capacity units, profit is 15 dollars),
- perfume (3 units, 10 dollars)
- cigarettes (2 units, 7 dollars)
- Any combination of the goods can be used in any amount
- The required profit is at least 30 dollars
- What should be placed in the knapsack?
- Variables: Goods $=\{W, P, C\}$ (amounts of types of goods)
- Domains: $D_{i}=\{0, \ldots, 4\}, i=w, p, c$
- Constraints:

Modelling example: knapsack

Knapsack

The smuggler has a knapsack of capacity 9 units. It can be filled with:

- whisky (takes 4 capacity units, profit is 15 dollars),
- perfume (3 units, 10 dollars)
- cigarettes (2 units, 7 dollars)
- Any combination of the goods can be used in any amount
- The required profit is at least 30 dollars
- What should be placed in the knapsack?
- Variables: Goods $=\{W, P, C\}$ (amounts of types of goods)
- Domains: $D_{i}=\{0, \ldots, 4\}, i=w, p, c$
- Constraints:
- $4 W+3 P+2 C \leq 9$

Modelling example: knapsack

Knapsack

The smuggler has a knapsack of capacity 9 units. It can be filled with:

- whisky (takes 4 capacity units, profit is 15 dollars),
- perfume (3 units, 10 dollars)
- cigarettes (2 units, 7 dollars)
- Any combination of the goods can be used in any amount
- The required profit is at least 30 dollars
- What should be placed in the knapsack?
- Variables: Goods $=\{W, P, C\}$ (amounts of types of goods)
- Domains: $D_{i}=\{0, \ldots, 4\}, i=w, p, c$
- Constraints:
- $4 W+3 P+2 C \leq 9$
- $15 W+10 P+7 C \geq 30$

Modelling example: sudoku

formulate (model) the sudoku problem as a CSP

Modelling example: sudoku

formulate (model) the sudoku problem as a CSP

- Variables: $X=\left\{x_{i j}: 1 \leq i, j \leq 9\right\}$
- Domains: $D_{i j}=\{1, \ldots, 9\}, 1 \leq i, j \leq 9$

Modelling example: sudoku

formulate (model) the sudoku problem as a CSP

- Variables: $X=\left\{x_{i j}: 1 \leq i, j \leq 9\right\}$
- Domains: $D_{i j}=\{1, \ldots, 9\}, 1 \leq i, j \leq 9$
- Variable subsets: $\left\{C_{1}, \ldots, C_{9}, R_{1}, \ldots, R_{9}, B_{1,1}, B_{1,2}, \ldots, B_{3,3}\right\}$ defined by

$$
\forall x_{i j} \in X: x_{i j} \in C_{j}, x_{i j} \in R_{i}, x_{i j} \in B_{(i-1) / 3+1,(j-1) / 3+1}
$$

Modelling example: sudoku

formulate (model) the sudoku problem as a CSP

- Variables: $X=\left\{x_{i j}: 1 \leq i, j \leq 9\right\}$
- Domains: $D_{i j}=\{1, \ldots, 9\}, 1 \leq i, j \leq 9$
- Variable subsets: $\left\{C_{1}, \ldots, C_{9}, R_{1}, \ldots, R_{9}, B_{1,1}, B_{1,2}, \ldots, B_{3,3}\right\}$ defined by

$$
\forall x_{i j} \in X: x_{i j} \in C_{j}, x_{i j} \in R_{i}, x_{i j} \in B_{(i-1) / 3+1,(j-1) / 3+1}
$$

- Constraints:

Modelling example: sudoku

formulate (model) the sudoku problem as a CSP

- Variables: $X=\left\{x_{i j}: 1 \leq i, j \leq 9\right\}$
- Domains: $D_{i j}=\{1, \ldots, 9\}, 1 \leq i, j \leq 9$
- Variable subsets: $\left\{C_{1}, \ldots, C_{9}, R_{1}, \ldots, R_{9}, B_{1,1}, B_{1,2}, \ldots, B_{3,3}\right\}$ defined by

$$
\forall x_{i j} \in X: x_{i j} \in C_{j}, x_{i j} \in R_{i}, x_{i j} \in B_{(i-1) / 3+1,(j-1) / 3+1}
$$

- Constraints:
- $\forall j \in\{1, \ldots, 9\}$: all_different $\left(C_{j}\right)$
- $\forall i \in\{1, \ldots, 9\}$: all_different $\left(R_{i}\right)$
- $\forall k, k^{\prime} \in\{1, \ldots, 3\}$: all_different $\left(B_{k k^{\prime}}\right)$

Modelling example: sudoku

formulate (model) the sudoku problem as a CSP

- Variables: $X=\left\{x_{i j}: 1 \leq i, j \leq 9\right\}$
- Domains: $D_{i j}=\{1, \ldots, 9\}, 1 \leq i, j \leq 9$
- Variable subsets: $\left\{C_{1}, \ldots, C_{9}, R_{1}, \ldots, R_{9}, B_{1,1}, B_{1,2}, \ldots, B_{3,3}\right\}$ defined by

$$
\forall x_{i j} \in X: x_{i j} \in C_{j}, x_{i j} \in R_{i}, x_{i j} \in B_{(i-1) / 3+1,(j-1) / 3+1}
$$

- Constraints:
- $\forall j \in\{1, \ldots, 9\}$: all_different $\left(C_{j}\right)$
- $\forall i \in\{1, \ldots, 9\}$: all_different $\left(R_{i}\right)$
- $\forall k, k^{\prime} \in\{1, \ldots, 3\}$: all_different $\left(B_{k k^{\prime}}\right)$
- for each clue $h_{i j}=v$ add $x_{i j}=v$

Modelling example: sudoku

formulate (model) the sudoku problem as a CSP

- Variables: $X=\left\{x_{i j}: 1 \leq i, j \leq 9\right\}$
- Domains: $D_{i j}=\{1, \ldots, 9\}, 1 \leq i, j \leq 9$
- Variable subsets: $\left\{C_{1}, \ldots, C_{9}, R_{1}, \ldots, R_{9}, B_{1,1}, B_{1,2}, \ldots, B_{3,3}\right\}$ defined by

$$
\forall x_{i j} \in X: x_{i j} \in C_{j}, x_{i j} \in R_{i}, x_{i j} \in B_{(i-1) / 3+1,(j-1) / 3+1}
$$

- Constraints:
- $\forall j \in\{1, \ldots, 9\}$: all_different $\left(C_{j}\right)$
- $\forall i \in\{1, \ldots, 9\}$: all_different $\left(R_{i}\right)$
- $\forall k, k^{\prime} \in\{1, \ldots, 3\}$: all_different $\left(B_{k k^{\prime}}\right)$
- for each clue $h_{i j}=v$ add $x_{i j}=v$
- Each variable evaluation satisfying all constraints corresponds to a solution to a given sudoku instance and vice versa

Modelling example: Perfect matching

Perfect matching

A perfect matching in a graph $G=(V, E)$ is a subset $M \subseteq E$ in which every vertex in V is incident to exactly one edge in M.

Formulate (model) perfect matching as a CSP

Modelling example: Perfect matching

Perfect matching

A perfect matching in a graph $G=(V, E)$ is a subset $M \subseteq E$ in which every vertex in V is incident to exactly one edge in M.

Formulate (model) perfect matching as a CSP

- Variables: $\left\{x_{f} \in\{0,1\}: f \in E\right\}$

Modelling example: Perfect matching

Perfect matching

A perfect matching in a graph $G=(V, E)$ is a subset $M \subseteq E$ in which every vertex in V is incident to exactly one edge in M.

Formulate (model) perfect matching as a CSP

- Variables: $\left\{x_{f} \in\{0,1\}: f \in E\right\}$
- Constraints:
- for every $u \in V$ of degree $k\left(u v_{1}, \ldots, u v_{k}\right)$: $\left(x_{u v_{1}}, \ldots, x_{u v_{k}}\right) \in\left\{e_{i}: i \in\{1, \ldots, k\}\right\}$

Modelling example: Perfect matching

Perfect matching

A perfect matching in a graph $G=(V, E)$ is a subset $M \subseteq E$ in which every vertex in V is incident to exactly one edge in M.

Formulate (model) perfect matching as a CSP

- Variables: $\left\{x_{f} \in\{0,1\}: f \in E\right\}$
- Constraints:
- for every $u \in V$ of degree $k\left(u v_{1}, \ldots, u v_{k}\right)$: $\left(x_{u v_{1}}, \ldots, x_{u v_{k}}\right) \in\left\{e_{i}: i \in\{1, \ldots, k\}\right\}$
- common notation: $e_{1}=(1,0,0,0), e_{3}=(0,0,1,0)$ for $k=4$

Modelling example: Perfect matching

Perfect matching

A perfect matching in a graph $G=(V, E)$ is a subset $M \subseteq E$ in which every vertex in V is incident to exactly one edge in M.

Formulate (model) perfect matching as a CSP

- Variables: $\left\{x_{f} \in\{0,1\}: f \in E\right\}$
- Constraints:
- for every $u \in V$ of degree $k\left(u v_{1}, \ldots, u v_{k}\right)$: $\left(x_{u v_{1}}, \ldots, x_{u v_{k}}\right) \in\left\{e_{i}: i \in\{1, \ldots, k\}\right\}$
- common notation: $e_{1}=(1,0,0,0), e_{3}=(0,0,1,0)$ for $k=4$

Formulation for bipartite graphs

Modelling example: Perfect matching

Perfect matching

A perfect matching in a graph $G=(V, E)$ is a subset $M \subseteq E$ in which every vertex in V is incident to exactly one edge in M.

Formulate (model) perfect matching as a CSP

- Variables: $\left\{x_{f} \in\{0,1\}: f \in E\right\}$
- Constraints:
- for every $u \in V$ of degree $k\left(u v_{1}, \ldots, u v_{k}\right)$: $\left(x_{u v_{1}}, \ldots, x_{u v_{k}}\right) \in\left\{e_{i}: i \in\{1, \ldots, k\}\right\}$
- common notation: $e_{1}=(1,0,0,0), e_{3}=(0,0,1,0)$ for $k=4$

Formulation for bipartite graphs

- Bipartite graph with node sets A and B with $|A|=|B|$

Modelling example: Perfect matching

Perfect matching

A perfect matching in a graph $G=(V, E)$ is a subset $M \subseteq E$ in which every vertex in V is incident to exactly one edge in M.

Formulate (model) perfect matching as a CSP

- Variables: $\left\{x_{f} \in\{0,1\}: f \in E\right\}$
- Constraints:
- for every $u \in V$ of degree $k\left(u v_{1}, \ldots, u v_{k}\right)$:

$$
\left(x_{u v_{1}}, \ldots, x_{u v_{k}}\right) \in\left\{e_{i}: i \in\{1, \ldots, k\}\right\}
$$

- common notation: $e_{1}=(1,0,0,0), e_{3}=(0,0,1,0)$ for $k=4$

Formulation for bipartite graphs

- Bipartite graph with node sets A and B with $|A|=|B|$
- Variables: $x_{a} \in N(a)$ denotes the node from B matched with a $N(a) \subseteq B$ are nodes adjacent to a

Modelling example: Perfect matching

Perfect matching

A perfect matching in a graph $G=(V, E)$ is a subset $M \subseteq E$ in which every vertex in V is incident to exactly one edge in M.

Formulate (model) perfect matching as a CSP

- Variables: $\left\{x_{f} \in\{0,1\}: f \in E\right\}$
- Constraints:
- for every $u \in V$ of degree $k\left(u v_{1}, \ldots, u v_{k}\right)$:

$$
\left(x_{u v_{1}}, \ldots, x_{u v_{k}}\right) \in\left\{e_{i}: i \in\{1, \ldots, k\}\right\}
$$

- common notation: $e_{1}=(1,0,0,0), e_{3}=(0,0,1,0)$ for $k=4$

Formulation for bipartite graphs

- Bipartite graph with node sets A and B with $|A|=|B|$
- Variables: $x_{a} \in N(a)$ denotes the node from B matched with a $N(a) \subseteq B$ are nodes adjacent to a
- Constraints: $\forall a, a^{\prime} \in A$ such that $a \neq a^{\prime}: x_{a} \neq x_{a}^{\prime}$

