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Solution to assignment # 1

Grid 2D (without diagonals)

o Euclidean distance \/|x1 — x2|2 4+ |y1 — y2|? is admissible, but not
tight enough
Grid 3D (without diagonals)

o Exactly the same holds in 3D without diagonals. Just add one
dimension
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Solution to assignment # 1

Grid 2D diagonal

o Euclidean distance from origin to (1,1) is
\/|x1 —%[2 + |y1 — y2|> = V2 > 1, thus not admissible

o Maximum heuristic max{|x; — x2|, |y1 — y2|} works here
Grid 3D all diagonal
o Again, the same arguments apply for 3D
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Solution to assignment # 1

Grid 3D face diagonal
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Solution to assignment # 1
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Solution to assignment # 1

Grid 3D face diagonal
o Euclidean distance is not admissible

o Maximum heuristic max{|x1 — x2|, [y1 — y2|, |z1 — 22|} is admissible,
but sometimes not tight enough

o Consider the point (2,2,1), which is in distance 3 from the origin, but
the maximum heuristic gives 2
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Solution to assignment # 1

Grid 3D face diagonal

o Euclidean distance is not admissible

o Maximum heuristic max{|x1 — x2|, [y1 — y2|, |z1 — 22|} is admissible,
but sometimes not tight enough

o Consider the point (2,2,1), which is in distance 3 from the origin, but

the maximum heuristic gives 2
Better would be (|x1 — xo| + |y1 — y2| + |21 — 22[)/2 = 2.5
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Solution to assignment # 1

Grid 3D face diagonal
o Euclidean distance is not admissible

o Maximum heuristic max{|x1 — x2|, [y1 — y2|, |z1 — 22|} is admissible,
but sometimes not tight enough

o Consider the point (2,2,1), which is in distance 3 from the origin, but
the maximum heuristic gives 2

o Better would be (|x; — x| + [y1 — yo| + |21 — 2])/2 =25

o But for the point (0,0,2), we get a better estimate by the maximum
heuristic
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Solution to assignment # 1

Grid 3D face diagonal
o Euclidean distance is not admissible

o Maximum heuristic max{|x1 — x2|, [y1 — y2|, |z1 — 22|} is admissible,
but sometimes not tight enough

o Consider the point (2,2,1), which is in distance 3 from the origin, but
the maximum heuristic gives 2

o Better would be (|x; — x| + [y1 — yo| + |21 — 2])/2 =25

o But for the point (0,0,2), we get a better estimate by the maximum
heuristic

o Therefore, always use the tighter one:
max{(|x1 — xe| + [y1 — yo| + |21 — 22)/2, [x1 =2, [y1 — y2l, |21 — 22[}
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o Consider the two extremes: both positions 4
are in distance 2 3 ]
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Solution to assignment # 1

Knight
o Consider the two extremes: both positions
are in distance 2

o The best heuristic for the green point is
max{(|x1 — x|, [y1 — y2[)}/2 =2
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Solution to assignment # 1

Knight
o Consider the two extremes: both positions 4
are in distance 2 3 | J
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Solution to assignment # 1

Knight

o Consider the two extremes: both positions
are in distance 2

o The best heuristic for the green point is
max{(|x1 — x|, [y1 — y2[)}/2 =2

o For the red one we have
(1 — x|+ [y1 —y2)/3=2

o Again, let's pick the tighter one:

O, N W PH

—A—
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012345

max{(|x1 — x2| + |y1 — y2|)/3, |x1 — x2|/2, |y1 — y2|/2}
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A small reminder

Modelling a problem as a boolean formula and finding a satisfying
evaluation of variables is another general way of solving combinatorial
problems

o Boolean variables attain values 0 or 1

o A formula ¢ is satisfiable iff there exists a value assignment for each
variable so that ¢ becomes true

o Literal is a single variable or its negation (x, —y)

o Clause is a disjunction of literals (x V y V —z)

o Typically we aim for a CNF formula (conjunction of clauses)
(xVyV=z)A(=xV-y)A(-z)

o A DNF formula is a disjunction of conjunctions
(XANy AN=z)V (=xA=y)V(-zAXx)
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Selected quiz questions

o Suggest an algorithm to verify if a formula in DNF is satisfiable
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Selected quiz questions

o Suggest an algorithm to verify if a formula in DNF is satisfiable
Check if any of the DNF clauses contains both a literal and its
negation (x A —x)
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Selected quiz questions

o Suggest an algorithm to verify if a formula in DNF is satisfiable
Check if any of the DNF clauses contains both a literal and its
negation (x A —x)

Then why don't we model problems as DNF?
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Selected quiz questions

o Suggest an algorithm to verify if a formula in DNF is satisfiable
Check if any of the DNF clauses contains both a literal and its
negation (x A —x)

Then why don't we model problems as DNF?
No polynomial algorithm that transforms a formula into DNF is
known (and does not exist unless P=NP)

o If we simplify a formula after removing a pure symbol (appears only
as a positive or only as a negative literal), can a new pure symbol
appear? And what a new unit clause?
yes, no

o If we simplify a formula after satisfying a unit clause (consist of only
one literal), can a new pure symbol appear? And what a new unit
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Selected quiz questions

o Suggest an algorithm to verify if a formula in DNF is satisfiable
Check if any of the DNF clauses contains both a literal and its
negation (x A —x)

Then why don't we model problems as DNF?
No polynomial algorithm that transforms a formula into DNF is
known (and does not exist unless P=NP)

o If we simplify a formula after removing a pure symbol (appears only
as a positive or only as a negative literal), can a new pure symbol
appear? And what a new unit clause?
yes, no

o If we simplify a formula after satisfying a unit clause (consist of only
one literal), can a new pure symbol appear? And what a new unit
clause?
yes, yes
(xVyVv-z)A(=y)A(my VZ)A(yVaq)

(xV-2) A (q)
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Conversion to CNF

Convert the following formula into CNF

p<(qNr)
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Convert the following formula into CNF
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Convert the following formula into CNF
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p<(qNr)

o (=pV (g Ar))A(=(gAr)Vp)
o (=pVag)A(=pVr)A(=gV-rVp)

Convert negation of this CNF formula to CNF
(PV=g)A(=rVs)

Marika Ivanové (MFF UK) Introduction to Artificial Intelligence March 2022

8/11



Conversion to CNF

Convert the following formula into CNF

p<(qNr)

o (=pV (g Ar))A(=(gAr)Vp)
o (=pVag)A(=pVr)A(=gV-rVp)

Convert negation of this CNF formula to CNF
(PV=g)A(=rVs)

@ Negate
@ Apply DeMorgan rules 2 times
@ Apply distribution rules 2 times
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Conversion to CNF

Convert the following formula into CNF

p<(qNr)

o (=pV (g Ar))A(=(gAr)Vp)
o (=pVag)A(=pVr)A(=gV-rVp)

Convert negation of this CNF formula to CNF
(PV=g)A(=rVs)

@ Negate
@ Apply DeMorgan rules 2 times
@ Apply distribution rules 2 times

@
(=pVr)A(gVr)A(=pVs)A(qV—s)
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Resolution
Prove using resolution that

{(p=9),(a=nr}E{E=r)
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Resolution
Prove using resolution that

{(p=9),(a=nr}E{E=r)

o Convert each premise to CNF: (-pV q),(—q V r)

o Convert the negation of the conclusion to CNF
—(=pVr)epA-ar

o we get 4 clauses

@ (-pVyg) (premise)
@ (—~qVr) (premise)
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Resolution
Prove using resolution that

{(p=9),(a=nr}E{E=r)

o Convert each premise to CNF: (-pV q),(—q V r)
o Convert the negation of the conclusion to CNF
=(-pVr)e pA-r

o we get 4 clauses

@ (-pvaq)  (premise)

@ (—~qVr) (premise)

@p (from negated conclusion)

@ —r (from negated conclusion)
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Resolution
Prove using resolution that

{(p=9),(a=nr}E{E=r)

o Convert each premise to CNF: (-pV q),(—q V r)

o Convert the negation of the conclusion to CNF
—(=pVr)epA-ar

o we get 4 clauses

@ (-pVyg) (premise)
@ (—~qVr) (premise)

@p (from negated conclusion)
@ —r (from negated conclusion)
®q (1,3, variable p)
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Resolution
Prove using resolution that

{(p=9),(a=nr}E{E=r)

o Convert each premise to CNF: (-pV q),(—q V r)
o Convert the negation of the conclusion to CNF
—(=pVr)epA-ar
o we get 4 clauses
@ (-pvaq)  (premise)
@ (—~qVr) (premise)
p (from negated conclusion)
—r (from negated conclusion)
(1,3, variable p)

@
@
®
@ (2,5, variable q)

e
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Resolution
Prove using resolution that

{(p=9),(a=nr}E{E=r)

o Convert each premise to CNF: (-pV q),(—q V r)

o Convert the negation of the conclusion to CNF
—(=pVr)epA-ar

o we get 4 clauses

@ (-pVyg) (premise)
@ (—~qVr) (premise)

@p (from negated conclusion)
@ —r (from negated conclusion)
® q (1,3, variable p)
® r (2,5, variable q)
@ L (4,6, variable r)
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SAT modeling

Assume a graph-coloring problem. How do you encode it as a satisfiability
problem?
Graph coloring

@ Two adjacent nodes cannot have the same color

@ Each node is assigned at least one of the available colors

@ (Each node is assigned at most one of the colors)
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SAT modeling

Assume a graph-coloring problem. How do you encode it as a satisfiability
problem?
Graph coloring

@ Two adjacent nodes cannot have the same color

@ Each node is assigned at least one of the available colors

@ (Each node is assigned at most one of the colors)

Variables:

X; = true < node x is assigned color i
Constraints:

@ For each edge (x, y) and each color i € {1,...,k} : =x; V —y;
@ For each vertex x: Vcqq gy Xi
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SAT modeling

Assume a graph-coloring problem. How do you encode it as a satisfiability
problem?
Graph coloring

@ Two adjacent nodes cannot have the same color

@ Each node is assigned at least one of the available colors

@ (Each node is assigned at most one of the colors)

Variables:

X; = true < node x is assigned color i
Constraints:

@ For each edge (x, y) and each color i € {1,...,k} : =x; V —y;
@ For each vertex x: Vcqq gy Xi

@ For each vertex x and for every 2 colors
ije{l,... k}i#j:—x VX

How to find a chromatic number of a graph?
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SAT modeling

Formulate sudoku as SAT
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Variables:
xjjk = true < cell at position i, j is assigned value k
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SAT modeling

Formulate sudoku as SAT
Variables:
xjjk = true < cell at position i, j is assigned value k
Constraints:
@ There is at least one number in each entry
@ Each number appears at most once in each column

@ Each number appears at most once in each row

@ Each number appears at most once in each block
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SAT modeling

Formulate sudoku as SAT
Variables:
xjjk = true < cell at position i, j is assigned value k
Constraints:
@ There is at least one number in each entry

9 9 9
/\,’:1 j=1 Vk:1 Xijk
@ Each number appears at most once in each column

@ Each number appears at most once in each row

@ Each number appears at most once in each block
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SAT modeling

Formulate sudoku as SAT
Variables:
xjjk = true < cell at position i, j is assigned value k
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SAT modeling

Formulate sudoku as SAT
Variables:
xjjk = true < cell at position i, j is assigned value k
Constraints:
@ There is at least one number in each entry
9 9 9
Ni=1 j=1 Vi1 Xijk
@ Each number appears at most once in each column
9 9 8 9
Nj=1 Nik=1 Nizt Niriza (5Xij V —xivji)
@ Each number appears at most once in each row
9 9 8 9
Niz1 Ni=1 /\j:l /\j':j+1(_‘Xijk V xik)
@ Each number appears at most once in each block
9 2 2 3 3 3
Ak=1 Ni=o /\j’:O Niz1 j=1 /\j":j+1
(mX@ir )3+ k V TXBir+i) B +)k)
9 2 2 3 3 3 3
/\k:1 /\i’:O /\j/:o /\,‘:1 j=1 /\,’H:X+1 /\j//:y+1
(PX@i+i)@j+igk ¥ TX@i i) (347
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