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Solution to assignment # 1

Grid 2D (without diagonals)

Euclidean distance
√
|x1 − x2|2 + |y1 − y2|2 is admissible, but not

tight enough

Grid 3D (without diagonals)

Exactly the same holds in 3D without diagonals. Just add one
dimension
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Solution to assignment # 1

Grid 2D diagonal

Euclidean distance from origin to (1,1) is√
|x1 − x2|2 + |y1 − y2|2 =

√
2 > 1, thus not admissible

Maximum heuristic max{|x1 − x2|, |y1 − y2|} works here

Grid 3D all diagonal

Again, the same arguments apply for 3D
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Solution to assignment # 1

Grid 3D face diagonal

Euclidean distance is not admissible

Maximum heuristic max{|x1 − x2|, |y1 − y2|, |z1 − z2|} is admissible,
but sometimes not tight enough

Consider the point (2,2,1), which is in distance 3 from the origin, but
the maximum heuristic gives 2

Better would be (|x1 − x2|+ |y1 − y2|+ |z1 − z2|)/2 = 2.5

But for the point (0,0,2), we get a better estimate by the maximum
heuristic

Therefore, always use the tighter one:
max{(|x1 − x2|+ |y1 − y2|+ |z1 − z2|)/2, |x1 − x2|, |y1 − y2|, |z1 − z2|}
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Solution to assignment # 1

Knight

Consider the two extremes: both positions
are in distance 2

The best heuristic for the green point is
max{(|x1 − x2|, |y1 − y2|)}/2 = 2

For the red one we have
(|x1 − x2|+ |y1 − y2|)/3 = 2

Again, let’s pick the tighter one:

0 1 2 3 4 5

0

1

2

3

4

max{(|x1 − x2|+ |y1 − y2|)/3, |x1 − x2|/2, |y1 − y2|/2}
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A small reminder

Modelling a problem as a boolean formula and finding a satisfying
evaluation of variables is another general way of solving combinatorial
problems

Boolean variables attain values 0 or 1

A formula ϕ is satisfiable iff there exists a value assignment for each
variable so that ϕ becomes true

Literal is a single variable or its negation (x , ¬y)

Clause is a disjunction of literals (x ∨ y ∨ ¬z)

Typically we aim for a CNF formula (conjunction of clauses)

(x ∨ y ∨ ¬z) ∧ (¬x ∨ ¬y) ∧ (¬z)

A DNF formula is a disjunction of conjunctions

(x ∧ y ∧ ¬z) ∨ (¬x ∧ ¬y) ∨ (¬z ∧ x)
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Selected quiz questions

Suggest an algorithm to verify if a formula in DNF is satisfiable

Check if any of the DNF clauses contains both a literal and its
negation (x ∧ ¬x)
Then why don’t we model problems as DNF?
No polynomial algorithm that transforms a formula into DNF is
known (and does not exist unless P=NP)
If we simplify a formula after removing a pure symbol (appears only
as a positive or only as a negative literal), can a new pure symbol
appear? And what a new unit clause?
yes, no
If we simplify a formula after satisfying a unit clause (consist of only
one literal), can a new pure symbol appear? And what a new unit
clause?
yes, yes
(x ∨ y ∨ ¬z) ∧ (¬y) ∧ (¬y ∨ z) ∧ (y ∨ q)
(x ∨ ¬z) ∧ (q)
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Marika Ivanová (MFF UK) Introduction to Artificial Intelligence March 2022 7 / 11



Selected quiz questions

Suggest an algorithm to verify if a formula in DNF is satisfiable
Check if any of the DNF clauses contains both a literal and its
negation (x ∧ ¬x)
Then why don’t we model problems as DNF?
No polynomial algorithm that transforms a formula into DNF is
known (and does not exist unless P=NP)

If we simplify a formula after removing a pure symbol (appears only
as a positive or only as a negative literal), can a new pure symbol
appear? And what a new unit clause?
yes, no
If we simplify a formula after satisfying a unit clause (consist of only
one literal), can a new pure symbol appear? And what a new unit
clause?
yes, yes
(x ∨ y ∨ ¬z) ∧ (¬y) ∧ (¬y ∨ z) ∧ (y ∨ q)
(x ∨ ¬z) ∧ (q)
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Conversion to CNF

Convert the following formula into CNF

p ⇔ (q ∧ r)

(¬p ∨ (q ∧ r)) ∧ (¬(q ∧ r) ∨ p)
(¬p ∨ q) ∧ (¬p ∨ r) ∧ (¬q ∨ ¬r ∨ p)

Convert negation of this CNF formula to CNF

(p ∨ ¬q) ∧ (¬r ∨ s)

1 Negate
2 Apply DeMorgan rules 2 times
3 Apply distribution rules 2 times
4

(¬p ∨ r) ∧ (q ∨ r) ∧ (¬p ∨ ¬s) ∧ (q ∨ ¬s)
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Resolution

Prove using resolution that

{(p ⇒ q), (q ⇒ r)} |= (p ⇒ r)

Convert each premise to CNF: (¬p ∨ q), (¬q ∨ r)

Convert the negation of the conclusion to CNF

¬(¬p ∨ r)↔ p ∧ ¬r

we get 4 clauses

1 (¬p ∨ q) (premise)
2 (¬q ∨ r) (premise)
3 p (from negated conclusion)
4 ¬r (from negated conclusion)
5 q (1,3, variable p)
6 r (2,5, variable q)
7 ⊥ (4,6, variable r)
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SAT modeling

Assume a graph-coloring problem. How do you encode it as a satisfiability
problem?

Graph coloring

1 Two adjacent nodes cannot have the same color

2 Each node is assigned at least one of the available colors

3 (Each node is assigned at most one of the colors)

Variables:
xi = true ⇔ node x is assigned color i
Constraints:

1 For each edge (x , y) and each color i ∈ {1, . . . , k} : ¬xi ∨ ¬yi
2 For each vertex x :

∨
i∈{1,...,k} xi

3 For each vertex x and for every 2 colors
i , j ∈ {1, . . . , k}, i 6= j : ¬xi ∨ ¬xj

How to find a chromatic number of a graph?

Marika Ivanová (MFF UK) Introduction to Artificial Intelligence March 2022 10 / 11



SAT modeling

Assume a graph-coloring problem. How do you encode it as a satisfiability
problem?

Graph coloring

1 Two adjacent nodes cannot have the same color

2 Each node is assigned at least one of the available colors

3 (Each node is assigned at most one of the colors)

Variables:
xi = true ⇔ node x is assigned color i

Constraints:
1 For each edge (x , y) and each color i ∈ {1, . . . , k} : ¬xi ∨ ¬yi
2 For each vertex x :

∨
i∈{1,...,k} xi

3 For each vertex x and for every 2 colors
i , j ∈ {1, . . . , k}, i 6= j : ¬xi ∨ ¬xj

How to find a chromatic number of a graph?
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Marika Ivanová (MFF UK) Introduction to Artificial Intelligence March 2022 10 / 11



SAT modeling

Assume a graph-coloring problem. How do you encode it as a satisfiability
problem?

Graph coloring

1 Two adjacent nodes cannot have the same color

2 Each node is assigned at least one of the available colors

3 (Each node is assigned at most one of the colors)

Variables:
xi = true ⇔ node x is assigned color i
Constraints:

1 For each edge (x , y) and each color i ∈ {1, . . . , k} : ¬xi ∨ ¬yi
2 For each vertex x :

∨
i∈{1,...,k} xi

3 For each vertex x and for every 2 colors
i , j ∈ {1, . . . , k}, i 6= j : ¬xi ∨ ¬xj

How to find a chromatic number of a graph?
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SAT modeling

Formulate sudoku as SAT

Variables:
xijk = true ⇔ cell at position i , j is assigned value k
Constraints:

1 There is at least one number in each entry∧9
i=1

∧9
j=1

∨9
k=1 xijk

2 Each number appears at most once in each column∧9
j=1

∧9
k=1

∧8
i=1

∧9
i ′=i+1(¬xijk ∨ ¬xi ′jk)

3 Each number appears at most once in each row∧9
i=1

∧9
k=1

∧8
j=1

∧9
j ′=j+1(¬xijk ∨ ¬xij ′k)

4 Each number appears at most once in each block∧9
k=1

∧2
i ′=0

∧2
j ′=0

∧3
i=1

∧3
j=1

∧3
j ′′=j+1

(¬x(3i ′+i)(3j ′+j)k ∨ ¬x(3i ′+i)(3j ′+j ′′)k)∧9
k=1

∧2
i ′=0

∧2
j ′=0

∧3
i=1

∧3
j=1

∧3
i ′′=x+1

∧3
j ′′=y+1

(¬x(3i ′+i)(3j ′+j)k ∨ ¬x(3i ′+i ′′)(3j ′+j ′′)k)
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