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Reasoning under uncertainty

Sometimes we have to understand what is going on in a system
despite having imperfect or incomplete information

Reasons for why we reason under uncertainty:

1 laziness: modeling every detail is expensive
2 ignorance: lack of understanding

Example: deploy a network of smoke sensors to detect a fire in a
building

1 We are too lazy to model what, other than fire, triggers the sensors
2 We do not know how exactly smoke triggers the sensors (smoke

intensity,...)
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Probability

Probability space represents our uncertainty regarding a random
experiment

It consists of
1 Sample space Ω - set of outcomes
2 Probability measure P - real function of the subsets of Ω

Event - a set of outcomes A ⊆ Ω. P(A) represents how likely is it
that the experiment’s actual outcome belongs to A.
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The three axioms of probability

P(A) ≥ 0 for all events A

P(Ω) = 1

P(A ∪ B) = P(A) + P(B) for disjoint events A and B

Several simple consequences:

P(A) = 1− P(Ω \ A)

P(∅) = 0

if A ⊆ B then P(A) ≤ P(B)

P(A ∪ B) = P(A) + P(B)− P(A ∩ B)

P(A ∪ B) ≤ P(A) + P(B)

. . .
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Mutually exclusive events

Two events are mutually exclusive when they cannot occur at the
same time

P(A ∨ B) = P(A) + P(B)

Inclusive events can happen at the same time

P(A ∨ B) = P(A) + P(B)− P(A&B)
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Conditional probability - reasoning with partial information
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≈ 0.63
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Conditional probability - reasoning with partial information

P(¬F |T ) = P(¬F&T )
P(T )

P(T |¬F ) = P(T&¬F )
P(¬F )

P(¬F |T )P(T ) = P(¬F&T )
P(T ) P(T )⇒ P(¬F |T )P(T ) = P(¬F&T )

P(T |¬F )P(¬F ) = P(T&¬F )
P(¬F ) P(¬F )⇒ P(T |¬F )P(¬F ) = P(T&¬F )

P(¬F |T )P(T ) = P(T |¬F )P(¬F )

Bayes rule

P(A|B)P(B) = P(B|A)P(A)
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Marika Ivanová (MFF UK) Introduction to Artificial Intelligence March 2022 7 / 14



Conditional probability - reasoning with partial information

P(¬F |T ) = P(¬F&T )
P(T )

P(T |¬F ) = P(T&¬F )
P(¬F )

P(¬F |T )P(T ) = P(¬F&T )
P(T ) P(T )⇒ P(¬F |T )P(T ) = P(¬F&T )

P(T |¬F )P(¬F ) = P(T&¬F )
P(¬F ) P(¬F )⇒ P(T |¬F )P(¬F ) = P(T&¬F )

P(¬F |T )P(T ) = P(T |¬F )P(¬F )

Bayes rule

P(A|B)P(B) = P(B|A)P(A)
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Dependent vs independent events

Two events are independent, if the fact that one event occurred
does not affect the probability that the other event will occur

P(A&B) = P(A)P(B)

Ex: Rolling two dice, getting 4 on the 1st (A), and 5 on the 2nd (B)

Two events are dependent, if the occurrence of one event does affect
the probability that the other event will occur

P(A&B) = P(A)P(B|A)

Ex: Choosing 2 cards from a deck, getting first red card (A) and
second red card (B)

Product rule

P(A&B) = P(B|A)P(A)

Chain rule

P(A1& . . .&Ak) = P(A1)P(A2|A1)P(A3|A1,A2) . . .P(Ak |A1, . . . ,Ak−1)
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Conditional independence of events

Let A, B and C be events. A and B are conditionally independent
given C iff P(C ) > 0 and P(A|B,C ) = P(A|C )

or equivalently:

P(A,B|C ) = P(A|C )P(B|C )

Notation: (A ⊥ B|C )

Example:

Three events: R, B, and Y

R and B are conditionally independent
given Y

but not conditionally independent given
¬Y (complement of Y)
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Conditional independence of events

More examples:

Rolling two dice: knowledge that first die rolls 3 tells nothing about
the second one (independent events)

When told that the sum is even, restricts the possible outcomes of
the second dice (not conditionally independent)

Height and math skills are dependent events.

After knowing that two people are 18 years old, there is no reason to
think that taller is better in math (conditionally independent)
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Marika Ivanová (MFF UK) Introduction to Artificial Intelligence March 2022 10 / 14



Conditional independence of events

More examples:

Rolling two dice: knowledge that first die rolls 3 tells nothing about
the second one (independent events)

When told that the sum is even, restricts the possible outcomes of
the second dice (not conditionally independent)

Height and math skills are dependent events.

After knowing that two people are 18 years old, there is no reason to
think that taller is better in math (conditionally independent)
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Exercises

A family has two children. The younger one is a boy. What is the
probability that the other one is also a boy?

1/2

A family has two children. One of them is a boy. What is the
probability that the other one is also a boy?

1/3
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Exercises

Company A supplies 40% of the computers sold and is late 5% of the
time. Company B supplies 30% of the computers sold and is late 3% of
the time. Company C supplies another 30% and is late 2.5% of the time.
A computer arrives late - what is the probability that it came from
Company A?

P(A) = 0.4 P(L|A) = 0.05

P(B) = 0.3 P(L|B) = 0.03

P(C ) = 0.3 P(L|C ) = 0.025

P(A|L) =
P(L|A)P(A)

P(L)
=

P(L|A)P(A)

P(L,A) + P(L,B) + P(L,C )
=

P(L|A)P(A)

P(L|A)P(A) + P(L|B)P(B) + P(L|C )P(C )
=

0.05 ∗ 0.4

0.05 ∗ 0.4 + 0.03 ∗ 0.3 + 0.025 ∗ 0.3
= 0.548
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A computer arrives late - what is the probability that it came from
Company A?

P(A) = 0.4 P(L|A) = 0.05

P(B) = 0.3 P(L|B) = 0.03

P(C ) = 0.3 P(L|C ) = 0.025

P(A|L) =
P(L|A)P(A)

P(L)
=

P(L|A)P(A)

P(L,A) + P(L,B) + P(L,C )
=

P(L|A)P(A)

P(L|A)P(A) + P(L|B)P(B) + P(L|C )P(C )
=

0.05 ∗ 0.4

0.05 ∗ 0.4 + 0.03 ∗ 0.3 + 0.025 ∗ 0.3
= 0.548
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Exercises

Consider 3 coins where two are fair, yielding heads with probability 0.50,
while the third yields heads with probability 0.75. If one randomly selects
one of the coins and tosses it 3 times, yielding 3 heads - what is the
probability this is the biased coin?

P(B) = 1/3 P(H|B) = 0.75

P(¬B) = 2/3 P(H|¬B) = 0.5

P(B|HHH) =?

P(HHH|B) = (3/4)3

P(HHH|¬B) = (1/2)3

P(B|HHH) =
P(HHH|B)P(B)

P(HHH)
=

P(HHH|B)P(B)

P(HHH,B) + P(HHH,¬B)

(3/4)3 ∗ (1/3)

(3/4)3 ∗ (1/3) + (1/2)3 ∗ (2/3)
= 0.6279
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Exercises - properties of conditional probability

For the following implications decide whether they are true or find a
counterexample

1 If P(A|B,C ) = P(B|A,C ), then P(A|C ) = P(B|C )
P(A,B,C)
P(B,c) = P(B,A,C)

P(A,C) ⇒ P(A,C ) = P(B,C )⇒ P(A|C )/P(C ) =

P(B|C )/P(C )

2 If P(A|B,C ) = P(A), then P(B|C ) = P(B)

A - it rains today, B - dice rolls 6, C - the same dice rolls > 4

3 If P(A|B) = P(A), then P(A|B,C ) = P(A|C )

A - first dice rolls 5, B - second dice rolls 3, C - sum is > 4
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