Introduction to Artificial Intelligence
 English practicals 7: Probabilistic reasoning

Marika Ivanová

Department of Theoretical Computer Science and Mathematical Logic (KTIML) Faculty of Mathematics and Physics

March 29th 2022

A small reminder

- Joint probability: $P(A, B)$, probability of two events happening at the same time
- Conditional probability: $P(B \mid A)$, probability that event B will occur given that event A has already occurred
- If evens A and B are dependent, then $P(B \mid A)=P(A, B) / P(A)$
- If evens A and B are independent, then $P(B \mid A)=P(B)$
- Full joint probability distribution: Describes probabilities of all possible worlds (knowledge base)
- Bayes rule: $P(A \mid B)=P(B \mid A) P(B) / P(A)$ (because $P(A, B)=P(A \mid B) / P(B)=P(B \mid A) / P(A))$

A small reminder

Conditional independence

A small reminder

Conditional independence

Example 1:

Alice (A) and Bob (B) both flip the same coin

A small reminder

Conditional independence

Example 1:

Alice (A) and Bob (B) both flip the same coin
The two events are independent, thus $P(A=$ head $\mid B=$ head $)=P(A=$ head $)$ or $P(A=$ head, $B=$ head $)=P(A=$ head $) P(B=$ head $)$

A small reminder

Conditional independence

Example 1:

Alice (A) and Bob (B) both flip the same coin
The two events are independent, thus $P(A=$ head $\mid B=$ head $)=P(A=$ head) or $P(A=$ head, $B=$ head $)=P(A=$ head $) P(B=$ head $)$

Example 2:

Assume now that the coin may be biased (we do not know it for sure)

A small reminder

Conditional independence

Example 1:

Alice (A) and Bob (B) both flip the same coin
The two events are independent, thus $P(A=$ head $\mid B=$ head $)=P(A=$ head $)$ or $P(A=$ head, $B=$ head $)=P(A=$ head $) P(B=$ head $)$

Example 2:

Assume now that the coin may be biased (we do not know it for sure)
The two events are no longer independent.

$$
P(A=\text { head } \mid B=\text { head }) \neq P(A=\text { head })
$$

A small reminder

Conditional independence

Example 1:

Alice (A) and Bob (B) both flip the same coin
The two events are independent, thus $P(A=$ head $\mid B=$ head $)=P(A=$ head $)$ or $P(A=$ head, $B=$ head $)=P(A=$ head $) P(B=$ head $)$

Example 2:

Assume now that the coin may be biased (we do not know it for sure)
The two events are no longer independent.

$$
P(A=\text { head } \mid B=\text { head }) \neq P(A=\text { head })
$$

Example 3:

Assume that we know the coin is biased towards "heads" (event C).

A small reminder

Conditional independence

Example 1:

Alice (A) and Bob (B) both flip the same coin
The two events are independent, thus $P(A=$ head $\mid B=$ head $)=P(A=$ head $)$ or $P(A=$ head, $B=$ head $)=P(A=$ head $) P(B=$ head $)$

Example 2:

Assume now that the coin may be biased (we do not know it for sure)
The two events are no longer independent.

$$
P(A=\text { head } \mid B=\text { head }) \neq P(A=\text { head })
$$

Example 3:

Assume that we know the coin is biased towards "heads" (event C).
Even though the events A and B are not independent, once we know for about the bias, the events are conditionally independent $P(A=$ head $\mid B=$ head, $C)=P(A=$ head $\mid C)$

A small reminder

Conditional independence

Example 1:

Alice (A) and Bob (B) both flip the same coin
The two events are independent, thus $P(A=$ head $\mid B=$ head $)=P(A=$ head $)$ or $P(A=$ head, $B=$ head $)=P(A=$ head $) P(B=$ head $)$

Example 2:

Assume now that the coin may be biased (we do not know it for sure)
The two events are no longer independent.

$$
P(A=\text { head } \mid B=\text { head }) \neq P(A=\text { head })
$$

Example 3:

Assume that we know the coin is biased towards "heads" (event C).
Even though the events A and B are not independent, once we know for about the bias, the events are conditionally independent $P(A=$ head $\mid B=$ head, $C)=P(A=$ head $\mid C)$

Can you think of two events that are statistically independent, but given a certain knowledge they are DEpendent? (conditional dependence)

Selected quiz questions

Selected quiz questions

- What is the practical difference between casual and diagnostic direction?

Selected quiz questions

- What is the practical difference between casual and diagnostic direction?
casual: $P($ effect \mid cause $)$ - more stable, typically known

Selected quiz questions

- What is the practical difference between casual and diagnostic direction?
casual: P (effect|cause) - more stable, typically known diagnostic: P (cause \mid effect $)$ - less stable

Selected quiz questions

- What is the practical difference between casual and diagnostic direction?
casual: P (effect|cause) - more stable, typically known diagnostic: $P($ cause \mid effect $)$ - less stable
- How does a Bayesian network represent a full joint probability distribution?

Selected quiz questions

- What is the practical difference between casual and diagnostic direction?
casual: $P($ effect \mid cause $)$ - more stable, typically known diagnostic: P (cause|effect) - less stable
- How does a Bayesian network represent a full joint probability distribution?
By storing smaller tables $P\left(X_{1}, \ldots, X_{n}\right)=\Pi_{i} P\left(X_{i} \mid\right.$ parents $\left(X_{i}\right)$

Selected quiz questions

- What is the practical difference between casual and diagnostic direction?
casual: $P($ effect \mid cause $)$ - more stable, typically known diagnostic: $P($ cause \mid effect $)$ - less stable
- How does a Bayesian network represent a full joint probability distribution?
By storing smaller tables $P\left(X_{1}, \ldots, X_{n}\right)=\Pi_{i} P\left(X_{i} \mid\right.$ parents $\left(X_{i}\right)$
- Why are there arcs MaryCalls->JohnCalls and Burglary->Earthquake?

Selected quiz questions

- What is the practical difference between casual and diagnostic direction?
casual: P (effect|cause) - more stable, typically known diagnostic: P (cause|effect) - less stable
- How does a Bayesian network represent a full joint probability distribution?
By storing smaller tables $P\left(X_{1}, \ldots, X_{n}\right)=\Pi_{i} P\left(X_{i} \mid\right.$ parents $\left(X_{i}\right)$
- Why are there arcs MaryCalls->JohnCalls and Burglary - >Earthquake?
Because if MaryCalls=True, the probability that also JohnCalls=True increases

Selected quiz questions

- What is the practical difference between casual and diagnostic direction?
casual: P (effect|cause) - more stable, typically known diagnostic: P (cause|effect) - less stable
- How does a Bayesian network represent a full joint probability distribution?
By storing smaller tables $P\left(X_{1}, \ldots, X_{n}\right)=\Pi_{i} P\left(X_{i} \mid\right.$ parents $\left(X_{i}\right)$
- Why are there arcs MaryCalls->JohnCalls and Burglary->Earthquake?
Because if MaryCalls=True, the probability that also JohnCalls=True increases
Because if Alarm=Burglary=True, the probability that Earthquake=True decreases, as the alarm was
 likely triggered by the burglary

Exercise 1: election (1/2)

(G)reen party is running for joining the parliament in the next election. It is believed that (M)arijuana is more likely to be legalized if (G) make to the parliament, but it can of course happen even if they are not elected. Let us model the situation as a simple Bayes network:

Exercise 1: election (1/2)

(G)reen party is running for joining the parliament in the next election. It is believed that (M)arijuana is more likely to be legalized if (G) make to the parliament, but it can of course happen even if they are not elected. Let us model the situation as a simple Bayes network:

Exercise 1: election (1/2)

(G)reen party is running for joining the parliament in the next election. It is believed that (M)arijuana is more likely to be legalized if (G) make to the parliament, but it can of course happen even if they are not elected. Let us model the situation as a simple Bayes network:

1) Fill in the joint probabilities over G and M

G	M	$\mathrm{P}(\mathrm{G}, \mathrm{M})$
g	m	
g	$\neg m$	
$\neg g$	m	
$\neg g$	$\neg m$	

Exercise 1: election (1/2)

(G)reen party is running for joining the parliament in the next election. It is believed that (M)arijuana is more likely to be legalized if (G) make to the parliament, but it can of course happen even if they are not elected. Let us model the situation as a simple Bayes network:

1) Fill in the joint probabilities over G and M

G	M	$\mathrm{P}(\mathrm{G}, \mathrm{M})$
g	m	$1 / 15$
g	$\neg m$	$1 / 30$
$\neg g$	m	$9 / 40$
$\neg g$	$\neg m$	$27 / 40$

Exercise 1: election (1/2)

(G)reen party is running for joining the parliament in the next election. It is believed that (M)arijuana is more likely to be legalized if (G) make to the parliament, but it can of course happen even if they are not elected. Let us model the situation as a simple Bayes network:

1) Fill in the joint probabilities over G and M

G	M	$\mathrm{P}(\mathrm{G}, \mathrm{M})$
g	m	$1 / 15$
g	$\neg m$	$1 / 30$
$\neg g$	m	$9 / 40$
$\neg g$	$\neg m$	$27 / 40$

2) What is the probability $P(M)$ that marijuana is legalized?

Exercise 1: election (1/2)

(G)reen party is running for joining the parliament in the next election. It is believed that (M)arijuana is more likely to be legalized if (G) make to the parliament, but it can of course happen even if they are not elected. Let us model the situation as a simple Bayes network:

1) Fill in the joint probabilities over G and M

G	M	$\mathrm{P}(\mathrm{G}, \mathrm{M})$
g	m	$1 / 15$
g	$\neg m$	$1 / 30$
$\neg g$	m	$9 / 40$
$\neg g$	$\neg m$	$27 / 40$

2) What is the probability $P(M)$ that marijuana is legalized?
$P(m)=P(m, g)+P(m, \neg g)=P(m \mid g) P(g)+P(m \mid \neg g) P(\neg g)=2 / 3 * 1 / 10+1 / 4 * 9 / 10=7 / 24$

Exercise 1: election (1/2)

(G)reen party is running for joining the parliament in the next election. It is believed that (M)arijuana is more likely to be legalized if (G) make to the parliament, but it can of course happen even if they are not elected. Let us model the situation as a simple Bayes network:

1) Fill in the joint probabilities over G and M

G	M	$\mathrm{P}(\mathrm{G}, \mathrm{M})$
g	m	$1 / 15$
g	$\neg m$	$1 / 30$
$\neg g$	m	$9 / 40$
$\neg g$	$\neg m$	$27 / 40$

2) What is the probability $P(M)$ that marijuana is legalized?
$P(m)=P(m, g)+P(m, \neg g)=P(m \mid g) P(g)+P(m \mid \neg g) P(\neg g)=2 / 3 * 1 / 10+1 / 4 * 9 / 10=7 / 24$
3) We get to know that marijuana was legalized, but the election result is unknown to us. What is the probability, that G was elected?

Exercise 1: election (1/2)

(G)reen party is running for joining the parliament in the next election. It is believed that (M)arijuana is more likely to be legalized if (G) make to the parliament, but it can of course happen even if they are not elected. Let us model the situation as a simple Bayes network:

1) Fill in the joint probabilities over G and M

G	M	$\mathrm{P}(\mathrm{G}, \mathrm{M})$
g	m	$1 / 15$
g	$\neg m$	$1 / 30$
$\neg g$	m	$9 / 40$
$\neg g$	$\neg m$	$27 / 40$

2) What is the probability $P(M)$ that marijuana is legalized?
$P(m)=P(m, g)+P(m, \neg g)=P(m \mid g) P(g)+P(m \mid \neg g) P(\neg g)=2 / 3 * 1 / 10+1 / 4 * 9 / 10=7 / 24$
3) We get to know that marijuana was legalized, but the election result is unknown to us. What is the probability, that G was elected?

$$
P(g \mid m)=\frac{P(g, m)}{P(m)}=\frac{P(m \mid g) P(g)}{P(m)}=\frac{2 / 3 * 1 / 10}{7 / 24}
$$

Exercise 1: election (2/2)

We can make better inference using more evidence. Assume the legalization of marijuana influences whether the budget is balanced and also class attendance of students.

Exercise 1: election (2/2)

We can make better inference using more evidence. Assume the legalization of marijuana influences whether the budget is balanced and also class attendance of students.

Exercise 1: election (2/2)

We can make better inference using more evidence. Assume the legalization of marijuana influences whether the budget is balanced and also class attendance of students.

G	M	B	C	$P(G, M, B, C)$	$\|$$G$ M	B	C	$P(G, M, B, C)$	
T	T	T	T	$1 / 150$	T	T	T	$9 / 400$	
T	T	T	F		$1 / 100$	F	T	T	F
T	T	F	T	F	T	F	T	$27 / 400$	
T	T	F	F	$3 / 100$	F	T	F	F	$27 / 800$
T	F	T	T	$1 / 300$	F	F	T	T	$21 / 800$
T	F	T	F	$1 / 300$	F	F	T	F	$27 / 400$
T	F	F	T	F	F	F	T	$27 / 400$	
T	F	F	F	$1 / 75$	F	F	F	F	$27 / 100$

Exercise 1: election (2/2)

We can make better inference using more evidence. Assume the legalization of marijuana influences whether the budget is balanced and also class attendance of students.

G	M	B	C	$P(G, M, B, C)$
T	T	T	T	$1 / 150$
T	T	T	F	
T	T	F	T	$1 / 100$
T	T	F	F	$3 / 100$
T	F	T	T	$1 / 300$
T	F	T	F	$1 / 300$
T	F	F	T	
T	F	F	F	$1 / 75$

G	M	B	C	$P(G, M, B, C)$
F	T	T	T	$9 / 400$
F	T	T	F	$27 / 400$
F	T	F	T	$27 / 800$
F	T	F	F	$81 / 800$
F	F	T	T	$27 / 400$
F	F	T	F	$27 / 400$
F	F	F	T	
F	F	F	F	$27 / 100$

4) Fill in the missing values

Exercise 1: election (2/2)

We can make better inference using more evidence. Assume the legalization of marijuana influences whether the budget is balanced and also class attendance of students.

G	M	B	C	$P(G, M, B, C)$
T	T	T	T	$1 / 150$
T	T	T	F	
T	T	F	T	$1 / 100$
T	T	F	F	$3 / 100$
T	F	T	T	$1 / 300$
T	F	T	F	$1 / 300$
T	F	F	T	
T	F	F	F	$1 / 75$

G	M	B	C	$P(G, M, B, C)$
F	T	T	T	$9 / 400$
F	T	T	F	$27 / 400$
F	T	F	T	$27 / 800$
F	T	F	F	$81 / 800$
F	F	T	T	$27 / 400$
F	F	T	F	$27 / 400$
F	F	F	T	
F	F	F	F	$27 / 100$

4) Fill in the missing values
5) Determine the following probabilities:

Exercise 1: election (2/2)

We can make better inference using more evidence. Assume the legalization of marijuana influences whether the budget is balanced and also class attendance of students.

G	M	B	C	$P(G, M, B, C)$
T	T	T	T	$1 / 150$
T	T	T	F	
T	T	F	T	$1 / 100$
T	T	F	F	$3 / 100$
T	F	T	T	$1 / 300$
T	F	T	F	$1 / 300$
T	F	F	T	
T	F	F	F	$1 / 75$

G	M	B	C	$P(G, M, B, C)$
F	T	T	T	$9 / 400$
F	T	T	F	$27 / 400$
F	T	F	T	$27 / 800$
F	T	F	F	$81 / 800$
F	F	T	T	$27 / 400$
F	F	T	F	$27 / 400$
F	F	F	T	
F	F	F	F	$27 / 100$

4) Fill in the missing values
5) Determine the following probabilities:
(a) $P(b \mid m, g)=$

Exercise 1: election (2/2)

We can make better inference using more evidence. Assume the legalization of marijuana influences whether the budget is balanced and also class attendance of students.

G	M	B	C	$P(G, M, B, C)$
T	T	T	T	$1 / 150$
T	T	T	F	
T	T	F	T	$1 / 100$
T	T	F	F	$3 / 100$
T	F	T	T	$1 / 300$
T	F	T	F	$1 / 300$
T	F	F	T	
T	F	F	F	$1 / 75$

G	M	B	C	$P(G, M, B, C)$
F	T	T	T	$9 / 400$
F	T	T	F	$27 / 400$
F	T	F	T	$27 / 800$
F	T	F	F	$81 / 800$
F	F	T	T	$27 / 400$
F	F	T	F	$27 / 400$
F	F	F	T	
F	F	F	F	$27 / 100$

4) Fill in the missing values
5) Determine the following probabilities:
(a) $P(b \mid m, g)=4 / 10$, from BN since B and G are conditionally independent given M

Exercise 1: election (2/2)

We can make better inference using more evidence. Assume the legalization of marijuana influences whether the budget is balanced and also class attendance of students.

G	M	B	C	$P(G, M, B, C)$
T	T	T	T	$1 / 150$
T	T	T	F	
T	T	F	T	$1 / 100$
T	T	F	F	$3 / 100$
T	F	T	T	$1 / 300$
T	F	T	F	$1 / 300$
T	F	F	T	
T	F	F	F	$1 / 75$

G	M	B	C	$P(G, M, B, C)$
F	T	T	T	$9 / 400$
F	T	T	F	$27 / 400$
F	T	F	T	$27 / 800$
F	T	F	F	$81 / 800$
F	F	T	T	$27 / 400$
F	F	T	F	$27 / 400$
F	F	F	T	
F	F	F	F	$27 / 100$

4) Fill in the missing values
5) Determine the following probabilities:
(a) $P(b \mid m, g)=4 / 10$, from BN since B and G are conditionally independent given M
(b) $P(b)=$

Exercise 1: election (2/2)

We can make better inference using more evidence. Assume the legalization of marijuana influences whether the budget is balanced and also class attendance of students.

G	M	B	C	$P(G, M, B, C)$
T	T	T	T	$1 / 150$
T	T	T	F	
T	T	F	T	$1 / 100$
T	T	F	F	$3 / 100$
T	F	T	T	$1 / 300$
T	F	T	F	$1 / 300$
T	F	F	T	
T	F	F	F	$1 / 75$

G	M	B	C	$P(G, M, B, C)$
F	T	T	T	$9 / 400$
F	T	T	F	$27 / 400$
F	T	F	T	$27 / 800$
F	T	F	F	$81 / 800$
F	F	T	T	$27 / 400$
F	F	T	F	$27 / 400$
F	F	F	T	
F	F	F	F	$27 / 100$

4) Fill in the missing values
5) Determine the following probabilities:
(a) $P(b \mid m, g)=4 / 10$, from BN since B and G are conditionally independent given M
(b) $P(b)=\sum_{G, M, C} P(G, M, b, C)=31 / 120$ (Summed from full joint probabilities)

Exercise 1: election (2/2)

We can make better inference using more evidence. Assume the legalization of marijuana influences whether the budget is balanced and also class attendance of students.

G	M	B	C	$P(G, M, B, C)$
T	T	T	T	$1 / 150$
T	T	T	F	
T	T	F	T	$1 / 100$
T	T	F	F	$3 / 100$
T	F	T	T	$1 / 300$
T	F	T	F	$1 / 300$
T	F	F	T	
T	F	F	F	$1 / 75$

G	M	B	C	$P(G, M, B, C)$
F	T	T	T	$9 / 400$
F	T	T	F	$27 / 400$
F	T	F	T	$27 / 800$
F	T	F	F	$81 / 800$
F	F	T	T	$27 / 400$
F	F	T	F	$27 / 400$
F	F	F	T	
F	F	F	F	$27 / 100$

4) Fill in the missing values
5) Determine the following probabilities:
(a) $P(b \mid m, g)=4 / 10$, from BN since B and G are conditionally independent given M
(b) $P(b)=\sum_{G, M, C} P(G, M, b, C)=31 / 120$ (Summed from full joint probabilities)
(c) $P(c \mid b)=$

Introduction to Artificial Intelligence

Exercise 1: election (2/2)

We can make better inference using more evidence. Assume the legalization of marijuana influences whether the budget is balanced and also class attendance of students.

G	M	B	C	$P(G, M, B, C)$
T	T	T	T	$1 / 150$
T	T	T	F	
T	T	F	T	$1 / 100$
T	T	F	F	$3 / 100$
T	F	T	T	$1 / 300$
T	F	T	F	$1 / 300$
T	F	F	T	
T	F	F	F	$1 / 75$

G	M	B	C	$P(G, M, B, C)$
F	T	T	T	$9 / 400$
F	T	T	F	$27 / 400$
F	T	F	T	$27 / 800$
F	T	F	F	$81 / 800$
F	F	T	T	$27 / 400$
F	F	T	F	$27 / 400$
F	F	F	T	
F	F	F	F	$27 / 100$

4) Fill in the missing values
5) Determine the following probabilities:
(a) $P(b \mid m, g)=4 / 10$, from BN since B and G are conditionally independent given M
(b) $P(b)=\sum_{G, M, C} P(G, M, b, C)=31 / 120$ (Summed from full joint probabilities)
(c) $P(c \mid b)=\frac{P(b, c)}{P(b)}=\frac{\sum_{G, M} P(G, M, b, c)}{31 / 120}=\frac{12}{31}$

Introduction to Artificial Intelligence
March 2022
$6 / 14$

Exercise 2: Monty Hall (1/2)

Monty Hall's problem

- Three doors, one host and one contestant
- There is prize money behind one of the doors and a goat behind each of the other two
- The host knows the location of the money, the contestant has no prior information
- The contestant points to a certain door and the host opens another door with a goat
- The contestant has a chance to change their mind.

Exercise 2: Monty Hall (1/2)

Monty Hall's problem

- Three doors, one host and one contestant
- There is prize money behind one of the doors and a goat behind each of the other two
- The host knows the location of the money, the contestant has no prior information
- The contestant points to a certain door and the host opens another door with a goat
- The contestant has a chance to change their mind.

Is it reasonable to change the original selection?

Exercise 2: Monty Hall (1/2)

Monty Hall's problem

- Three doors, one host and one contestant
- There is prize money behind one of the doors and a goat behind each of the other two
- The host knows the location of the money, the contestant has no prior information
- The contestant points to a certain door and the host opens another door with a goat
- The contestant has a chance to change their mind.

Is it reasonable to change the original selection?

Exercise 2: Monty Hall (1/2)

Monty Hall's problem

- Three doors, one host and one contestant
- There is prize money behind one of the doors and a goat behind each of the other two
- The host knows the location of the money, the contestant has no prior information
- The contestant points to a certain door and the host opens another door with a goat
- The contestant has a chance to change their mind.

Is it reasonable to change the original selection?

Exercise 2: Monty Hall (2/2)

Exercise 2: Monty Hall (2/2)

- Event $M i=$ prize money is behind door i
- Event $\mathrm{Ci}=$ contestant chooses door i
- Event $H i=$ host opens door i

Exercise 2: Monty Hall (2/2)

- $P(H 3 \mid M 1, C 1)=1 / 2$
- Event $M i=$ prize money is behind door i
- Event $\mathrm{Ci}=$ contestant chooses door i
- Event $H i=$ host opens door i

Exercise 2: Monty Hall (2/2)

- Event $M i=$ prize money is behind door i
- Event $\mathrm{Ci}=$ contestant chooses door i
- Event $\mathrm{Hi}=$ host opens door i

- $P(H 3 \mid M 1, C 1)=1 / 2$
- $P(H 3 \mid M 2, C 1)=1$

Exercise 2: Monty Hall (2/2)

- Event $M i=$ prize money is behind door i
- Event $\mathrm{Ci}=$ contestant chooses door i
- Event $\mathrm{Hi}=$ host opens door i

Exercise 2: Monty Hall (2/2)

- Event $M i=$ prize money is behind door i
- Event $\mathrm{Ci}=$ contestant chooses door i
- Event $H i=$ host opens door i

Exercise 2: Monty Hall (2/2)

- Event $M i=$ prize money is behind door i
- Event $\mathrm{Ci}=$ contestant chooses door i
- Event $\mathrm{Hi}=$ host opens door i

- $P(H 3 \mid M 1, C 1)=1 / 2$
- $P(H 3 \mid M 2, C 1)=1$
- $P(H 3 \mid M 3, C 1)=0$
- $P(M i)=1 / 3$
- $P(M i, C i)=P(M i) P(C i)$

Exercise 2: Monty Hall (2/2)

- Event $M i=$ prize money is behind door i
- Event $\mathrm{Ci}=$ contestant chooses door i
- Event $\mathrm{Hi}=$ host opens door i

- $P(H 3 \mid M 1, C 1)=1 / 2$
- $P(H 3 \mid M 2, C 1)=1$
- $P(H 3 \mid M 3, C 1)=0$
- $P(M i)=1 / 3$
- $P(M i, C i)=P(M i) P(C i)$
- $P(H 3 \mid C 1)=1 / 2$

Exercise 2: Monty Hall (2/2)

- Event $M i=$ prize money is behind door i
- Event $\mathrm{Ci}=$ contestant chooses door i
- Event $H i=$ host opens door i
- $P(H 3 \mid M 1, C 1)=1 / 2$
- $P(H 3 \mid M 2, C 1)=1$
- $P(H 3 \mid M 3, C 1)=0$
- $P(M i)=1 / 3$
- $P(\mathrm{Mi}, \mathrm{Ci})=P(\mathrm{Mi}) P(C i)$
- $P(H 3 \mid C 1)=1 / 2$
$P(M 2 \mid H 3, C 1)=\frac{P(M 2, H 3, C 1)}{P(H 3, C 1)}$

Exercise 2: Monty Hall (2/2)

- Event $M i=$ prize money is behind door i
- Event $\mathrm{Ci}=$ contestant chooses door i
- Event $H i=$ host opens door i
- $P(H 3 \mid M 1, C 1)=1 / 2$
- $P(H 3 \mid M 2, C 1)=1$
- $P(H 3 \mid M 3, C 1)=0$
- $P(M i)=1 / 3$
- $P(\mathrm{Mi}, \mathrm{Ci})=P(\mathrm{Mi}) P(C i)$
- $P(H 3 \mid C 1)=1 / 2$
$P(M 2 \mid H 3, C 1)=\frac{P(M 2, H 3, C 1)}{P(H 3, C 1)}=\frac{P(H 3 \mid M 2, C 1) P(M 2, C 1)}{P(H 3, C 1)}$

Exercise 2: Monty Hall (2/2)

- $P(H 3 \mid M 1, C 1)=1 / 2$
- $P(H 3 \mid M 2, C 1)=1$
- $P(H 3 \mid M 3, C 1)=0$
- $P(M i)=1 / 3$
- $P(\mathrm{Mi}, \mathrm{Ci})=P(\mathrm{Mi}) P(C i)$
- $P(H 3 \mid C 1)=1 / 2$
$P(M 2 \mid H 3, C 1)=\frac{P(M 2, H 3, C 1)}{P(H 3, C 1)}=\frac{P(H 3 \mid M 2, C 1) P(M 2, C 1)}{P(H 3, C 1)}=\frac{P(M 2) P(C 1)}{P(H 3 \mid C 1) P(C 1)}$

Exercise 2: Monty Hall (2/2)

- $P(H 3 \mid M 1, C 1)=1 / 2$
- Event $M i=$ prize money is behind door i
- Event $\mathrm{Ci}=$ contestant chooses door i
- Event $\mathrm{Hi}=$ host opens door i
- $P(H 3 \mid M 2, C 1)=1$
- $P(H 3 \mid M 3, C 1)=0$
- $P(M i)=1 / 3$
- $P(\mathrm{Mi}, \mathrm{Ci})=P(\mathrm{Mi}) P(C i)$
- $P(H 3 \mid C 1)=1 / 2$
$P(M 2 \mid H 3, C 1)=\frac{P(M 2, H 3, C 1)}{P(H 3, C 1)}=\frac{P(H 3 \mid M 2, C 1) P(M 2, C 1)}{P(H 3, C 1)}=\frac{P(M 2) P(C 1)}{P(H 3 \mid C 1) P(C 1)}=\frac{1 / 3}{1 / 2}=\frac{2}{3}$

Exercise 3: Bayes network

Vehicle diagnostics

Consider the following Boolean random variables describing the state of a car:

- (B)attery: is the battery charged?
- (F)uel: is the fuel tank empty?
- (I)gnition: does the ignition system work?
- (M)oves: does the car move?
- (R)adio: can the radio be switched on?
- (S)tarts: does the engine fire?

Exercise 3: Bayes network

Vehicle diagnostics

Consider the following Boolean random variables describing the state of a car:

- (B)attery: is the battery charged?
- (F)uel: is the fuel tank empty?
- (I)gnition: does the ignition system work?
- (M)oves: does the car move?
- (R)adio: can the radio be switched on?
- (S)tarts: does the engine fire?

Represent the relationships between the variables using a Bayes network and write the joint probability $P(B, F, I, M, R, S)$

Exercise 3: Bayes network

Vehicle diagnostics

Consider the following Boolean random variables describing the state of a car:

- (B)attery: is the battery charged?
- (F)uel: is the fuel tank empty?
- (I)gnition: does the ignition system work?
- (M)oves: does the car move?
- (R)adio: can the radio be switched on?
- (S)tarts: does the engine fire?

Represent the relationships between the variables using a Bayes network and write the joint probability $P(B, F, I, M, R, S)$

Exercise 3: Bayes network

Vehicle diagnostics

Consider the following Boolean random variables describing the state of a car:

- (B)attery: is the battery charged?
- (F)uel: is the fuel tank empty?
- (I)gnition: does the ignition system work?
- (M)oves: does the car move?
- (R)adio: can the radio be switched on?
- (S)tarts: does the engine fire?

Represent the relationships between the variables using a Bayes network and write the joint probability $P(B, F, I, M, R, S)$

$$
\begin{aligned}
& P(B, F, I, M, R, S)= \\
& P(B) P(F) P(R \mid B) P(I \mid B) P(S \mid I, F) P(M, S)
\end{aligned}
$$

Application: spam filtering

Naive Bayes spam filtering:

- Training: Learning probabilities. User manually indicates spam/no spam. Adjust probabilities of each word (or a subset) that it appears in a spam ("refinance", "prize money",...)

Application: spam filtering

Naive Bayes spam filtering:

- Training: Learning probabilities. User manually indicates spam/no spam. Adjust probabilities of each word (or a subset) that it appears in a spam ("refinance", "prize money",...)
- After training, the probabilities are used to determine spam/no spam. Interesting words contribute to the probability.

Application: spam filtering

Naive Bayes spam filtering:

- Training: Learning probabilities. User manually indicates spam/no spam. Adjust probabilities of each word (or a subset) that it appears in a spam ("refinance", "prize money",...)
- After training, the probabilities are used to determine spam/no spam. Interesting words contribute to the probability.
- Training can be refined after a user indicates false positive/negative decisions. Adaptation to changing nature of spam.

Application: spam filtering

Naive Bayes spam filtering:

- Training: Learning probabilities. User manually indicates spam/no spam. Adjust probabilities of each word (or a subset) that it appears in a spam ("refinance", " prize money",...)
- After training, the probabilities are used to determine spam/no spam. Interesting words contribute to the probability.
- Training can be refined after a user indicates false positive/negative decisions. Adaptation to changing nature of spam.
- Heuristics: misspelled words, grammar mistakes,...

Application: spam filtering

Naive Bayes spam filtering:

- Training: Learning probabilities. User manually indicates spam/no spam. Adjust probabilities of each word (or a subset) that it appears in a spam ("refinance", "prize money",...)
- After training, the probabilities are used to determine spam/no spam. Interesting words contribute to the probability.
- Training can be refined after a user indicates false positive/negative decisions. Adaptation to changing nature of spam.
- Heuristics: misspelled words, grammar mistakes,...

Consider the word "Vicodin" - event v

$$
P(s \mid v)=\frac{P(v \mid s) P(s)}{P(v \mid s) P(s)+P(v \mid \neg s) P(\neg s)}
$$

- $P(s \mid v)$ - probability that a message in which the word "Vicodin" appears is a spam
- $P(s), P(\neg s)$ - probability that a message is a spam and genuine, respectively
- $P(v \mid s)$ - probability that the word "Vicodin" appears in a spam message
- $P(v \mid \neg s)$ - probability that the word "Vicodin" appears in a genuine message

Exercise 4: Naïve Bayes classifier

	Spam		No spam	
Total	25		75	
"buy"	20		5	
"cheap"	15		10	
"buy" \& "cheap"				

Exercise 4: Naïve Bayes classifier

	Spam		No spam	
Total	25		75	
"buy"	20		5	
"cheap"	15		10	
"buy" \& "cheap"				

What is the probability that a message containing both "buy" and "cheap" is a spam?

Exercise 4: Naïve Bayes classifier

	Spam		No spam	
Total	25		75	
"buy"	20		5	
"cheap"	15		10	
"buy" \& "cheap"				

What is the probability that a message containing both "buy" and "cheap" is a spam?

$$
P(s \mid b, c)=\frac{P(b, c \mid s) P(s)}{P(b, c \mid s) P(s)+P(b, c \mid \neg s) P(\neg s)}=
$$

Exercise 4: Naïve Bayes classifier

	Spam		No spam	
Total	25		75	
"buy"	20		5	
"cheap"	15		10	
"buy" \& "cheap"	12			

What is the probability that a message containing both "buy" and "cheap" is a spam?

$$
P(s \mid b, c)=\frac{P(b, c \mid s) P(s)}{P(b, c \mid s) P(s)+P(b, c \mid \neg s) P(\neg s)}=
$$

Exercise 4: Naïve Bayes classifier

	Spam		No spam	
Total	25		75	
"buy"	20	$4 / 5$	5	$1 / 15$
"cheap"	15	$3 / 5$	10	$2 / 15$
"buy" \& "cheap"	12	$12 / 25$		

What is the probability that a message containing both "buy" and "cheap" is a spam?

$$
P(s \mid b, c)=\frac{P(b, c \mid s) P(s)}{P(b, c \mid s) P(s)+P(b, c \mid \neg s) P(\neg s)}=
$$

Exercise 4: Naïve Bayes classifier

	Spam		No spam	
Total	25		75	
"buy"	20	$4 / 5$	5	$1 / 15$
"cheap"	15	$3 / 5$	10	$2 / 15$
"buy" \& "cheap"	12	$12 / 25$		$2 / 225$

What is the probability that a message containing both "buy" and "cheap" is a spam?

$$
P(s \mid b, c)=\frac{P(b, c \mid s) P(s)}{P(b, c \mid s) P(s)+P(b, c \mid \neg s) P(\neg s)}=
$$

Exercise 4: Naïve Bayes classifier

	Spam		No spam	
Total	25		75	
"buy"	20	$4 / 5$	5	$1 / 15$
"cheap"	15	$3 / 5$	10	$2 / 15$
"buy" \& "cheap"	12	$12 / 25$		$2 / 225$

What is the probability that a message containing both "buy" and "cheap" is a spam?

$$
\begin{aligned}
& P(s \mid b, c)=\frac{P(b, c \mid s) P(s)}{P(b, c \mid s) P(s)+P(b, c \mid \neg s) P(\neg s)}= \\
& =\frac{P(b \mid s) P(c \mid s) P(s)}{P(b \mid s) P(c \mid s) P(s)+P(b \mid \neg s) P(c \mid \neg s) P(\neg s)}=
\end{aligned}
$$

Exercise 4: Naïve Bayes classifier

	Spam		No spam	
Total	25		75	
"buy"	20	$4 / 5$	5	$1 / 15$
"cheap"	15	$3 / 5$	10	$2 / 15$
"buy" \& "cheap"	12	$12 / 25$		$2 / 225$

What is the probability that a message containing both "buy" and "cheap" is a spam?

$$
\begin{aligned}
& P(s \mid b, c)=\frac{P(b, c \mid s) P(s)}{P(b, c \mid s) P(s)+P(b, c \mid \neg s) P(\neg s)}= \\
& =\frac{P(b \mid s) P(c \mid s) P(s)}{P(b \mid s) P(c \mid s) P(s)+P(b \mid \neg s) P(c \mid \neg s) P(\neg s)}= \\
& =\frac{4 / 5 * 3 / 5 * 1 / 4}{4 / 5 * 3 / 5 * 1 / 4+1 / 15 * 2 / 15 * 3 / 4} \approx 0.947
\end{aligned}
$$

Exercise 4: Naïve Bayes classifier

	Spam		No spam	
Total	25		75	
"buy"	20	$4 / 5$	5	$1 / 15$
"cheap"	15	$3 / 5$	10	$2 / 15$
"buy" \& "cheap"	12	$12 / 25$	$2 / 3$	$2 / 225$

What is the probability that a message containing both "buy" and "cheap" is a spam?

$$
\begin{aligned}
& P(s \mid b, c)=\frac{P(b, c \mid s) P(s)}{P(b, c \mid s) P(s)+P(b, c \mid \neg s) P(\neg s)}= \\
& =\frac{P(b \mid s) P(c \mid s) P(s)}{P(b \mid s) P(c \mid s) P(s)+P(b \mid \neg s) P(c \mid \neg s) P(\neg s)}= \\
& =\frac{4 / 5 * 3 / 5 * 1 / 4}{4 / 5 * 3 / 5 * 1 / 4+1 / 15 * 2 / 15 * 3 / 4} \approx 0.947
\end{aligned}
$$

Exercise 4: Naïve Bayes classifier

	Spam		No spam	
Total	25		75	
"buy"	20	$4 / 5$	5	$1 / 15$
"cheap"	15	$3 / 5$	10	$2 / 15$
"buy" \& "cheap"	12	$12 / 25$	$2 / 3$	$2 / 225$

What is the probability that a message containing both "buy" and "cheap" is a spam?

$$
\begin{aligned}
& P(s \mid b, c)=\frac{P(b, c \mid s) P(s)}{P(b, c \mid s) P(s)+P(b, c \mid \neg s) P(\neg s)}= \\
& =\frac{P(b \mid s) P(c \mid s) P(s)}{P(b \mid s) P(c \mid s) P(s)+P(b \mid \neg s) P(c \mid \neg s) P(\neg s)}= \\
& =\frac{4 / 5 * 3 / 5 * 1 / 4}{4 / 5 * 3 / 5 * 1 / 4+1 / 15 * 2 / 15 * 3 / 4} \approx 0.947
\end{aligned}
$$

Intuitively: $\frac{12}{12+2 / 3} \approx 0.947$

Assignment \#5 - minesweeper

Wh Minesweeper																								
Game Help																								
$\square \square \square \square \square \square \square \square \square 2 \quad 1 \quad \square \square$																								
$\square \square \square \square \square \square \square \square \square 2 \quad 1 \square \square$																								

