Introduction to Artificial Intelligence
 English practicals 8: Probabilistic reasoning over time

Marika Ivanová

Department of Theoretical Computer Science and Mathematical Logic (KTIML)
Faculty of Mathematics and Physics

April 7th 2022

A small remainder from last practicals

Example: Covid-19 has the following symptoms: caugh (c), high temperature (t), loss of smell (I) and fatigue (f). Knowing the probabilities $P($ symptom \mid Covid $=$ true $)$ calculate the probability that a patient exhibiting a combination of symptoms has Covid.

A small remainder from last practicals

Example: Covid-19 has the following symptoms: caugh (c), high temperature (t), loss of smell (I) and fatigue (f). Knowing the probabilities $P($ symptom \mid Covid $=$ true $)$ calculate the probability that a patient exhibiting a combination of symptoms has Covid.
Chain rule (from lecture):
$P(f, I, t, c$, covid $)=P(f \mid I, t, c$, covid $) P(I, t, c, c c o v i d)=$
$=P(f \mid I, t, c$, covid $) P(I \mid t, c$, covid $) P(t, c$, covid $)=$ $=P(f \mid I, t, c$, covid $) P(I \mid t, c$, covid $) P(t \mid c$, covid $) P(c$, covid $)=$
$=P(f \mid I, t, c$, covid $) P(I \mid t, c$, covid $) P(t \mid c$, covid $) P(c \mid$ covid $) P($ covid $)$

A small remainder from last practicals

Example: Covid-19 has the following symptoms: caugh (c), high temperature (t), loss of smell (I) and fatigue (f). Knowing the probabilities P (symptom \mid Covid $=$ true $)$ calculate the probability that a patient exhibiting a combination of symptoms has Covid.
Chain rule (from lecture):
$P(f, I, t, c$, covid $)=P(f \mid I, t, c$, covid $) P(I, t, c, c c o v i d)=$
$=P(f \mid I, t, c$, covid $) P(I \mid t, c$, covid $) P(t, c$, covid $)=$
$=P(f \mid I, t, c$, covid $) P(I \mid t, c$, covid $) P(t \mid c$, covid $) P(c$, covid $)=$
$=P(f \mid I, t, c$, covid $) P(I \mid t, c$, covid $) P(t \mid c$, covid $) P(c \mid$ covid $) P($ covid $)$

A small remainder from last practicals

Example: Covid-19 has the following symptoms: caugh (c), high temperature (t), loss of smell (I) and fatigue (f). Knowing the probabilities P (symptom \mid Covid $=$ true $)$ calculate the probability that a patient exhibiting a combination of symptoms has Covid.
Chain rule (from lecture):
$P(f, I, t, c$, covid $)=P(f \mid I, t, c$, covid $) P(I, t, c$, ccovid $)=$
$=P(f \mid I, t, c$, covid $) P(I \mid t, c$, covid $) P(t, c$, covid $)=$
$=P(f \mid I, t, c$, covid $) P(I \mid t, c$, covid $) P(t \mid c$, covid $) P(c$, covid $)=$
$=P(f \mid I, t, c$, covid $) P(I \mid t, c$, covid $) P(t \mid c$, covid $) P(c \mid$ covid $) P($ covid $)$

A small reminder from the lecture

- World viewed as a series of time slices

A small reminder from the lecture

- World viewed as a series of time slices
- Hidden (not observable) random variables X_{t} - describe the state at time t
- Observable random variables E_{t} - what we observe about the state at time t (e.g., sensors)

A small reminder from the lecture

- World viewed as a series of time slices
- Hidden (not observable) random variables X_{t} - describe the state at time t
- Observable random variables E_{t} - what we observe about the state at time t (e.g., sensors)
- Transition model: $P\left(X_{t} \mid X_{0: t-1}\right)$
- Markov assumption: $P\left(X_{t} \mid X_{0: t-1}\right)=P\left(X_{t} \mid X_{t-1}\right)$
- Stationary process: All transition tables $P\left(X_{t} \mid X_{t-1}\right)$ are identical for each t

A small reminder from the lecture

- World viewed as a series of time slices
- Hidden (not observable) random variables X_{t} - describe the state at time t
- Observable random variables E_{t} - what we observe about the state at time t (e.g., sensors)
- Transition model: $P\left(X_{t} \mid X_{0: t-1}\right)$
- Markov assumption: $P\left(X_{t} \mid X_{0: t-1}\right)=P\left(X_{t} \mid X_{t-1}\right)$
- Stationary process: All transition tables $P\left(X_{t} \mid X_{t-1}\right)$ are identical for each t
- Observation model: $P\left(E_{t} \mid X_{0: t}, E_{1: t-1}\right)$
- sensor Markov assumption: $P\left(E_{t} \mid X_{0: t}, E_{1: t-1}\right)=P\left(E_{t} \mid X_{t}\right)$

Exercise 1: Markov chain

Assume a stationary first order Markov chain:

- States $X=\{(r)$ ain, (s)un $\}$
- Initial state: sun
- Transition model $P\left(X_{t} \mid X_{t-1}\right)$

Exercise 1: Markov chain

X_{t-1}	X_{t}	$P\left(X_{t} \mid X_{t-1}\right)$
r	r	0.7
r	s	0.3
s	r	0.1
s	s	0.9

Assume a stationary first order Markov chain:

- States $X=\{(r)$ ain, (s)un $\}$
- Initial state: sun
- Transition model $P\left(X_{t} \mid X_{t-1}\right)$

Exercise 1: Markov chain

Assume a stationary first order Markov chain:

X_{t-1}	X_{t}	$P\left(X_{t} \mid X_{t-1}\right)$
r	r	0.7
r	s	0.3
s	r	0.1
s	s	0.9

- States $X=\{(r)$ ain, (s)un $\}$
- Initial state: sun
- Transition model $P\left(X_{t} \mid X_{t-1}\right)$

What is the weather probability distribution at day 1 , i.e., $P\left(X_{1}\right)$ given $P\left(X_{0}=s\right)=1$?

Exercise 1: Markov chain

Assume a stationary first order Markov chain:

X_{t-1}	X_{t}	$P\left(X_{t} \mid X_{t-1}\right)$
r	r	0.7
r	s	0.3
s	r	0.1
s	s	0.9

- States $X=\{(r)$ ain, (s)un $\}$
- Initial state: sun
- Transition model $P\left(X_{t} \mid X_{t-1}\right)$

What is the weather probability distribution at day 1 , i.e., $P\left(X_{1}\right)$ given $P\left(X_{0}=s\right)=1$?

$$
\begin{gathered}
P\left(X_{1}=s\right)=P\left(X_{1}=s \mid X_{0}=r\right) P\left(X_{0}=r\right)+P\left(X_{1}=s \mid X_{0}=s\right) P\left(X_{0}=s\right)= \\
=0.3 * 0+0.9 * 1=0.9
\end{gathered}
$$

Exercise 1: Markov chain

Assume a stationary first order Markov chain:

X_{t-1}	X_{t}	$P\left(X_{t} \mid X_{t-1}\right)$
r	r	0.7
r	s	0.3
s	r	0.1
s	s	0.9

- States $X=\{(r)$ ain, (s)un $\}$
- Initial state: sun
- Transition model $P\left(X_{t} \mid X_{t-1}\right)$

What is the weather probability distribution at day 1 , i.e., $P\left(X_{1}\right)$ given $P\left(X_{0}=s\right)=1$?

$$
\begin{gathered}
P\left(X_{1}=s\right)=P\left(X_{1}=s \mid X_{0}=r\right) P\left(X_{0}=r\right)+P\left(X_{1}=s \mid X_{0}=s\right) P\left(X_{0}=s\right)= \\
=0.3 * 0+0.9 * 1=0.9
\end{gathered}
$$

How about two steps, i.e., $P\left(X_{2}\right)$ given $P\left(X_{1}\right)$ from the previous step?

Exercise 1: Markov chain

Assume a stationary first order Markov chain:

X_{t-1}	X_{t}	$P\left(X_{t} \mid X_{t-1}\right)$
r	r	0.7
r	s	0.3
s	r	0.1
s	s	0.9

- States $X=\{(r)$ ain, (s)un $\}$
- Initial state: sun
- Transition model $P\left(X_{t} \mid X_{t-1}\right)$

What is the weather probability distribution at day 1 , i.e., $P\left(X_{1}\right)$ given $P\left(X_{0}=s\right)=1$?

$$
\begin{gathered}
P\left(X_{1}=s\right)=P\left(X_{1}=s \mid X_{0}=r\right) P\left(X_{0}=r\right)+P\left(X_{1}=s \mid X_{0}=s\right) P\left(X_{0}=s\right)= \\
=0.3 * 0+0.9 * 1=0.9
\end{gathered}
$$

How about two steps, i.e., $P\left(X_{2}\right)$ given $P\left(X_{1}\right)$ from the previous step?

$$
\begin{gathered}
P\left(X_{2}=s\right)=P\left(X_{2}=s \mid X_{1}=r\right) P\left(X_{1}=r\right)+P\left(X_{2}=s \mid X_{1}=s\right) P\left(X_{1}=s\right)= \\
=0.3 * 0.1+0.9 * 0.9=0.84
\end{gathered}
$$

Exercise 1: Markov chain contd.

Assume a stationary first order Markov chain:

X_{t-1}	X_{t}	$P\left(X_{t} \mid X_{t-1}\right)$
r	r	0.7
r	s	0.3
s	r	0.1
s	s	0.9

- States $X=\{(r)$ ain, (s)un $\}$
- Initial state: sun
- Transition model $P\left(X_{t} \mid X_{t-1}\right)$

What is the weather probability distribution at day "infinity", i.e., $P\left(X_{\infty}\right)$

Exercise 1: Markov chain contd.

Assume a stationary first order Markov chain:

X_{t-1}	X_{t}	$P\left(X_{t} \mid X_{t-1}\right)$
r	r	0.7
r	s	0.3
s	r	0.1
s	s	0.9

- States $X=\{(r) a i n,(s) u n\}$
- Initial state: sun
- Transition model $P\left(X_{t} \mid X_{t-1}\right)$

What is the weather probability distribution at day "infinity", i.e., $P\left(X_{\infty}\right)$

$$
P\left(X_{\infty}=s\right)=P\left(X_{\infty}=s \mid X_{\infty-1}=r\right) P\left(X_{\infty-1}=r\right)+P\left(X_{\infty}=s \mid X_{\infty-1}=s\right) P\left(X_{\infty-1}=s\right)
$$

Exercise 1: Markov chain contd.

Assume a stationary first order Markov chain:

X_{t-1}	X_{t}	$P\left(X_{t} \mid X_{t-1}\right)$
r	r	0.7
r	s	0.3
s	r	0.1
s	s	0.9

- States $X=\{(r) a i n,(s) u n\}$
- Initial state: sun
- Transition model $P\left(X_{t} \mid X_{t-1}\right)$

What is the weather probability distribution at day "infinity", i.e., $P\left(X_{\infty}\right)$

$$
\begin{aligned}
P\left(X_{\infty}=s\right)=P\left(X_{\infty}\right. & \left.=s \mid X_{\infty-1}=r\right) P\left(X_{\infty-1}=r\right)+P\left(X_{\infty}=s \mid X_{\infty-1}=s\right) P\left(X_{\infty-1}=s\right) \\
& =0.3 * P\left(X_{\infty-1}=r\right)+0.9 * P\left(X_{\infty-1}=s\right)
\end{aligned}
$$

Exercise 1: Markov chain contd.

Assume a stationary first order Markov chain:

X_{t-1}	X_{t}	$P\left(X_{t} \mid X_{t-1}\right)$
r	r	0.7
r	s	0.3
s	r	0.1
s	s	0.9

- States $X=\{(r) a i n,(s) u n\}$
- Initial state: sun
- Transition model $P\left(X_{t} \mid X_{t-1}\right)$

What is the weather probability distribution at day "infinity", i.e., $P\left(X_{\infty}\right)$

$$
\begin{gathered}
P\left(X_{\infty}=s\right)=P\left(X_{\infty}=s \mid X_{\infty-1}=r\right) P\left(X_{\infty-1}=r\right)+P\left(X_{\infty}=s \mid X_{\infty-1}=s\right) P\left(X_{\infty-1}=s\right) \\
=0.3 * P\left(X_{\infty-1}=r\right)+0.9 * P\left(X_{\infty-1}=s\right) \\
\Rightarrow P\left(X_{\infty}=s\right)=3 * P\left(X_{\infty-1}=r\right)
\end{gathered}
$$

Exercise 1: Markov chain contd.

Assume a stationary first order Markov chain:

X_{t-1}	X_{t}	$P\left(X_{t} \mid X_{t-1}\right)$
r	r	0.7
r	s	0.3
s	r	0.1
s	s	0.9

- States $X=\{(r) a i n,(s) u n\}$
- Initial state: sun
- Transition model $P\left(X_{t} \mid X_{t-1}\right)$

What is the weather probability distribution at day "infinity", i.e., $P\left(X_{\infty}\right)$

$$
\begin{gathered}
P\left(X_{\infty}=s\right)=P\left(X_{\infty}=s \mid X_{\infty-1}=r\right) P\left(X_{\infty-1}=r\right)+P\left(X_{\infty}=s \mid X_{\infty-1}=s\right) P\left(X_{\infty-1}=s\right) \\
=0.3 * P\left(X_{\infty-1}=r\right)+0.9 * P\left(X_{\infty-1}=s\right) \\
\Rightarrow P\left(X_{\infty}=s\right)=3 * P\left(X_{\infty-1}=r\right) \\
\Rightarrow P\left(X_{\infty}\right)=(0.75,0.25)
\end{gathered}
$$

Basic inference tasks

- Filtering $P\left(X_{t} \mid e_{1: t}\right)$ (Where am I now?)
- Prediction $P\left(X_{t+k} \mid e_{1: t}\right), k>0$ (Where will I be in future?)
- Smoothing $P\left(X_{k} \mid e_{1: t}\right), k<t$ (Where was I in the past?)
- Most likely explanation $\arg \max _{x_{1: t}} P\left(X_{1: t} \mid e_{1: t}\right)$ (What path did I go through?)

Basic inference tasks

- Filtering $P\left(X_{t} \mid e_{1: t}\right)$ (Where am I now?)
- Prediction $P\left(X_{t+k} \mid e_{1: t}\right), k>0$ (Where will I be in future?)
- Smoothing $P\left(X_{k} \mid e_{1: t}\right), k<t$ (Where was I in the past?)
- Most likely explanation $\arg \max _{x_{1: t}} P\left(X_{1: t} \mid e_{1: t}\right)$ (What path did I go through?)

Poll

Markov chain (MC) vs Hidden Markov Model (HMM)

- MC: all variables are observable
- HMM: some variables are observable, some are hidden

Exercise 2

Assume that the probability of rain at day 0 is 0.5 . What is the probability of rain at day 2 , given that we observed an umbrella at day 1 and 2 ?

Exercise 2

Assume that the probability of rain at day 0 is 0.5 . What is the probability of rain at day 2 , given that we observed an umbrella at day 1 and 2 ?

Filtering: Where am I now? $P\left(X_{t+1} \mid E_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)$

Exercise 2

Assume that the probability of rain at day 0 is 0.5 . What is the probability of rain at day 2 , given that we observed an umbrella at day 1 and 2 ?

Filtering: Where am I now? $P\left(X_{t+1} \mid E_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)$

- Day 0: no observation, only the prior belief $P\left(R_{0}\right)=(0.5,0.5)$

Exercise 2

Assume that the probability of rain at day 0 is 0.5 . What is the probability of rain at day 2 , given that we observed an umbrella at day 1 and 2 ?

Filtering: Where am I now? $P\left(X_{t+1} \mid E_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)$

- Day 0: no observation, only the prior belief $P\left(R_{0}\right)=(0.5,0.5)$
- Day 1: observation $u_{1}=$ true

Exercise 2

Assume that the probability of rain at day 0 is 0.5 . What is the probability of rain at day 2 , given that we observed an umbrella at day 1 and 2 ?

Filtering: Where am I now? $P\left(X_{t+1} \mid E_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)$

- Day 0: no observation, only the prior belief $P\left(R_{0}\right)=(0.5,0.5)$
- Day 1: observation $u_{1}=$ true
- Prediction:

$$
P\left(r_{1}=\text { true }\right)=\sum_{r_{0}} P\left(r_{1}=\text { true } \mid r_{0}\right) * P\left(r_{0}\right)=0.7 * 0.5+0.3 * 0.5=0.5
$$

Exercise 2

Assume that the probability of rain at day 0 is 0.5 . What is the probability of rain at day 2 , given that we observed an umbrella at day 1 and 2 ?

Filtering: Where am I now? $P\left(X_{t+1} \mid E_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)$

- Day 0: no observation, only the prior belief $P\left(R_{0}\right)=(0.5,0.5)$
- Day 1: observation $u_{1}=$ true
- Prediction:

$$
P\left(r_{1}=\text { true }\right)=\sum_{r_{0}} P\left(r_{1}=\text { true } \mid r_{0}\right) * P\left(r_{0}\right)=0.7 * 0.5+0.3 * 0.5=0.5
$$

- Update by the new evidence: $P\left(r_{1}=\right.$ true $\mid u_{1}=$ true $)=\alpha P\left(u_{1}=\right.$ true $\mid r_{1}=$ true $) P\left(r_{1}=\right.$ true $)=\alpha * 0.9 * 0.5=\alpha * 0.45 \approx 0.818$

Exercise 2

Assume that the probability of rain at day 0 is 0.5 . What is the probability of rain at day 2 , given that we observed an umbrella at day 1 and 2 ?

Filtering: Where am I now? $P\left(X_{t+1} \mid E_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)$

- Day 0: no observation, only the prior belief $P\left(R_{0}\right)=(0.5,0.5)$
- Day 1: observation $u_{1}=$ true
- Prediction:

$$
P\left(r_{1}=\text { true }\right)=\sum_{r_{0}} P\left(r_{1}=\text { true } \mid r_{0}\right) * P\left(r_{0}\right)=0.7 * 0.5+0.3 * 0.5=0.5
$$

- Update by the new evidence: $P\left(r_{1}=\right.$ true $\mid u_{1}=$ true $)=\alpha P\left(u_{1}=\right.$ true $\mid r_{1}=$ true $) P\left(r_{1}=\right.$ true $)=\alpha * 0.9 * 0.5=\alpha * 0.45 \approx 0.818$
- Day 2: observation $u_{2}=$ true

Exercise 2

Assume that the probability of rain at day 0 is 0.5 . What is the probability of rain at day 2 , given that we observed an umbrella at day 1 and 2 ?

Filtering: Where am I now? $P\left(X_{t+1} \mid E_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)$

- Day 0: no observation, only the prior belief $P\left(R_{0}\right)=(0.5,0.5)$
- Day 1: observation $u_{1}=$ true
- Prediction:

$$
P\left(r_{1}=\text { true }\right)=\sum_{r_{0}} P\left(r_{1}=\text { true } \mid r_{0}\right) * P\left(r_{0}\right)=0.7 * 0.5+0.3 * 0.5=0.5
$$

- Update by the new evidence: $P\left(r_{1}=\right.$ true $\mid u_{1}=$ true $)=\alpha P\left(u_{1}=\right.$ true $\mid r_{1}=$ true $) P\left(r_{1}=\right.$ true $)=\alpha * 0.9 * 0.5=\alpha * 0.45 \approx 0.818$
- Day 2: observation $u_{2}=$ true
- Prediction: $P\left(r_{2}=\right.$ true $\mid u_{1}=$ true $)=\sum_{r_{1}} P\left(r_{2}=\right.$ true $\left.\mid r_{1}\right) * P\left(r_{1} \mid u_{1}=\right.$ true $)=0.7 * 0.818+0.3 * 0.182 \approx 0.627$

Exercise 2

Assume that the probability of rain at day 0 is 0.5 . What is the probability of rain at day 2 , given that we observed an umbrella at day 1 and 2 ?

Filtering: Where am I now? $P\left(X_{t+1} \mid E_{1: t+1}\right)=\alpha P\left(e_{t+1} \mid X_{t+1}\right) \sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)$

- Day 0: no observation, only the prior belief $P\left(R_{0}\right)=(0.5,0.5)$
- Day 1: observation $u_{1}=$ true
- Prediction:

$$
P\left(r_{1}=\text { true }\right)=\sum_{r_{0}} P\left(r_{1}=\text { true } \mid r_{0}\right) * P\left(r_{0}\right)=0.7 * 0.5+0.3 * 0.5=0.5
$$

- Update by the new evidence: $P\left(r_{1}=\right.$ true $\mid u_{1}=$ true $)=\alpha P\left(u_{1}=\right.$ true $\mid r_{1}=$ true $) P\left(r_{1}=\right.$ true $)=\alpha * 0.9 * 0.5=\alpha * 0.45 \approx 0.818$
- Day 2: observation $u_{2}=$ true
- Prediction: $P\left(r_{2}=\right.$ true $\mid u_{1}=$ true $)=\sum_{r_{1}} P\left(r_{2}=\right.$ true $\left.\mid r_{1}\right) * P\left(r_{1} \mid u_{1}=\right.$ true) $=0.7 * 0.818+0.3 * 0.182 \approx 0.627$
- Update by the new evidence:

$$
\begin{aligned}
& P\left(r_{2}=\text { true } \mid u_{1}=u_{2}=\text { true }\right)=\alpha P\left(u_{2}=\text { true } \mid r_{2}=\text { true }\right) P\left(r_{2}=\right. \\
& \text { true } \left.\mid u_{1}=\text { true }\right)=\alpha * 0.9 * 0.627=\alpha * 0.564 \approx 0.883
\end{aligned}
$$

Exercise 3: Hidden Markov model

Professor has a 3 shirts: red (R), green (G) and blue (B). The color of shirt he wears gives a hint about his mood (happy and sad) on that day. What is the most likely sequence of her mood in 3 days, if he wars G, B, R ? Assume that on day 1 there is a probability 0.4 that she is sad.

Exercise 3: Hidden Markov model

Professor has a 3 shirts: red (R), green (G) and blue (B). The color of shirt he wears gives a hint about his mood (happy and sad) on that day. What is the most likely sequence of her mood in 3 days, if he wars G, B, R ? Assume that on day 1 there is a probability 0.4 that she is sad.

	\mathbf{H}	\mathbf{S}
\mathbf{H}	0.7	0.3
\mathbf{S}	0.5	0.5

	\mathbf{R}	\mathbf{G}	\mathbf{B}
\mathbf{H}	0.8	0.1	0.1
\mathbf{S}	0.2	0.3	0.5

Exercise 3: Hidden Markov model

Professor has a 3 shirts: red (R), green (G) and blue (B). The color of shirt he wears gives a hint about his mood (happy and sad) on that day. What is the most likely sequence of her mood in 3 days, if he wars G, B, R ? Assume that on day 1 there is a probability 0.4 that she is sad.

$$
\begin{aligned}
& \max _{m_{1}, m_{2}, m_{3}} P\left(C_{1}=G, C_{2}=B, C_{3}=R, M_{1}=m_{1}, M_{2}=\right. \\
& \left.m_{2}, M_{3}=m_{3}\right)
\end{aligned}
$$

	\mathbf{H}	\mathbf{S}
\mathbf{H}	0.7	0.3
\mathbf{S}	0.5	0.5

	\mathbf{R}	\mathbf{G}	\mathbf{B}
\mathbf{H}	0.8	0.1	0.1
\mathbf{S}	0.2	0.3	0.5

Exercise 3: Hidden Markov model

Professor has a 3 shirts: red (R), green (G) and blue (B). The color of shirt he wears gives a hint about his mood (happy and sad) on that day. What is the most likely sequence of her mood in 3 days, if he wars G, B, R ? Assume that on day 1 there is a probability 0.4 that she is sad.

$$
\begin{aligned}
& \max _{m_{1}, m_{2}, m_{3}} P\left(C_{1}=G, C_{2}=B, C_{3}=R, M_{1}=m_{1}, M_{2}=\right. \\
& \left.m_{2}, M_{3}=m_{3}\right)
\end{aligned}
$$

Chain rule:

	\mathbf{H}	\mathbf{S}
\mathbf{H}	0.7	0.3
\mathbf{S}	0.5	0.5

- $P\left(C_{3} \mid C_{2}, C_{1}, M_{3}, M_{2}, M_{1}\right) \times$
- $P\left(C_{2} \mid C_{1}, M_{3}, M_{2}, M_{1}\right) \times$
- $P\left(C_{1} \mid M_{3}, M_{2}, M_{1}\right) \times$
- $P\left(M_{3} \mid M_{2}, M_{1}\right) \times$
- $P\left(M_{2} \mid M_{1}\right) \times$
- $P\left(M_{1}\right) \times$

Exercise 3: Hidden Markov model

Professor has a 3 shirts: red (R), green (G) and blue (B). The color of shirt he wears gives a hint about his mood (happy and sad) on that day. What is the most likely sequence of her mood in 3 days, if he wars G, B, R ? Assume that on day 1 there is a probability 0.4 that she is sad.

$$
\begin{aligned}
& \max _{m_{1}, m_{2}, m_{3}} P\left(C_{1}=G, C_{2}=B, C_{3}=R, M_{1}=m_{1}, M_{2}=\right. \\
& \left.m_{2}, M_{3}=m_{3}\right)
\end{aligned}
$$

Chain rule:

	\mathbf{H}	\mathbf{S}
\mathbf{H}	0.7	0.3
\mathbf{S}	0.5	0.5

- $P\left(C_{3} \mid C_{2}, C_{1}, M_{3}, M_{2}, M_{1}\right) \times$
- $P\left(C_{2} \mid C_{1}, M_{3}, M_{2}, M_{1}\right) \times$
- $P\left(C_{1} \mid M_{3}, M_{2}, M_{1}\right) \times$
- $P\left(M_{3} \mid M_{2}, M_{1}\right) \times$
- $P\left(M_{2} \mid M_{1}\right) \times$
- $P\left(M_{1}\right) \times$
$0=$

$$
P\left(C_{3} \mid M_{3}\right) P\left(C_{2} \mid M_{2}\right) P\left(C_{1} \mid M_{1}\right) P\left(M_{3} \mid M_{2}\right) P\left(M_{2} \mid M_{1}\right) P\left(M_{1} \mid S\right)
$$

Exercise 3: Hidden Markov model

Professor has a 3 shirts: red (R), green (G) and blue (B). The color of shirt he wears gives a hint about his mood (happy and sad) on that day. What is the most likely sequence of her mood in 3 days, if he wars G, B, R ? Assume that on day 1 there is a probability 0.4 that she is sad.

$$
\begin{aligned}
& \max _{m_{1}, m_{2}, m_{3}} P\left(C_{1}=G, C_{2}=B, C_{3}=R, M_{1}=m_{1}, M_{2}=\right. \\
& \left.m_{2}, M_{3}=m_{3}\right)
\end{aligned}
$$

Chain rule:

	\mathbf{H}	\mathbf{S}
\mathbf{H}	0.7	0.3
\mathbf{S}	0.5	0.5

- $P\left(C_{3} \mid C_{2}, C_{1}, M_{3}, M_{2}, M_{1}\right) \times$
- $P\left(C_{2} \mid C_{1}, M_{3}, M_{2}, M_{1}\right) \times$
- $P\left(C_{1} \mid M_{3}, M_{2}, M_{1}\right) \times$

	\mathbf{R}	\mathbf{G}	\mathbf{B}
\mathbf{H}	0.8	0.1	0.1
\mathbf{S}	0.2	0.3	0.5

- $P\left(M_{3} \mid M_{2}, M_{1}\right) \times$
- $P\left(M_{2} \mid M_{1}\right) \times$
- $P\left(M_{1}\right) \times$
$0=$
-

$$
P\left(C_{3} \mid M_{3}\right) P\left(C_{2} \mid M_{2}\right) P\left(C_{1} \mid M_{1}\right) P\left(M_{3} \mid M_{2}\right) P\left(M_{2} \mid M_{1}\right) P\left(M_{1} \mid S\right)
$$

- $\mathrm{HHH}: 0.1 * 0.1 * 0.8 * 0.7^{3}=0.0027$

SSH: $0.3 * 0.5 * 0.8 * 0.5 * 0.5 * 0.6=0.018$

- . . .

Viterbi algorithm: NLP example

	DT	NN	VB
(Start)	0.8	0.2	0
DT	0	0.9	0.1
NN	0	0.5	0.5
VB	0.5	0.5	0

	THE	FANS	WATCH	RACE
DT	0.2	0	0	0
NN	0	0.1	0.3	0.1
VB	0	0.2	0.15	0.3
watch				

Selected quiz questions

Selected quiz questions

- How is Markov assumption used in the transition model

Selected quiz questions

- How is Markov assumption used in the transition model $P\left(X_{t} \mid X_{0: t-1}\right)=P\left(X_{t} \mid X_{t-k}\right)$, where $k>0$ is the order of MC

Selected quiz questions

- How is Markov assumption used in the transition model $P\left(X_{t} \mid X_{0: t-1}\right)=P\left(X_{t} \mid X_{t-k}\right)$, where $k>0$ is the order of MC
- What is the difference between stationary and static process?

Selected quiz questions

- How is Markov assumption used in the transition model $P\left(X_{t} \mid X_{0: t-1}\right)=P\left(X_{t} \mid X_{t-k}\right)$, where $k>0$ is the order of MC
- What is the difference between stationary and static process?

Static: state does not change. Stationary: probability distribution $P\left(X_{t} \mid X_{t-1}\right)$ is eaqual for all time steps t.

Selected quiz questions

- How is Markov assumption used in the transition model $P\left(X_{t} \mid X_{0: t-1}\right)=P\left(X_{t} \mid X_{t-k}\right)$, where $k>0$ is the order of MC
- What is the difference between stationary and static process?

Static: state does not change. Stationary: probability distribution $P\left(X_{t} \mid X_{t-1}\right)$ is eaqual for all time steps t.

- What is the probability of the transition Rain=true \rightarrow Rain $=$ false?

Selected quiz questions

- How is Markov assumption used in the transition model $P\left(X_{t} \mid X_{0: t-1}\right)=P\left(X_{t} \mid X_{t-k}\right)$, where $k>0$ is the order of MC
- What is the difference between stationary and static process?

Static: state does not change. Stationary: probability distribution $P\left(X_{t} \mid X_{t-1}\right)$ is eaqual for all time steps t.

- What is the probability of the transition Rain=true \rightarrow Rain $=$ false?

0.3

Selected quiz questions

- How is Markov assumption used in the transition model $P\left(X_{t} \mid X_{0: t-1}\right)=P\left(X_{t} \mid X_{t-k}\right)$, where $k>0$ is the order of MC
- What is the difference between stationary and static process?

Static: state does not change. Stationary: probability distribution $P\left(X_{t} \mid X_{t-1}\right)$ is eaqual for all time steps t.

- What is the probability of the transition Rain=true \rightarrow Rain $=$ false?

0.3
- Assume that you want to translate a speach that you hear. What type of inference task is it? (Poll)

Selected quiz questions

- How is Markov assumption used in the transition model $P\left(X_{t} \mid X_{0: t-1}\right)=P\left(X_{t} \mid X_{t-k}\right)$, where $k>0$ is the order of MC
- What is the difference between stationary and static process?

Static: state does not change. Stationary: probability distribution $P\left(X_{t} \mid X_{t-1}\right)$ is eaqual for all time steps t.

- What is the probability of the transition Rain=true \rightarrow Rain $=$ false?

0.3
- Assume that you want to translate a speach that you hear. What type of inference task is it? (Poll)

Selected quiz questions

- How is Markov assumption used in the transition model $P\left(X_{t} \mid X_{0: t-1}\right)=P\left(X_{t} \mid X_{t-k}\right)$, where $k>0$ is the order of MC
- What is the difference between stationary and static process?

Static: state does not change. Stationary: probability distribution $P\left(X_{t} \mid X_{t-1}\right)$ is eaqual for all time steps t.

- What is the probability of the transition Rain=true \rightarrow Rain $=$ false?

0.3
- Assume that you want to translate a speach that you hear. What type of inference task is it? (Poll) Most likely explanation.
- Does mixing time mean that after that time, the state will not change?
- Does mixing time mean that after that time, the state will not change? No.
- Does mixing time mean that after that time, the state will not change?

No.

- Assume that state variable X depends on two previous state variables X_{t-1} and X_{t-2}. Can we encode this transition using dependence just between subsequent states?
- Does mixing time mean that after that time, the state will not change?

No.

- Assume that state variable X depends on two previous state variables X_{t-1} and X_{t-2}. Can we encode this transition using dependence just between subsequent states? Yes.

Example: in 2 nd order MC with possible states A, G, C, T. transition table has 4×4 values. We construct 1st MC with 16 states $A A, A C, \ldots, C A, C C, \ldots, G G$. The new transition table has 16^{2} entries.

- Does mixing time mean that after that time, the state will not change?

No.

- Assume that state variable X depends on two previous state variables X_{t-1} and X_{t-2}. Can we encode this transition using dependence just between subsequent states? Yes.

Example: in 2 nd order MC with possible states A, G, C, T. transition table has 4×4 values. We construct 1st MC with 16 states $A A, A C, \ldots, C A, C C, \ldots, G G$. The new transition table has 16^{2} entries.

- Assume that we do full smoothing, that is we smooth every past variable (think about an efficient method how to do it), and for each past variable we select the most probable value. Will we get the most likely explanation of a sequence of observations? Why?
- Does mixing time mean that after that time, the state will not change?

No.

- Assume that state variable X depends on two previous state variables X_{t-1} and X_{t-2}. Can we encode this transition using dependence just between subsequent states? Yes.
Example: in 2 nd order MC with possible states A, G, C, T. transition table has 4×4 values. We construct 1st MC with 16 states $A A, A C, \ldots, C A, C C, \ldots, G G$. The new transition table has 16^{2} entries.
- Assume that we do full smoothing, that is we smooth every past variable (think about an efficient method how to do it), and for each past variable we select the most probable value. Will we get the most likely explanation of a sequence of observations? Why?
Use smoothing to find posterior distribution of rain $P\left(R_{k} \mid u_{1: t}\right)$ for all time steps.
Then, construct a sequence of most likely states

$$
\left(\arg \max _{r_{1}} P\left(r_{1} \mid u_{1: t}\right), \arg \max _{r_{2}} P\left(r_{2} \mid u_{1: t}\right), \ldots, \arg \max _{r_{t}} P\left(r_{t} \mid u_{1: t}\right)\right)
$$

- Does mixing time mean that after that time, the state will not change?

No.

- Assume that state variable X depends on two previous state variables X_{t-1} and X_{t-2}. Can we encode this transition using dependence just between subsequent states? Yes.
Example: in 2 nd order MC with possible states A, G, C, T. transition table has 4×4 values. We construct 1st MC with 16 states $A A, A C, \ldots, C A, C C, \ldots, G G$. The new transition table has 16^{2} entries.
- Assume that we do full smoothing, that is we smooth every past variable (think about an efficient method how to do it), and for each past variable we select the most probable value. Will we get the most likely explanation of a sequence of observations? Why?
Use smoothing to find posterior distribution of rain $P\left(R_{k} \mid u_{1: t}\right)$ for all time steps.
Then, construct a sequence of most likely states

$$
\left(\arg \max _{r_{1}} P\left(r_{1} \mid u_{1: t}\right), \arg \max _{r_{2}} P\left(r_{2} \mid u_{1: t}\right), \ldots, \arg \max _{r_{t}} P\left(r_{t} \mid u_{1: t}\right)\right)
$$

However, the most likely sequence is different:

$$
\arg \max _{r_{1: t}} P\left(r_{1: t} \mid u_{1: t}\right)
$$

