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A small remainder from last practicals

Example: Covid-19 has the following symptoms: caugh (c), high
temperature (t), loss of smell (l) and fatigue (f). Knowing the probabilities
P(symptom|Covid = true) calculate the probability that a patient
exhibiting a combination of symptoms has Covid.

Chain rule (from lecture):
P(f , l , t, c, covid) = P(f |l , t, c , covid)P(l , t, c , ccovid) =

= P(f |l , t, c, covid)P(l |t, c , covid)P(t, c , covid) =
= P(f |l , t, c , covid)P(l |t, c , covid)P(t|c , covid)P(c , covid) =

= P(f |l , t, c , covid)P(l |t, c , covid)P(t|c , covid)P(c |covid)P(covid)

With BN we can use conditional independence:
P(c , t, l , f , covid) =
P(f |covid)P(l |covid)P(t|covid)P(c |covid)P(covid)
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A small reminder from the lecture

World viewed as a series of time slices

Hidden (not observable) random variables Xt - describe the state at
time t

Observable random variables Et - what we observe about the state
at time t (e.g., sensors)

Transition model: P(Xt |X0:t−1)

Markov assumption: P(Xt |X0:t−1) = P(Xt |Xt−1)
Stationary process: All transition tables P(Xt |Xt−1) are identical for
each t

Observation model: P(Et |X0:t ,E1:t−1)

sensor Markov assumption: P(Et |X0:t ,E1:t−1) = P(Et |Xt)
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Exercise 1: Markov chain

Xt−1 Xt P(Xt |Xt−1)

r r 0.7
r s 0.3
s r 0.1
s s 0.9

Assume a stationary first order Markov chain:

States X = {(r)ain, (s)un}
Initial state: sun

Transition model P(Xt |Xt−1)

What is the weather probability distribution at day 1, i.e., P(X1) given P(X0 = s) = 1?

P(X1 = s) = P(X1 = s|X0 = r)P(X0 = r) + P(X1 = s|X0 = s)P(X0 = s) =

= 0.3 ∗ 0 + 0.9 ∗ 1 = 0.9

How about two steps, i.e., P(X2) given P(X1) from the previous step?

P(X2 = s) = P(X2 = s|X1 = r)P(X1 = r) + P(X2 = s|X1 = s)P(X1 = s) =

= 0.3 ∗ 0.1 + 0.9 ∗ 0.9 = 0.84
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Marika Ivanová (MFF UK) Introduction to Artificial Intelligence April 2022 4 / 12



Exercise 1: Markov chain

Xt−1 Xt P(Xt |Xt−1)

r r 0.7
r s 0.3
s r 0.1
s s 0.9

Assume a stationary first order Markov chain:

States X = {(r)ain, (s)un}
Initial state: sun

Transition model P(Xt |Xt−1)

What is the weather probability distribution at day 1, i.e., P(X1) given P(X0 = s) = 1?

P(X1 = s) = P(X1 = s|X0 = r)P(X0 = r) + P(X1 = s|X0 = s)P(X0 = s) =

= 0.3 ∗ 0 + 0.9 ∗ 1 = 0.9

How about two steps, i.e., P(X2) given P(X1) from the previous step?

P(X2 = s) = P(X2 = s|X1 = r)P(X1 = r) + P(X2 = s|X1 = s)P(X1 = s) =

= 0.3 ∗ 0.1 + 0.9 ∗ 0.9 = 0.84
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Exercise 1: Markov chain contd.

Xt−1 Xt P(Xt |Xt−1)

r r 0.7
r s 0.3
s r 0.1
s s 0.9

Assume a stationary first order Markov chain:

States X = {(r)ain, (s)un}
Initial state: sun

Transition model P(Xt |Xt−1)

What is the weather probability distribution at day ”infinity”, i.e., P(X∞)

P(X∞ = s) = P(X∞ = s|X∞−1 = r)P(X∞−1 = r)+P(X∞ = s|X∞−1 = s)P(X∞−1 = s)

= 0.3 ∗ P(X∞−1 = r) + 0.9 ∗ P(X∞−1 = s)

⇒ P(X∞ = s) = 3 ∗ P(X∞−1 = r)

⇒ P(X∞) = (0.75, 0.25)
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Basic inference tasks

Filtering P(Xt |e1:t) (Where am I now?)

Prediction P(Xt+k |e1:t), k > 0 (Where will I be in future?)

Smoothing P(Xk |e1:t), k < t (Where was I in the past?)

Most likely explanation arg maxx1:t P(X1:t |e1:t) (What path did I go
through?)

Poll
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Markov chain (MC) vs Hidden Markov Model (HMM)

MC: all variables are observable

HMM: some variables are observable, some are hidden
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Exercise 2

Assume that the probability of rain at day 0 is 0.5. What
is the probability of rain at day 2, given that we observed
an umbrella at day 1 and 2?

Filtering: Where am I now? P(Xt+1|E1:t+1) = αP(et+1|Xt+1)
∑

xt
P(Xt+1|xt)P(xt |e1:t)

Day 0: no observation, only the prior belief P(R0) = (0.5, 0.5)

Day 1: observation u1 = true

Prediction:
P(r1 = true) =

∑
r0
P(r1 = true|r0) ∗P(r0) = 0.7 ∗ 0.5 + 0.3 ∗ 0.5 = 0.5

Update by the new evidence: P(r1 = true|u1 = true) = αP(u1 =
true|r1 = true)P(r1 = true) = α ∗ 0.9 ∗ 0.5 = α ∗ 0.45 ≈ 0.818

Day 2: observation u2 = true

Prediction: P(r2 = true|u1 = true) =
∑

r1
P(r2 = true|r1) ∗ P(r1|u1 =

true) = 0.7 ∗ 0.818 + 0.3 ∗ 0.182 ≈ 0.627
Update by the new evidence:
P(r2 = true|u1 = u2 = true) = αP(u2 = true|r2 = true)P(r2 =
true|u1 = true) = α ∗ 0.9 ∗ 0.627 = α ∗ 0.564 ≈ 0.883
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Exercise 3: Hidden Markov model

Professor has a 3 shirts: red (R), green (G) and blue (B). The color of shirt he wears gives a hint about his mood (happy and
sad) on that day. What is the most likely sequence of her mood in 3 days, if he wars G, B, R? Assume that on day 1 there is a
probability 0.4 that she is sad.

H S
H 0.7 0.3
S 0.5 0.5

R G B
H 0.8 0.1 0.1
S 0.2 0.3 0.5

max
m1,m2,m3

P(C1 = G ,C2 = B,C3 = R,M1 = m1,M2 =

m2,M3 = m3)

Chain rule:

P(C3|C2,C1,M3,M2,M1)×
P(C2|C1,M3,M2,M1)×
P(C1|M3,M2,M1)×
P(M3|M2,M1)×
P(M2|M1)×
P(M1)×
=

P(C3|M3)P(C2|M2)P(C1|M1)P(M3|M2)P(M2|M1)P(M1|S)

HHH: 0.1 ∗ 0.1 ∗ 0.8 ∗ 0.73 = 0.0027

SSH: 0.3 ∗ 0.5 ∗ 0.8 ∗ 0.5 ∗ 0.5 ∗ 0.6 = 0.018

. . .
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Marika Ivanová (MFF UK) Introduction to Artificial Intelligence April 2022 9 / 12



Exercise 3: Hidden Markov model

Professor has a 3 shirts: red (R), green (G) and blue (B). The color of shirt he wears gives a hint about his mood (happy and
sad) on that day. What is the most likely sequence of her mood in 3 days, if he wars G, B, R? Assume that on day 1 there is a
probability 0.4 that she is sad.

H S
H 0.7 0.3
S 0.5 0.5

R G B
H 0.8 0.1 0.1
S 0.2 0.3 0.5

max
m1,m2,m3

P(C1 = G ,C2 = B,C3 = R,M1 = m1,M2 =

m2,M3 = m3)

Chain rule:

P(C3|C2,C1,M3,M2,M1)×
P(C2|C1,M3,M2,M1)×
P(C1|M3,M2,M1)×
P(M3|M2,M1)×
P(M2|M1)×
P(M1)×
=

P(C3|M3)P(C2|M2)P(C1|M1)P(M3|M2)P(M2|M1)P(M1|S)

HHH: 0.1 ∗ 0.1 ∗ 0.8 ∗ 0.73 = 0.0027

SSH: 0.3 ∗ 0.5 ∗ 0.8 ∗ 0.5 ∗ 0.5 ∗ 0.6 = 0.018

. . .
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Viterbi algorithm: NLP example

DT NN VB
(Start) 0.8 0.2 0

DT 0 0.9 0.1

NN 0 0.5 0.5

VB 0.5 0.5 0

THE FANS WATCH RACE
DT 0.2 0 0 0

NN 0 0.1 0.3 0.1

VB 0 0.2 0.15 0.3

DT

NN

VB

NN

VB

NN

VB

DTstart
0.8× 0.2 = 0.16

×0.9× 0.1 = 0.0144

×0.1× 0.2 = 0.0032

×0.5× 0.3 = 0.00216

×0 = 0

×0.5× 0.3 = 0.00048

×0.5× 0.15 = 0.00108

×0 = 0

×0.5× 0.2 = 0.000108

×0.9× 0.1 = 9.72× 10−6

×0.1× 0.3 = 3.24× 10−6

the fans watch the race
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Selected quiz questions

How is Markov assumption used in the transition model

P(Xt |X0:t−1) = P(Xt |Xt−k), where k > 0 is the order of MC

What is the difference between stationary and static process?

Static: state does not change. Stationary: probability distribution
P(Xt |Xt−1) is eaqual for all time steps t.

What is the probability of the transition Rain=true → Rain= false?

0.3

Assume that you want to translate a speach that you hear. What
type of inference task is it? (Poll)

Most likely explanation.
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Does mixing time mean that after that time, the state will not change?

No.

Assume that state variable X depends on two previous state variables Xt−1 and Xt−2.
Can we encode this transition using dependence just between subsequent states?

Yes.

Example: in 2nd order MC with possible statesA, G , C , T . transition table has 4x4
values. We construct 1st MC with 16 states AA,AC , . . . ,CA,CC , . . . ,GG . The new
transition table has 162 entries.

Assume that we do full smoothing, that is we smooth every past variable (think about an
efficient method how to do it), and for each past variable we select the most probable
value. Will we get the most likely explanation of a sequence of observations? Why?

Use smoothing to find posterior distribution of rain P(Rk |u1:t) for all time steps.

Then, construct a sequence of most likely states

(arg max
r1

P(r1|u1:t), arg max
r2

P(r2|u1:t), . . . , arg max
rt

P(rt |u1:t))

However, the most likely sequence is different:

arg max
r1:t

P(r1:t |u1:t)
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Marika Ivanová (MFF UK) Introduction to Artificial Intelligence April 2022 12 / 12



Does mixing time mean that after that time, the state will not change?

No.

Assume that state variable X depends on two previous state variables Xt−1 and Xt−2.
Can we encode this transition using dependence just between subsequent states?

Yes.

Example: in 2nd order MC with possible statesA, G , C , T . transition table has 4x4
values. We construct 1st MC with 16 states AA,AC , . . . ,CA,CC , . . . ,GG . The new
transition table has 162 entries.

Assume that we do full smoothing, that is we smooth every past variable (think about an
efficient method how to do it), and for each past variable we select the most probable
value. Will we get the most likely explanation of a sequence of observations? Why?

Use smoothing to find posterior distribution of rain P(Rk |u1:t) for all time steps.

Then, construct a sequence of most likely states

(arg max
r1

P(r1|u1:t), arg max
r2

P(r2|u1:t), . . . , arg max
rt

P(rt |u1:t))

However, the most likely sequence is different:

arg max
r1:t

P(r1:t |u1:t)
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Marika Ivanová (MFF UK) Introduction to Artificial Intelligence April 2022 12 / 12



Does mixing time mean that after that time, the state will not change?

No.

Assume that state variable X depends on two previous state variables Xt−1 and Xt−2.
Can we encode this transition using dependence just between subsequent states?

Yes.

Example: in 2nd order MC with possible statesA, G , C , T . transition table has 4x4
values. We construct 1st MC with 16 states AA,AC , . . . ,CA,CC , . . . ,GG . The new
transition table has 162 entries.

Assume that we do full smoothing, that is we smooth every past variable (think about an
efficient method how to do it), and for each past variable we select the most probable
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