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A small reminder

Result(s, a) : deterministic outcome of taking action a in state s

Now we assume nondeterministic partially observable environment -
we don’t know the current state and the outcome of a

Formal model:

Result(a) : random variable describing possible outcome state
P(Result(a) = s|a, e) : probability of outcome s of action a, given
evidence observation e

Utility function U(s) - number describing desirability of state s

Expected utility of an action a given evidence e:
EU(a|e) =

∑
s P(result(a) = s|a, e)U(s)

Maximum expected utility action = arg maxa EU(a|e) - action that
should be chosen

We often need to solve a sequential decision problem: make decisions
repeatedly (steps of a robot, operations of a space probe)
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A small reminder

Markov decision process (MDP)

S - set of states

A - set of actions

Markov property:

P(St+1|S0, . . . ,St , a0, . . . , at) = P(St+1|St , at)
R(S) - real bounded value (”short term” reward, feedback from the
environment)

U [S0,S1, . . . ] = R(S0) + γR(S1) + γ2R(S2) + . . .

U [S0,S1, . . . ] - utility (”long term” total reward)
γ - discount factor (future rewards are less significant), 0 < γ ≤ 1

A solution to a MDP is a policy π : S 7→ A

Policy is stationary *(see later)

MDP is an extension of MC: in addition, MDP has actions and rewards

MDP with only action ”wait” and all rewards are equal reduces to MC
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Marika Ivanová (MFF UK) Introduction to Artificial Intelligence April 2022 3 / 16



A small reminder

Markov decision process (MDP)

S - set of states

A - set of actions

Markov property:

P(St+1|S0, . . . ,St , a0, . . . , at) = P(St+1|St , at)

R(S) - real bounded value (”short term” reward, feedback from the
environment)

U [S0,S1, . . . ] = R(S0) + γR(S1) + γ2R(S2) + . . .

U [S0,S1, . . . ] - utility (”long term” total reward)
γ - discount factor (future rewards are less significant), 0 < γ ≤ 1

A solution to a MDP is a policy π : S 7→ A

Policy is stationary *(see later)

MDP is an extension of MC: in addition, MDP has actions and rewards

MDP with only action ”wait” and all rewards are equal reduces to MC
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How to find a policy?

choose the action maximizing the expected utility of the subsequent state:

π∗(s) = arg maxa
∑

s′ P(s′|s, a)U(s′)

utility of a state depends on the utility of its neighbors:

U(s) = R(s) + γmaxa
∑

s′ P(s′|s, a)U(s′) - Bellman equation

two algorithms: value iteration and policy iteration
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Bellman equation

Given a state I am in, assuming I take the best possible action now and at
each subsequent step, what long term reward can I expect?

U(s) = R(s) + γmax
a

∑
s′

P(s ′|s, a)U(s ′)

What is the VALUE of a state?

Basic block for solving MDPs, omnipresent in reinforcement learning

Dynamic programming

Choice of γ

Low γ encourages the model to focus on getting reward quickly and
ignore long-term reward
High γ encourages long-term rewards
Typically 0.9 ≤ γ ≤ 0.99
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Value iteration

1 Start with arbitrary initial values for utilities

2 Update the utility U(s) for each state from utilities of neighbors -
Bellman update:

Ui+1 ← R(s) + γ max
a∈A(s)

∑
s′

P(s ′|s, a)Ui (s
′)

3 Perform action (2) until the utility converges
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Example: Value iteration

Reward function:
∀s ∈ S : R(s) = 0

Discount factor: γ = 0.9

Noise: 0.2 (transition function,
as we had on the lecture)

We iteratively update the utility for each state using Bellman update:

Ui+1(s)← R(s) + γ max
a∈A(s)

∑
s′

P(s ′|s, a)Ui (s
′)
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Example: Value iteration

Reward function:
∀s ∈ S : R(s) = 0

Discount factor: γ = 0.9

Noise: 0.2

Iteration 1: What are the utilities of states?

State [3,3]:

0 + 0.9 ∗max(0.8 ∗ 1 + 0.1 ∗ 0 + 0.1 ∗ 0, 0.8 ∗ 0 + 0.1 ∗ 1 + 0.1 ∗ 0, 0.8 ∗ 0 + 0.1 ∗ 0 + 0.1 ∗ 0) =
0.9 ∗ 0.8 = 0.72

All remaining states have U(s) = 0.

Marika Ivanová (MFF UK) Introduction to Artificial Intelligence April 2022 8 / 16



Example: Value iteration

Reward function:
∀s ∈ S : R(s) = 0

Discount factor: γ = 0.9

Noise: 0.2

Iteration 1: What are the utilities of states?
State [3,3]:

0 + 0.9 ∗max(0.8 ∗ 1 + 0.1 ∗ 0 + 0.1 ∗ 0, 0.8 ∗ 0 + 0.1 ∗ 1 + 0.1 ∗ 0, 0.8 ∗ 0 + 0.1 ∗ 0 + 0.1 ∗ 0) =
0.9 ∗ 0.8 = 0.72

All remaining states have U(s) = 0.
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Example: Value iteration

Reward function:
∀s ∈ S : R(s) = 0

Discount factor: γ = 0.9

Noise: 0.2

Iteration 2: What are the utilities of states?

State [3,3]:
0 + 0.9 ∗

max(0.8 ∗ 1 + 0.1 ∗ 0.72 + 0.1 ∗ 0, 0.8 ∗ 0 + 0.1 ∗ 1 + 0.1 ∗ 0, 0.8 ∗ 0 + 0.1 ∗ 0.72 + 0.1 ∗ 0) =
0.9 ∗ (0.8 + 0.1 ∗ 0.72) = 0.78
State [3,2]:
0 + 0.9 ∗max(0.8 ∗ 0.72 + 0.1 ∗ (−1) + 0.1 ∗ 0, 0.8 ∗ (−1) + 0.1 ∗ 0.72 + 0.1 ∗ 0,

0.8 ∗ 0 + 0.1 ∗ 0.72 + 0.1 ∗ 0, 0.8 ∗ 0 + 0.1 ∗ (−1) + 0.1 ∗ 0) = 0.9∗(0.8∗0.72+0.1∗(−1)) = 0.43
State [2,3]:
0 + 0.9 ∗

max(0.8 ∗ 0.72 + 0.1 ∗ 0 + 0.1 ∗ 0, 0.8 ∗ 0 + 0.1 ∗ 0.72 + 0.1 ∗ 0, 0.8 ∗ 0 + 0.1 ∗ 0 + 0.1 ∗ 0) =
0.9 ∗ (0.8 ∗ 0.72) = 0.52
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Marika Ivanová (MFF UK) Introduction to Artificial Intelligence April 2022 9 / 16



Example: Value iteration

Reward function:
∀s ∈ S : R(s) = 0

Discount factor: γ = 0.9

Noise: 0.2

Iteration 3: What are the utilities of states?

State [3,3]:

0.9 ∗ (0.8 ∗ 1 + 0.1 ∗ 0.78 + 0.1 ∗ 0.43) = 0.83

State [3,2]:

0.9 ∗ (0.8 ∗ 0.78) + 0.1 ∗ (−1) + 0.1 ∗ 43) = 0.51

State [2,3]:

0.9 ∗ (0.8 ∗ 0.78 + 0.2 ∗ 0.52) = 0.66

State [3,1]:

0.9 ∗ (0.8 ∗ 0.43) = 0.31

..

Marika Ivanová (MFF UK) Introduction to Artificial Intelligence April 2022 10 / 16



Example: Value iteration

Reward function:
∀s ∈ S : R(s) = 0

Discount factor: γ = 0.9

Noise: 0.2

Iteration 3: What are the utilities of states?

State [3,3]:

0.9 ∗ (0.8 ∗ 1 + 0.1 ∗ 0.78 + 0.1 ∗ 0.43) = 0.83

State [3,2]:

0.9 ∗ (0.8 ∗ 0.78) + 0.1 ∗ (−1) + 0.1 ∗ 43) = 0.51

State [2,3]:

0.9 ∗ (0.8 ∗ 0.78 + 0.2 ∗ 0.52) = 0.66

State [3,1]:

0.9 ∗ (0.8 ∗ 0.43) = 0.31

..
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Example: Value iteration

Reward function: ∀s ∈ S : R(s) = 0

Discount factor: γ = 0.9

Noise: 0.2 (transition function, as we had
on the lecture)

After 100 iterations, we obtain

How do we know we converged?
Stopping criteria:|Uk+1 − Uk | < 1−γ

γ
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Policy iteration

1 Start with a random policy π
2 Alternate the following two steps

a) Policy evaluation - like the Bellman update, but without ”max”
b) Policy improvement - calculate MEU policy using one step look-ahead
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Marika Ivanová (MFF UK) Introduction to Artificial Intelligence April 2022 12 / 16



Policy iteration

1 Start with a random policy π
2 Alternate the following two steps

a) Policy evaluation - like the Bellman update, but without ”max”
b) Policy improvement - calculate MEU policy using one step look-ahead
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Example: Policy iteration

Reward function:
∀s ∈ S : R(s) = 0

Discount factor: γ = 0.9

Noise: 0.2 (transition
function, as we had on
the lecture)

Initiate all black cells
with zeros
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Value iteration vs Policy iteration

Value iteration

Start with random utilities

Iteratively find improved
utilities, until reaching optimal
value

Optimal policy can be derived
from optimal utilities

A policy’s utility function can be
obtained using optimality
Bellman operator

Policy iteration

Evaluate current policy

Find an improved policy

Improvement is guaranteed
(unless we found the optimum)

Process based on Bellman
operator

Often converges faster
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Selected quiz questions

Can classical planning be used to solve MDP?

No. Because in stochastic environment, after applying a fixed plan,
we may end up in a nonterminal state.

Prove that utility is finite even for infinite sequences of states, if
discount factor is < 1.

Uh [s0, s1, s2, . . . ] =
∞∑
t=0

γtR(st) ≤
∞∑
t=0

γtRmax =
Rmax

1− γ

The last equality follows from the sum of an infinite geometric series

Does the optimal policy depend on an initial state?

Given that discounted utilities with infinite horizon are used, the
optimal policy is independent of the initial state
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A stationary policy means that the optimal action in a given state
cannot change over time.

Is the optimal policy for a finite horizon stationary or nonstationary?

Nonstationary

How about for an infinite horizon (not necessarily infinite sequence of
states, just no fixed deadline)?

Stationary

What is the difference between reward and utility?

Reward: how much we ”earn” for visiting a state

Utility: total reward from s onward

Look at the graph of evolution of utility values. Explain what
happened at time around 5.

Calculation of utility values ”reached” state [1,1], whose utility
started to grow

Marika Ivanová (MFF UK) Introduction to Artificial Intelligence April 2022 16 / 16



A stationary policy means that the optimal action in a given state
cannot change over time.

Is the optimal policy for a finite horizon stationary or nonstationary?

Nonstationary

How about for an infinite horizon (not necessarily infinite sequence of
states, just no fixed deadline)?

Stationary

What is the difference between reward and utility?

Reward: how much we ”earn” for visiting a state

Utility: total reward from s onward

Look at the graph of evolution of utility values. Explain what
happened at time around 5.

Calculation of utility values ”reached” state [1,1], whose utility
started to grow
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