# Introduction to Complexity and Computability

Petr Kučera

2019/20

## Introduction

## Syllabus

- Turing machines and their variants, Church-Turing thesis
- 2 Halting problem and other undecidable problems
- 8 RAM and their equivalence with Turing machines. Algorithmically computable functions
- Occidable and partially decidable languages and their properties
- 5 *m*-reducibility and *m*-complete languages
- 6 Rice's theorem
- Nondeterministic Turing machines, basic complexity classes, classes P, NP, PSPACE, EXPTIME
- 8 Savitch's theorem
- Oeterministic space and time hierarchy theorems
- Polynomial reducibility among problems NP-hardness and NP-completeness
- Cook-Levin theorem, examples of NP-complete problems, proofs of NP-completeness
- Pseudopolynomial algorithms and strong NP-completeness
- Approximations of NP-hard optimization problems, approximation algorithms and schemes
- Classes co-NP and #P

#### Both

 Sipser, M. Introduction to the Theory of Computation. Vol. 2. Boston: Thomson Course Technology, 2006.

#### Computability

- Soare R.I.: Recursively enumerable sets and degrees. Springer-Verlag, 1987
- Odifreddi P.: Classical recursion theory, North-Holland, 1989

#### Complexity

- Garey, Johnson: Computers and intractability a guide to the theory of NP-completeness, W.H. Freeman 1978
- Arora S., Barak B.: *Computational Complexity: A Modern Approach*. Cambridge University Press 2009.

#### Motivational questions

- **1** What is an algorithm?
- What can be computed using algorithms?
- 3 Can all problems be solved using algorithms?
- How can we recognize whether a given problem can be solved by an algorithm?
- 6 Which algorithms are "fast" and which problems can be solved with them?
- 6 What is the difference between time and space?
- Which problems are "easy" and which are "hard"? How can we recognize them?
- 8 Is it easier to examine or to be examined?
- How we can solve problems for which we do not know any "fast" algorithm?

# Computability

# A Light Introduction into the Theory of Algorithms

As in other programming lectures, we, too, shall start with a "Hello world" program. Let us say in C.

```
helloworld.c
```

```
#include <stdio.h>
```

```
int main(int argc, char *argv[])
{
    printf("Hello, world\n");
    return 0;
}
```

- We can immediately see that this program always finishes and the first twelve characters it outputs are *Hello, world*.
- This is not the only way how to write a program with the same functionality...

#### helloworld2.c

```
#include <stdio.h>
```

```
int exp(int i, int n)
/* Returns the n-th power of i */
{
    int pow, j;
    pow=1;
    for (j=1; j<=n; ++j) pow *= i;
    return pow;
}</pre>
```

#### Program Hello, world! (2nd version)

```
int main(int argc, char *argv[]) {
   int n, total, x, y, z;
   scanf("%d", &n);
   total=3;
   while (1) {
      for (x=1; x<=total-2; ++x) {</pre>
          for (y=1; y<=total-x-1; ++y) {</pre>
             z=total-x-y;
             if (\exp(x, n) + \exp(y, n) = \exp(z, n)) {
                printf("Hello, _world\n");
                return 0;
      ++total;
```



In which cases helloworld2 finishes with the first twelve characters it outputs being *Hello, world*?

Program helloworld2 finishes and the first twelve characters it outputs are *Hello, world*, if and only if scanf reads a number  $n \le 2$ . For n > 2 program helloworld2 will not finish its computation.

Proof of this fact is equivalent to proving the Fermat's Last Theorem!



| Hel  | loworld | ł |
|------|---------|---|
| 1101 |         | - |

Instance: Source code of program *P* in language C and input file *I*.

Question: Is it true that the first 12 characters which are output by *P* on input *I* are *Hello, world*? (Finishing is not required.)



Is it possible to write a program H in language C which given source code P and I answers the question of problem HELLOWORLD?



We shall show it is not possible.

## Undecidability of HELLOWORLD



- We assume that the input is passed to the standard input of programs P and H and is only accessed by function scanf.
- We assume that the output is written to the standard output only by function printf.

#### Say hello instead of rejecting

We shall modify program H (to  $H_1$ ) so that instead of *no* it outputs *Hello, world*.



The following simple modification gives us program  $H_1$ :

If the first character written by H to the standard output is n, we know H will write no eventually. We can thus modify printf so that *Hello, world* is output instead.





 $H_1$  expects a source code P and an input file I. Thus we cannot pass  $H_1$  directly to  $H_1$  (there is no input file to pass).

We have to modify  $H_1$  so that it expects only one input file which is used as both source code P and input file I.

#### Two inputs in one

Program  $H_2$  expects only one input file which is passed to  $H_1$  as both the source code P and input file I.



- Program H<sub>2</sub> first reads the whole input and stores it in array A which is allocated in memory (e.g. using malloc).
- **2** After that  $H_1$  is simulated, whereas:
  - When *H*<sub>1</sub> reads input using scanf, *H*<sub>2</sub> uses array *A* (i.e. scanf is replaced with reading from *A*).
  - Two indices in array A are used to remember where in P and I is H<sub>1</sub> currently reading.

Let us ask  $H_2$  about itself...



- $\Rightarrow$  Program  $H_2$  cannot exist.
- $\Rightarrow$  Program  $H_1$  cannot exist.
- $\Rightarrow$  Program *H* cannot exist.
- $\Rightarrow$  Problem Helloworld cannot be solved by any program in C (and is thus algorithmically undecidable).

#### Calling function **foo**

Let us consider the following problem.

#### Calling function **foo**

Instance: Source code of program Q in C and input file V.

Question: Does program *Q* call function named **foo** when working on input *I*?

- We want to show that problem CALLING FUNCTION foo is algorithmically undecidable.
- We shall show that if we would be able to decide problem CALLING FUNCTION foo, we would be able to decide problem HELLOWORLD as well.

#### A light introduction to reducibility

If we are able to solve problem *A* using a solver for problem *B* we say that *A* is reducible to *B*.



#### Call "Hello, world"

- We shall reduce problem HELLOWORLD to problem CALLING FUNCTION foo.
- We shall describe how to transform an instance of problem HELLOWORLD (program P and input I) into an instance of problem CALLING FUNCTION foo (program Q and input V).
- We have to ensure that

program P with input I writes *Hello, world* as the first 12 characters of the output,

#### if and only if

program Q with input V calls function named foo.

 Problem CALLING FUNCTION foo is thus algorithmically undecidable.

#### How to make a call from a greeting

The input to the reduction is program *P* and input file *I*.

- If P contains function foo, we rename it and its calls (refactoring, the modified program is called P<sub>1</sub>).
- 2 Add function named foo to  $P_1$ , it does nothing and is not called  $(\rightarrow P_2)$ .
- **3** Modify  $P_2$  so that it stores the first 12 characters it outputs in array  $A (\rightarrow P_3)$ .
- Modify P<sub>3</sub> so that when it uses an output command, it first checks, whether the first 12 characters in A are Hello, world. If so, it calls function foo.
- The last step above gives us the required program Q and input V = I.

### Disadvantages of C for computability theory

- C language is too complicated.
- We would have to define a model of computation (i.e. generalized computer) for the C language.
- At the time of origins of computability theory, no computers or higher level languages were available and thus the theory is usually built using more traditional tools.
- We need a simple computation model, which would be powerful enough to capture our intuitive notion of an algorithm.

# A bit of history ...

In year 1900, David Hilbert formulated 23 problems. The 10th problem can be formulated as follows.



Given a Diophantine equation with any number of unknown quantities and with rational integral numerical coefficients: To devise a process according to which it can be determined in a finite number of operations whether the equation is solvable in rational integers.

To answer this question a formal notion of an algorithm and effective computability was needed.

**Intuitively:** An algorithm is a finite sequence of simple instructions which leads to a solution of given problem.

#### Church's thesis

In year 1934, Alonzo Church proposed the following thesis:



Effectively computable functions are exactly those which are  $\lambda$ -definable.

Later (1936) he revised the thesis in the following way.



Effectively computable functions are exactly those which are partially recursive.

## Turing's thesis

In year 1936, Alan Turing proposed the following thesis



To every algorithm in intuitive sense we can construct a Turing machine which implements it.

- The above mentioned models of computation (λ-calculus, partially recursive functions, Turing machines) define the same class of algorithmically computable functions.
- The above thesis is usually refered to as Church-Turing thesis.

#### 10th Hilbert's problem

Hilbert's 10th problem can be restated as follows.



Find an algorithm to determine whether a given polynomial Diophantine equation with integer coefficients has an integer solution.

In year 1970, Yuri Matiyasevich gave a negative answer.



There is no algorithm which would determine whether a given polynomial Diophantine equation with integer coefficients has an integer solution. According to Church-Turing thesis, intuitive notion of algorithm is also equivalent with...

- description of a Turing machine,
- program for RAM,
- derivation of a partial recursive function,
- derivation of a function in λ-calculus,
- program in a higher level programming language, such as C, Pascal, Java, Basic etc.,
- program in a functional programming language such as Lisp, Haskell etc.

In all these models we can compute the same functions and solve the same problems.

# Turing machines



By Rocky Acosta - Own work, CC BY 3.0

## Turing machine



(1-tape deterministic) Turing machine (TM) M is a quintuple

 $M = (Q, \Sigma, \delta, q_0, F)$ 

- Q is a finite set of states.
- $\Sigma$  is a finite tape alphabet which contains character  $\lambda$  for an empty cell.
  - We shall often differentiate between a tape (inner) and an input (outer) alphabets.
- $\delta : Q \times \Sigma \mapsto Q \times \Sigma \times \{R, N, L\} \cup \{\bot\}$  is a transition function, where  $\bot$  denotes an undefined transition.
- $q_0 \in Q$  is an initial state.
- $F \subseteq Q$  is a set of accepting states.

## Configuration and display of a Turing machine

- Turing machine consists of
  - a control unit,
  - a tape which is potentially infinite in both directions, and
  - a head for reading and writing which can move in both directions.
- **Display** is a pair (q, a), where  $q \in Q$  is the current state of a Turing machine and  $a \in \Sigma$  is a symbol below the head.
  - Based on display TM decides what to do next.
- Configuration captures the full state of computation of a Turing machine, it consists of
  - the current state of the control unit.
  - word on the tape (from the leftmost to rightmost empty cell), and
  - position of its head within the word on the tape.

## Computation of a Turing machine

- Computation of TM *M* starts in the initial configuration:
  - the control unit is in the initial state,
  - the tape contains the input word, and
    - The input word does not contain an empty cell symbol.
  - the head is on the leftmost character of the input.
- Assume the control unit of M is in state q ∈ Q and the head of M reads symbol a ∈ Σ:
- If  $\delta(q, a) = \bot$  computation of M terminates,
- If  $\delta(q, a) = (q', a', Z)$ , where  $q' \in Q$ ,  $a' \in \Sigma$  and  $Z \in \{L, N, R\}$ , then M
  - changes the current state to q',
  - rewrites the symbol below the head to a', and
  - moves head one cell to left (if Z = L), right (Z = R), or the head stays at the same position (Z = N).

#### Words and languages

- Word (also string) over alphabet  $\Sigma$  is a finite sequence of characters  $w = a_1 a_2 \dots a_k$ , where  $a_1, a_2, \dots, a_k \in \Sigma$ .
- Length of a string  $w = a_1 a_2 \dots a_k$  is denoted as |w| = k.
- The set of all words over alphabet  $\Sigma$  is denoted as  $\Sigma^*$ .
- Empty word is denoted as ε.
- Concatenation of words  $w_1$  and  $w_2$  is denoted as  $w_1w_2$ .
- Language  $L \subseteq \Sigma^*$  is a set of words over alphabet  $\Sigma$ .
- Complement of language *L* is denoted as  $\overline{L} = \Sigma^* \setminus L$ .
- Concatenation of languages  $L_1$  and  $L_2$  is language  $L_1 \cdot L_2 = \{w_1w_2 \mid w_1 \in L_1, w_2 \in L_2\}.$
- Kleene star operation on language *L* produces language  $L^* = \{w \mid (\exists k \in \mathbb{N}) (\exists w_1, \dots, w_k \in L) [w = w_1 w_2 \dots w_k]\}.$

A decision problem is formalized as a question whether given instance belongs to the language of positive instances.

## Turing decidable languages

- TM *M* accepts  $w \in \Sigma^*$ , if computation of *M* with input *w* terminates in an accepting state.
- TS *M* rejects *w*, if computation of *M* with input *w* terminates in a state which is not accepting.
- Language of words accepted by TM M is denoted as L(M).
- We denote the fact that the computation of TM M on w terminates as M(w)↓ (computation converges).
- We denote the fact that the computation of TM M on w does not terminate as M(w)↑ (computation diverges).
- Language *L* is partially (Turing) decidable (also recursively enumerable), if there is a TM *M* such that L = L(M).
- Language *L* is (Turing) decidable (also recursive), if there is a TM *M* which always stops and L = L(M).
# Turing computable functions

- Each Turing machine M with tape alphabet  $\Sigma$  computes some partial function  $f_M : \Sigma^* \mapsto \Sigma^*$ .
- If  $M(w) \downarrow$  for a given input  $w \in \Sigma^*$ , the value  $f_M(w)$  is defined which is denoted as  $f_M(w) \downarrow$ .
- The value of f<sub>M</sub>(w) is then the word on an (output) tape of M(w) after the computation terminates.
- If M(w)↑, then the value f<sub>M</sub>(w) is undefined, which is denoted as f<sub>M</sub>(w)↑.
- Function  $f: \Sigma^* \mapsto \Sigma^*$  is Turing computable, if there is a Turing machine M which computes it.



To each Turing computable function there is infinitely many Turing machines computing it!

Turing machines have a lot of variants, for example

- TM with a tape potentially infinite only in one direction.
- TM with multiple tapes (we can differentiate input/output/work tapes).
- TM with multiple heads on tapes,
- TM with only binary alphabet,
- Nondeterministic TM's.

All these variants are equivalent to "our" model.

## Structure of a 3-Tape Turing Machine



*k*-Tape Turing Machine differs from a single tape Turing machine as follows:

- It has k tapes with a head on each of them.
   Input tape contains the input at the beginning.
   Often read-only.
   Work tapes are read-write.
   Output tape at the end contains the output string.
   Often write-only with head moving only to the right.
- Heads on tapes move independently on each other.
- Transition function is defined as  $\delta: Q \times \Sigma^k \mapsto Q \times \Sigma^k \times \{R, N, L\}^k \cup \{\bot\}.$

#### Theorem 1

To each k-tape Turing machine M there is a single tape Turing machine M', which simulates the computation of M, accepts the same language and computes the same function as M.

#### Representation of k tapes on a single tape



# Random Access Machine

#### Random Access Machine (RAM)



#### Random Access Machine (definition)

- Random Access Machine (RAM) consists of
  - a control unit (processor, CPU), and
  - an unbounded memory.
- Memory of RAM is split into registers which we shall denote as r<sub>i</sub>, i ∈ N.
- A register can store any natural number (0 initially).
- Number stored in register  $r_i$  shall be denoted as  $[r_i]$ .
- Indirect addressing:  $[[r_i]] = [r_{[r_i]}]$ .
- Program for RAM is a finite sequence of instructions  $P = I_0, I_1, \ldots, I_\ell$ .
- Instructions are executed in the order given by the program.

| Instruction                   | Effect                            |
|-------------------------------|-----------------------------------|
| $LOAD(C, r_i)$                | $r_i \leftarrow C$                |
| $\mathbf{ADD}(r_i, r_j, r_k)$ | $r_k \leftarrow [r_i] + [r_j]$    |
| $SUB(r_i, r_j, r_k)$          | $r_k \leftarrow [r_i] \div [r_j]$ |
| $COPY([r_p], r_d)$            | $r_d \leftarrow [[r_p]]$          |
| $COPY(r_s, [r_d])$            | $r_{[r_d]} \leftarrow [r_s]$      |
| $\mathbf{JNZ}(r_i, I_z)$      | if $[r_i] > 0$ then goto z        |
| $\mathbf{READ}(r_i)$          | $r_i \leftarrow input$            |
| $\mathbf{PRINT}(r_i)$         | output $\leftarrow [r_i]$         |

$$x \div y = \begin{cases} x - y & x > y \\ 0 & \text{otherwise} \end{cases}$$

#### Languages decidable with RAM

- Consider alphabet  $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_k\}.$
- We pass a string  $w = \sigma_{i_1}\sigma_{i_2}\ldots\sigma_{i_n}$  to RAM *R* as a sequence of numbers  $i_1,\ldots,i_n$ .
- End of the input can *R* recognize because **READ** returns 0 when no more input is available.
- RAM *R* accepts *w*, if  $R(w) \downarrow$  and the first number written to the output by *R* is1.
- RAM *R* rejects *w*, if  $R(w) \downarrow$  and *R* either does not output any number or the first number written to the output is not 1.
- Language of strings accepted by RAM R is denoted as L(R).
- If language L = L(R) for some RAM R, then it is partially decidable (with RAM).
- If moreover this *R* terminates with every input, then we say that L = L(R) is decidable (with RAM).

We say that RAM *R* computes a partial arithmetic function  $f : \mathbb{N}^n \mapsto \mathbb{N}, n \ge 0$ , if with input *n*-tuple  $(x_1, \ldots, x_n)$ :

- If  $f(x_1, \ldots, x_n) \downarrow$ , then  $R(x_1, \ldots, x_n) \downarrow$  and R outputs value  $f(x_1, \ldots, x_n)$ .
- If  $f(x_1, \ldots, x_n)$ , then  $R(x_1, \ldots, x_n)$ .

Function f which is computable by some RAM R is called RAM computable.

## String functions computable with RAM

RAM *R* computes a partial function  $f : \Sigma^* \mapsto \Sigma^*$ , where  $\Sigma = \{\sigma_1, \sigma_2, \dots, \sigma_k\}$ , if the following is satisfied:

- The input strring w = σ<sub>i1</sub>σ<sub>i2</sub>...σ<sub>in</sub> is passed as a sequence of numbers i<sub>1</sub>,..., i<sub>n</sub>.
- End of the input can *R* recognize because **READ** returns 0 when no more input is available.
- If  $f(w) \downarrow = \sigma_{j_1} \sigma_{j_2} \dots \sigma_{j_m}$ , then  $R(w) \downarrow$  and it writes numbers  $j_1, j_2, \dots, j_m, 0$  to the output.
- If  $f(w)\uparrow$ , then  $R(w)\uparrow$ .

Function f which is computable by some RAM R is called RAM computable.

### Programming on RAM

Programs for RAM corresponds to a procedural language:

- We can use variables (scalar and unbounded arrays).
- Cycles (for and while) using conditional jump and a counter variable.
- Uncoditional jump (goto) using an auxiliary register where we store 1 and use a conditional jump.
- Conditional statement using a conditional jump.
- Functions and procedures we can inline a body of a function directly to the place where it is used (*inline*)
- We don't have recursive calls we can implement them using a cycle while and a stack.

### Variables in a program for RAM

Assume that we use arrays  $A_1, \ldots, A_p$  and scalar variables  $x_0, \ldots, x_s$ .

- Arrays are indexed with natural numbers (that is starting from 0).
- Element  $A_i[j]$ , where  $i \in \{1, ..., p\}, j \in \mathbb{N}$ , is stored in register  $r_{i+j*(p+1)}$ .
- Elements of array A<sub>i</sub>, i = 1, ..., p are thus stored in registers r<sub>i</sub>, r<sub>i+p+1</sub>, r<sub>i+2(p+1)</sub>, ....
- A scalar variable x<sub>i</sub>, where i ∈ {0,...,s} is stored in register r<sub>i\*(p+1)</sub>.
- Scalar variables are thus stored in registers

 $r_0, r_{p+1}, r_{2(p+1)}, \cdots$ 

#### Theorem 2

To each Turing machine M there is an equivalent RAM R.

- Content of the tape is stored in two arrays:
  - $T_r$  contains the right hand side and
  - $T_l$  contains the left hand side.
- Position of head index in variable h and side (right/left) in variable s
- State variable q.
- Choosing instruction conditional statement based on *h*, *s*, and *q*.

#### Theorem 3

To each RAM R there is an equivalent Turing machine M.

Content of the memory of R is represented on a tape of M as follows:

If the currently used registers are  $r_{i_1}, r_{i_2}, \ldots, r_{i_m}$ , where  $i_1 < i_2 < \cdots < i_m$ , then the tape contains string:

 $(i_1)_B|([r_{i_1}])_B#(i_2)_B|([r_{i_2}])_B#\ldots #(i_m)_B|([r_{i_m}])_B$ 

#### RAM $\longrightarrow$ Turing machine (structure of TM)

We shall describe a 4-tape TM M to a RAM R.

Input tape sequence of numbers passed to *R* as the input. Numbers are written in binary and separated with #. *M* only reads this tape.

- Output tape M writes here the numbers output by R. They are written in binary and separated with #. M only writes to this tape.
- Memory of RAM content of memory of *R*.
- Auxiliary tape for computing addition, subtraction, indirect indices, copying part of the memory tape, etc.

# Numbering Turing machines

### How to number Turing machines

Our goal is to assign a natural number to each Turing machine.

- Encode a Turing machine as a string over a small alphabet.
- **2** Encode any string over  $\Gamma$  as a binary string.
- 3 Assign a number to each binary string.
- The number we get in this way for a given Turing machine is called a Gödel number.

We shall restrict to Turing machines which
have a single accepting state and
use only binary input alphabet Σ<sub>in</sub> = {0, 1}.

- Restriction on the input alphabet means that the input strings are passed to Turing machines only as sequences of 0-es and 1-s.
- Work alphabet is not restricted during its computation a Turing machine can write any symbols to a tape.
- Any finite alphabet can be encoded in binary.
- Any Turing machine *M* can be easily modified into a Turing machine satisfying these restrictions.

#### Encoding transition function



### Encoding transition function in alphabet $\Gamma$

- Assume that
  - $Q = \{q_0, q_1, \dots, q_r\}$  for some  $r \ge 1$ , where  $q_0$  is the initial state and  $q_1$  is the accepting state.
  - $\Sigma = \{X_0, X_1, X_2, ..., X_s\}$  for some  $s \ge 2$ , where  $X_0 = '0'$ ,  $X_1 = '1'$ , and  $X_2 = '\lambda'$ .
- Instruction  $\delta(q_i, X_j) = (q_k, X_l, Z)$ , where  $Z \in \{L, N, R\}$  is encoded as string

 $(i)_B |(j)_B|(k)_B|(l)_B|Z$  .

 If C<sub>1</sub>,..., C<sub>n</sub> are the codes of all instructions of TM M, then the transition function δ is encoded as

 $C_1 \# C_2 \# \dots \# C_n$  .

### Write it in binary



# Numbering binary strings

- Given a binary string  $w \in \{0, 1\}^*$  we assign it number *i* such that  $(i)_B = 1w$ .
- String with number *i* is denoted as w<sub>i</sub> (i.e. (i)<sub>B</sub> = 1w<sub>i</sub>).
- We get a 1–1 correspondence (bijection) between {0,1}\* and positive natural numbers.
- Moreover we shall assume that 0 corresponds to an empty string, i.e. w<sub>0</sub> = w<sub>1</sub> = ε.

| $w_i$  | $1w_i$  | i  |
|--------|---------|----|
| Е      | 1       | 1  |
| 0      | 10      | 2  |
| 1      | 11      | 3  |
| 00     | 100     | 4  |
| :      | :       | ÷  |
| 001011 | 1001011 | 75 |
| :      | :       | :  |

## Gödel number

- We can associate a Gödel number *e* with a Turing machine *M* such that *w<sub>e</sub>* is an encoding of *M*.
- Turing machine with Gödel number e is denoted as M<sub>e</sub>.
- If string w<sub>e</sub> is not a syntactically correct encoding of a Turing machine, then M<sub>e</sub> is an empty Turing machine which immediately rejects every input and thus L(M<sub>e</sub>) = Ø.
- Now we can assign a Turing machine *M<sub>e</sub>* to every natural number *e*.

### Disambiguity of encodings of TMs

- Encoding of a TM is not unique because it depends on
  - the order of instructions,
  - numbering of states (except initial and accepting),
  - numbering of characters of tape alphabet (except 0, 1, ∧),
  - binary encoding of a number can contain any number of leading 0s.
- Every TM has actually an infinite number of possible encodings and infinitely many Gödel numbers.



### Encoding of objects (notation)

- Every object (e.g. number, string, Turing machine, RAM, graph, or formula) can be encoded into a binary string.
- We can encode *n*-tuples of objects as well.

#### **Definition 4**

- $\langle X \rangle$  denotes a binary string encoding object X.
- ⟨X<sub>1</sub>,...,X<sub>n</sub>⟩ denotes a binary string encoding *n*-tuple of objects X<sub>1</sub>,...,X<sub>n</sub>.
- For example if *M* is a Turing machine, then ⟨*M*⟩ denotes a binary string which encodes *M*.
- If *M* is a Turing machine and *x* is a string, then (*M*, *x*) denotes a binary string encoding the pair of *M* and *x*.

# Universal Turing machine

### Universal Turing machine

- The input to a universal Turing machine U is a pair (M, x), where M is a Turing machine and x is a string.
- $\mathcal{U}$  simulates computation of M on input x.
- The result of  $\mathcal{U}(\langle M, x \rangle)$  (i.e. terminating/accepting/rejecting and contents of the output tape) is given by the result of computation M(x).
- For simplicity, we shall describe  $\boldsymbol{\mathcal{U}}$  as a 3-tape TM.
- We can transform it into a single tape universal Turing machine.
- The language of *U* is called universal language and it is denoted as L<sub>u</sub> that is

$$L_u = L(\mathcal{U}) = \{ \langle M, x \rangle \mid x \in L(M) \}.$$

### Structure of a universal Turing machine

**1st tape** contains the input of  $\mathcal{U}$  that is the code  $\langle M, x \rangle$ .

 $\langle M,x\rangle$ 

2nd tape contains the work tape of *M*. Symbols  $X_i$  are encoded as  $(i)_B$  in blocks of the same length separated with |.

...|010|001|100|000|010|011|...

**3rd tape** contains the number of the current state  $q_i$  of M.

 $10011 (= (i)_B)$ 

# Algorithmically (un)decidable languages

## Definition

#### **Definition 5**

- Language *L* is partially decidable, if it is accepted by some Turing machine *M* (i.e. L = L(M)).
- Language L is decidable, if there is a Turing machine M which accepts L (i.e. L = L(M)) and moreover its compution over any input x stops (i.e. M(x)↓).
- Partially decidable languages = recursively enumerable languages.
- Decidable languages = recursive languages.

#### Theorem 6

If  $L_1$  and  $L_2$  are (partially) decidable languages, then  $L_1 \cup L_2$ ,  $L_1 \cap L_2$ ,  $L_1 \cdot L_2$ ,  $L_1^*$  are also (partially) decidable languages.

#### Theorem 7 (Post's theorem)

Language L is decidable if and only if L and  $\overline{L}$  are both partially decidable languages.



- Are all languages over a finite alphabet at least partially decidable?
- Are all partially decidable languages also decidable?

#### **Definition 8**

Set *A* is countable if there is a 1–1 function  $f : A \mapsto \mathbb{N}$ , i.e. if the elements of *A* can be numbered.

- There is only countable many Turing machines each has a Gödel number.
- Each partially decidable language is accepted by some Turing machine.

#### Lemma 9

There is only countable many partially decidable languages.

## Are all languages decidable?

A language  $L \subseteq \{0, 1\}^*$  corresponds to a set of natural numbers

 $A = \{i - 1 \mid i \in \mathbb{N} \setminus \{0\} \land w_i \in L\}.$ 

- $\mathcal{P}(\mathbb{N})$  is uncountable.
- There is uncountable many languages over alphabet {0,1}.



There must be languages over alphabet  $\{0,1\}$  which are not partially decidable!

We could even say that most of the languages are not partial decidable.

## Diagonal language

Let us define the diagonal language as follows.

 $\text{DIAG} = \{ \langle M \rangle \mid \langle M \rangle \notin L(M) \}$ 

Its complement is then defined as

 $\overline{\mathrm{DIAG}} = \{ \langle M \rangle \mid \langle M \rangle \in L(M) \}$ 

#### Theorem 10

- Language DIAG is not partially decidable (it is not recursively enumerable).
- 2 Language DIAG is not decidable, but it is partially decidable.
# Universal language

 Problem of deciding whether a given string y belongs to the universal language L<sub>u</sub> is a formalization of the UNIVERSAL PROBLEM:

|           | Universal problem                                                       |
|-----------|-------------------------------------------------------------------------|
| Instance: | Code of Turing machine $M$ and an input $x$ .                           |
| Question: | Is $x \in L(M)$ ? In other words, does <i>M</i> accept input <i>x</i> ? |

#### Theorem 11

Universal language (and UNIVERSAL PROBLEM) is partially decidable but it is not decidable.

# Halting problem

• A classical example of an algorithmically undecidable problem is the HALTING PROBLEM.

#### Halting problem

Instance: Code of Turing machine M and input x.

Question: Is  $M(x) \downarrow$ ? In other words does the computation of *M* over input *x* terminate?

#### Theorem 12

HALTING PROBLEM is partially decidable but it is not decidable.

# Algorithmically computable function

Let  $f, g: \Sigma^* \mapsto \Sigma^*$  be two partial functions, then

Domain of f is the set

$$\operatorname{dom} f = \{ x \in \Sigma^* \mid f(x) \downarrow \}$$

Range of f is the set

 $\operatorname{rng} f = \{ y \in \Sigma^* \mid (\exists x \in \Sigma^*) [f(x) \!\downarrow = y] \}$ 

• f and g are conditionally equal  $(f \simeq g)$  if

 $f \simeq g \iff [\operatorname{dom} f = \operatorname{dom} g \text{ and } (\forall x \in \operatorname{dom} f)[f(x) = g(x)]]$ 

**Intuitively:** (Algorithmically) computable function is a function computable by some algorithm.

#### Definition 13

- A partial function  $f : \Sigma^* \mapsto \Sigma^*$  is (algorithmically) computable if it is Turing computable.
- $\varphi_e$  denotes the function computed by Turing machine  $M_e$ .
- Computable functions = partial recursive functions.
- Total computable functions = (total) recursive functions.
- We also consider functions of multiple parameters and arithmetic functions, e.g.  $f(x, y) = x^2 + y^2$  corresponds to a function over strings  $f'(\langle x, y \rangle) = \langle x^2 + y^2 \rangle$ .
- There is only countable many computable functions not all functions are computable.

# Universal function

#### Theorem 14

A universal function  $\Psi$  for computable functions satisfying

 $\Psi(\langle e,x\rangle)\simeq \varphi_e(\langle x\rangle)$ 

is a computable function.

... because we have a universal Turing machine.

# Properties of (partially) decidable languages

# Partially decidable languages

#### Theorem 15

Given a language  $L \subseteq \Sigma^*$ , the following are equivalent:

- 1 L is partially decidable.
- 2 There is a Turing machine M satisfying

 $L = \{ x \in \Sigma^* \mid M(x) \downarrow \} .$ 

There is an algorithmically computable function f(x) satisfying

$$L = \operatorname{dom} f = \left\{ x \in \Sigma^* \mid f(x) \downarrow \right\}$$

• There is a decidable language *B* satisfying

 $L = \left\{ x \in \Sigma^* \mid (\exists y \in \Sigma^*) [\langle x, y \rangle \in B] \right\}$ 

#### Theorem 16

Language  $L \subseteq \Sigma^*$  is decidable if and only if its characteristic function

$$\chi_L(x) = \begin{cases} 1 & x \in L \\ 0 & x \notin L \end{cases}$$

is computable.

#### Definition 17 (Lexicographic order)

Let  $\Sigma$  be an alphabet and let us assume that < is a strict order over characters in  $\Sigma$ . Let  $u, v \in \Sigma^*$  be two different strings. We say that u is lexicographically smaller than v if

- 1 u is shorter (i.e. |u| < |v|), or
- 2 both strings have the same length (i.e. |u| = |v|) and if *i* is the first index with  $u[i] \neq v[i]$ , then u[i] < v[i].

This fact is denoted with u < v. As usual we extend this notation to  $u \le v$ , u > v and  $u \ge v$ .

An enumerator for a language L is a Turing machine E, which

- ignores its input,
- during its computation writes strings w ∈ L to a special output tape separated with '#', and
- each string  $w \in L$  is eventually written by E.
- If *L* is infinite, *E* never stops.

#### Theorem 18

- Language L is partially decidable if and only if there is an enumerator E for L.
- 2 Language L is decidable if and only if there is an enumerator E for L which outputs elements of L in lexicographic order.

#### Theorem 19

Let *L* be an infinite language, then *L* is ...

- 1 ...partially decidable, if and only if it is a range of a total algorithmically computable function f (i.e.  $L = \operatorname{rng} f$ ).
- 2 ...decidable, if and only if it is a range of an increasing total algorithmically computable function f (i.e.  $L = \operatorname{rng} f$ ).
  - Function  $f: \Sigma^* \to \Sigma^*$  is increasing, if u < v implies f(u) < f(v) for every pair of strings  $u, v \in \Sigma^*$  where  $f(u) \downarrow$  and  $f(v) \downarrow$ .

# Reducibility and completeness

#### Definition 20

A language *A* is *m*-reducible to a language *B* (which is denoted as  $A \leq_m B$ ) if there is a total computable function *f* s.t.

#### $(\forall x \in \Sigma^*)[x \in A \Longleftrightarrow f(x) \in B]$

Language A is *m*-complete if A is partially decidable and any partially decidable language B is *m*-reducible to A.

- 1-reducibility and 1-completeness we require the function *f* to be moreover 1–1.
- $\leq_m$  is a reflexive and transitive relation (it is a quasiorder).
- If  $A \leq_m B$  and B is (partially) decidable, then so is A.
- If A ≤<sub>m</sub> B, B is partially decidable and A is m-complete, then B is also m-complete.

# Complete languages

The HALTING PROBLEM can be formalized as language

 $HALT = \{ \langle M, x \rangle \mid M(x) \downarrow \}$ 

#### Theorem 21

 $L_u$ , DIAG, and HALT are *m*-complete languages. In particular, they are partially decidable, but not decidable.

#### Theorem 22 (Rice's theorem (languages))

Let *C* be a class of partially decidable languages and let us define  $L_C = \{\langle M \rangle \mid L(M) \in C\}$ . Then language  $L_C$  is decidable if and only if *C* is either empty or it contains all partially decidable languages.

#### Theorem 23 (Rice's theorem (functions))

Let *C* be a class of computable functions and let us define  $A_C = \{w_e \mid \varphi_e \in C\}$ . Then language  $A_C$  is decidable if and only if *C* is either empty or it contains all computable functions.

Rice's theorem implies that the following languages are undecidable:

- $K_1 \ = \ \{ \langle M \rangle \mid L(M) \neq \emptyset \}$
- Fin =  $\{\langle M \rangle \mid L(M) \text{ is a finite language } \}$
- Cof =  $\{\langle M \rangle \mid \overline{L(M)} \text{ is a finite language}\}$ 
  - Inf =  $\{\langle M \rangle \mid L(M) \text{ is an infinite language}\}$
- Dec =  $\{\langle M \rangle \mid L(M) \text{ is a decidable language}\}$

Tot = 
$$\{\langle M \rangle \mid L(M) = \Sigma^*\}$$

 $\operatorname{Reg} = \{ \langle M \rangle \mid L(M) \text{ is a regular language} \}$ 

# Post correspondence problem

Post correspondence problem (PCP) Instance: Collection P of "dominos" (pairs of strings):  $P = \left\{ \left| \frac{t_1}{b_1} \right|, \left| \frac{t_2}{b_2} \right|, \dots, \left| \frac{t_k}{b_k} \right| \right\}$ where  $t_1, ..., t_k, b_1, ..., b_k \in \Sigma^*$ . Question: Is there a matching sequence  $i_1, i_2, \ldots, i_l$  where  $l \geq 1$  and  $t_{i_1} t_{i_2} \dots t_{i_l} = b_{i_1} b_{i_2} \dots b_{i_l}$ ?

#### Theorem 24

Post correspondence problem is undecidable.

#### Theorem 25 (s-m-n)

For any two natural numbers  $m, n \ge 1$  there is a 1–1 total computable function  $s_n^m : \mathbb{N}^{m+1} \to \mathbb{N}$  such that for every  $x, y_1, y_2, \ldots, y_m, z_1, \ldots, z_n \in \Sigma_b^*$ :

$$\varphi_{s_n^m(x,y_1,y_2,\ldots,y_m)}^{(n)}(z_1,\ldots,z_n)\simeq \varphi_x^{(m+n)}(y_1,\ldots,y_m,z_1,\ldots,z_n)$$

# Complexity

# Basic complexity classes

# **Decision problems**

- In a decision problem we want to decide whether a given instance x satisfies a specified condition.
- Answer is yes/no.
- Formalized as a language  $L \in \Sigma^*$  of positive instances and a decision whether  $x \in L$ .
- Examples of decision problems:
  - Is a given graph connected?
  - Does a given logical formula have a model?
  - Does a given linear program admit a feasible solution?
  - Is a given number prime?

# Search and optimization problems

- In a search problem we aim to find for a given instance x an output y which satisfies a specified condition.
- Answer is *y* or information that no suitable *y* exists.
- Formalized as a relation  $R \subseteq \Sigma^* \times \Sigma^*$ .
- Examples of search problems:
  - Find all strong components of a directed graph.
  - Find a satisfying assignment to a logical formula.
  - Find a feasible solution to a given linear program.
- In an optimization problem we moreover require the output y to be maximal or minimal with respect to some measure.
- Examples of optimization problems:
  - Find a maximum flow in a network.
  - Find a shortest path in a graph.
  - Find an optimum solution to a linear program.

#### **Definition 26**

Let M be (deterministic) Turing machine and let  $f:\mathbb{N}\mapsto\mathbb{N}$  be a function.

- We say that *M* runs (or works) in time *f*(*n*) if for any string *x* of length |*x*| = *n* the computation of *M* over *x* terminates within *f*(*n*) steps.
- We say that M works in space f(n) if for any string x of length |x| = n the computation of M over x terminates and uses at most f(n) tape cells.

#### Definition 27

Let  $f : \mathbb{N} \mapsto \mathbb{N}$  be a function, then we define classes:

- TIME(f(n)) class of languages which can be accepted by Turing machines running in time O(f(n)).
- SPACE(f(n)) class of languages which can be accepted by Turing machines working in space O(f(n)).
  - Trivially, TIME $(f(n)) \subseteq$  SPACE(f(n)) for any function  $f : \mathbb{N} \mapsto \mathbb{N}$ .

# Notable deterministic complexity classes

#### Definition 28

Class of problems solvable in polynomial time:

$$\mathbf{P} = \bigcup_{k \in \mathbb{N}} \mathrm{TIME}(n^k)$$

Class of problems solvable in polynomial space:

$$PSPACE = \bigcup_{k \in \mathbb{N}} SPACE(n^k).$$

Class of problems solvable in exponential time:

$$\mathsf{EXPTIME} = \bigcup_{k \in \mathbb{N}} \mathsf{TIME}(2^{n^k}).$$

#### Thesis 29 (Strong Church-Turing thesis)

Realistic computation models can by simulated on TM with polynomial delay/space increase.

- Polynomials are closed under composition.
- Polynomials (usually) do not increase too rapidly
- Definition of P does not depend on particular computational model we use.

#### Thesis 30 (Cobham-Edmonds thesis, 1965)

P roughly corresponds to the class of problems that are realistically solvable on a computer.

#### **Definition 31**

A verifier for a language A is an algorithm V, where

$$A = \left\{ x \mid (\exists y) [V \text{ accepts } \langle x, y \rangle] \right\}.$$

- String *y* is also called a certificate of *x*.
- The time of a verifier is measured only in terms of |x|.
- A polynomial time verifier runs in time polynomial in |x|.
- It follows that if a polynomial time verifier V accepts (x, y), then y has length polynomial in the length of x.
- String y is then a polynomial certificate of x.

#### **Definition 32**

NP is the class of languages that have polynomial time verifiers.

- Corresponds to a class of search problems where we do not how to find a solution in polynomial time but we can check if a given string is a solution to our problem.
- Languages in NP are exactly those which are accepted by nondeterministic polynomial time Turing machines.
- Nondeterminism corresponds to "guessing" the right certificate y of x.

Nondeterministic Turing machine (NTM) is a quintuple  $M = (Q, \Sigma, \delta, q_0, F)$ , where

- *Q*, *Σ*, *q*<sub>0</sub>, *F* have the same meaning as in the case of a "regular" deterministic Turing machine (DTM).
- NTM differs from a DTM in transition function, now

 $\delta: Q \times \Sigma \mapsto \mathcal{P}(Q \times \Sigma \times \{L, N, R\}).$ 

- Possible views
  - M "guesses" or "chooses" the "right" transition at each step.
  - M performs all transitions at once (in parallel) and can be in many possible configurations at each time.
- Nondeterministic Turing machine is not a realistic computation model in the sense of strong Church-Turing thesis.

## Language accepted by a nondeterministic TM

- Computation of NTM *M* over string *x* is a sequence of configurations C<sub>0</sub>, C<sub>1</sub>, C<sub>2</sub>,..., where
  - *C*<sup>0</sup> is an initial configuration and
  - $C_{i+1}$  originates from  $C_i$  by applying transition function  $\delta$ .
- Computation is accepting if it is finite and *M* is in an accepting state in the last configuration.
- String *x* is accepted by NTM *M* if there is an accepting computation of *M* over *x*.
- Language of string accepted by NTM M is denoted as L(M).

#### **Definition 33**

Let *M* be a nondeterministic Turing machine and let  $f : \mathbb{N} \mapsto \mathbb{N}$  be a function.

- We say that M works in time f(n) if every computation of M over any input x of length |x| = n terminates within f(n) steps.
- We say that M works in space f(n) if every computation of M over any input x of length |x| = n terminates and uses at most f(n) cells of work tape.

#### **Definition 34**

Let  $f : \mathbb{N} \mapsto \mathbb{N}$  be a function, then we define classes:

- $\operatorname{NTIME}(f(n))$  class of languages accepted by nondeterministic TMs working in time O(f(n)).
- $\operatorname{NSPACE}(f(n))$  class of languages accepted by nondeterministic TMs working in space O(f(n)).

#### Theorem 35

For any function  $f : \mathbb{N} \mapsto \mathbb{N}$  we have that

 $\mathsf{TIME}(f(n)) \subseteq \mathsf{NTIME}(f(n)) \subseteq \mathsf{SPACE}(f(n)) \subseteq \mathsf{NSPACE}(f(n))$ 

# NP=nondeterministically polynomial

#### Theorem 36 (Alternative definition of class NP)

*Class* NP consists of languages accepted by nondeterministic *Turing machines working in polynomial time, that is* 

$$NP = \bigcup_{k \in \mathbb{N}} NTIME(n^k).$$

# TMs using sublinear space

In case of sublinear space complexity, we use multiple tapes:

Read-only input tape

Read-write working tapes

Write-only output tape (head moves only to the right)

- Only work tapes are inluded into space complexity.
- Configuration consists of
  - state,
  - position of head on the input tape,
  - position of heads on work tapes,
  - contents of work tapes.
- Configuration does not contain the input string.

## Further space complexity classes

#### Definition 37

 $L = SPACE(\log_2 n)$ NL = NSPACE(log\_2 n) NPSPACE =  $\bigcup_{k \in \mathbb{N}} NSPACE(n^k)$
#### Theorem 38

Let f(n) be a function satisfying  $f(n) \ge \log_2 n$ . For any language L we have that

 $L \in \text{NSPACE}(f(n)) \Rightarrow (\exists c_L \in \mathbb{N}) [L \in \text{TIME}(2^{c_L f(n)})].$ 

#### Corollary 39

Let f(n) be a function satisfying  $f(n) \ge \log_2 n$  and let g(n) be a function satisfying f(n) = o(g(n)), then

 $NSPACE(f(n)) \subseteq TIME(2^{g(n)}).$ 

#### Theorem 40

The following chain of inclusions holds:

 $L \subseteq NL \subseteq P \subseteq NP \subseteq PSPACE \subseteq NPSPACE \subseteq EXPTIME.$ 

## Savitch's theorem

#### Theorem 41 (Savitch's theorem)

For any function  $f(n) \ge \log_2 n$  we have that

 $\mathsf{NSPACE}(f(n)) \subseteq \mathsf{SPACE}(f^2(n))$ 



PSPACE = NPSPACE

## Hierarchy theorems

#### **Definition 43**

A function  $f : \mathbb{N} \to \mathbb{N}$ , where  $f(n) \ge \log n$ , is called space constructible if the function that maps  $1^n$  to the binary representation of f(n) is computable in space O(f(n)).

#### Theorem 44 (Deterministic Space Hierarchy Theorem)

For any space constructible function  $f : \mathbb{N} \to \mathbb{N}$ , there exists a language *A* that is decidable in space O(f(n)) but not in space o(f(n)).

#### Corollary 45

**1** For any two functions  $f_1, f_2 : \mathbb{N} \to \mathbb{N}$ , where  $f_1(n) \in o(f_2(n))$  and  $f_2$  is space constructible,

 $SPACE(f_1(n)) \subsetneq SPACE(f_2(n)).$ 

**2** For any two real numbers  $0 \le \epsilon_1 < \epsilon_2$ ,

 $SPACE(n^{\epsilon_1}) \subsetneq SPACE(n^{\epsilon_2}).$ 

**3** NL  $\subseteq$  PSPACE  $\subseteq$  EXPSPACE  $= \bigcup_{k \in \mathbb{N}} SPACE(2^{n^k}).$ 

#### **Definition 46**

A function  $f : \mathbb{N} \to \mathbb{N}$ , where  $f(n) \in \Omega(n \log n)$ , is called time constructible if the function that maps  $1^n$  to the binary representation of f(n) is computable in time O(f(n)).

#### Theorem 47 (Deterministic Time Hierarchy Theorem)

For any time constructible function  $f : \mathbb{N} \to \mathbb{N}$ , there exists a language *A* that is decidable in time O(f(n)) but not in time  $o(f(n)/\log f(n))$ .

#### Corollary 48

**1** For any two functions  $f_1, f_2 : \mathbb{N} \to \mathbb{N}$ , where  $f_1(n) \in o(f_2(n)/\log f_2(n))$  and  $f_2$  is time constructible,

 $\text{TIME}(f_1(n)) \subsetneq \text{TIME}(f_2(n)).$ 

**2** For any two real numbers  $1 \le \epsilon_1 < \epsilon_2$ ,

 $\text{TIME}(n^{\epsilon_1}) \subsetneq \text{TIME}(n^{\epsilon_2}).$ 



# Polynomial reducibility and NP-completeness

#### **Definition 49**

Language *A* is polynomial time reducible to language *B*, written as  $A \leq_m^p B$ , if a polynomial time computable function  $f : \Sigma^* \mapsto \Sigma^*$  exists, where

$$(\forall w \in \Sigma^*) [w \in A \iff f(w) \in B].$$

- $\leq_m^p$  is reflexive and transitive relation (it is a quasiorder).
- If  $A \leq_m^p B$  and  $B \in P$ , then  $A \in P$ .
- If  $A \leq_m^p B$  and  $B \in NP$ , then  $A \in NP$ .

## NP-completeness

#### Definition 50

- Language *B* is NP-hard if every problem *A* in NP is polynomial time reducible to *B*.
- An NP-hard language *B* which belongs to NP is called NP-complete.
- If we want to show that problem B is NP-complete we can
  - **1** show that  $B \in NP$  and
  - 2 find another NP-complete problem A and reduce it to B (show that  $A \leq_m^p B$ ).



Assuming  $P \neq NP$ , if *B* is an NP-complete problem then  $B \notin P$ .

| Tiling    |                                                                                                                                                                                                                                                                      |  |
|-----------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Instance: | Set of colors <i>B</i> , natural number <i>s</i> , square grid <i>S</i> of size $s \times s$ , in which border cells have outer edges colored by colors in <i>B</i> . Set of tile types <i>K</i> , every tile is a square with edges colored by colors in <i>B</i> . |  |
| Question: | Is it possible to place tiles from $K$ to the cells of $S$ without rotation, so that the tiles sharing a border have matching color and the tiles placed in a border cell have the colors matching outer edge colors of $S$ .                                        |  |

Theorem 51

TILING is NP-complete.

## Satisfiability

Literal a variable (e.g. x) or its negation (e.g.  $\overline{x}$ ). Clause a disjunction of literals. Conjunctive normal form (CNF) a formula is in CNF if it is a

conjunction of clauses.

#### Satisfiability (SAT)

Instance: A formula  $\varphi$  in CNF.

Question: Is there an assignment v of truth values to variables so that  $\varphi(v)$  is satisfied?

#### Theorem 52 (Cook-Levin theorem)

SAT belongs to P if and only if P = NP. In particular SAT is NP-complete.

3-CNF A formula  $\varphi$  is in 3-CNF if it is in CNF and every clause consists of exactly 3 literals.

3-Satisfiability (3-SAT)

Instance: Formula  $\varphi$  in 3-CNF.

Question: Is there an assignment v of truth values to variables so that  $\varphi(v)$  is satisfied?

Theorem 53

3-SATISFIABILITY is NP-complete.

|           | Vertex Cover                                                                                                                                                                   |
|-----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Instance: | An undirected graph $G = (V, E)$ and an integer $k \ge 0$ .                                                                                                                    |
| Question: | Is there a set of vertices $S \subseteq V$ of size at most $k$ so that each edge $\{u, v\} \in E$ has one of its endpoints in $S$ (that is $\{u, v\} \cap S \neq \emptyset$ )? |

#### Theorem 54 (Without proof)

VERTEX COVER is NP-complete.

### Vertex Cover (related problems)

- NP-complete problems related to VERTEX COVER:
  - CLIQUE: Does a given graph G contain a complete subgraph (=clique) on k vertices?
  - INDEPENDENT SET: Does a given graph G contain an independent set of size k? (A set of vertices is independent in G, if it induces subgraph without edges.)
- An analogous problem EDGE COVER, in which we are looking for a smallest set of edges which together contain all vertices, is solvable in polynomial time.

#### Hamiltonian Cycle (HC)

Instance: An undirected graph G = (V, E).

Question: Is there a cycle in *G* which would go through all vertices?

#### Theorem 55 (Without proof)

HAMILTONIAN CYCLE is an NP-complete problem.



Instance: A set of cities  $C = \{c_1, \ldots, c_n\}$ , distances  $d(c_i, c_j) \in \mathbb{N}$  between all pairs of cities, a limit  $D \in \mathbb{N}$ .

Question: Is there a permutation of cities

 $c_{\pi(1)}, c_{\pi(2)}, \ldots, c_{\pi(n)}$ , which satisfies

$$\left(\sum_{i=1}^{n-1} d(c_{\pi(i)}, c_{\pi(i+1)})\right) + d(c_{\pi(n)}, c_{\pi(1)}) \le D$$
?

#### Theorem 56

TRAVELLING SALESPERSON is an NP-complete problem.

#### 3-Dimensional Matching (3DM)

Instance: Set  $M \subseteq W \times X \times Y$ , where W, X, and Y are sets of size q.

Question: Can we find a perfect matching in M? In particular, is there a set  $M' \subseteq M$  of size q so that all triples in M' are pairwise disjoint?

#### Theorem 57 (Without proof)

3-DIMENSIONAL MATCHING is an NP-complete problem.



Instance: A set of items A and a natural number s(a) associated with each item  $a \in A$  (weight, value, size).

Question: Is there a subset  $A' \subseteq A$  satisfying

$$\sum_{a \in A'} s(a) = \sum_{a \in A \setminus A'} s(a)?$$

#### Theorem 58

PARTITION is an NP-complete problem.



#### Theorem 59

KNAPSACK is an NP-complete problem.

A simple reduction from PARTITION.

#### Scheduling

Instance: A set of tasks U, processing time  $d(u) \in \mathbb{N}$  associated with every task  $u \in U$ , number of processors m, deadline  $D \in \mathbb{N}$ .

Question: Is it possible to assign all tasks to processors so that the (parallel) processing time is at most *D*?

#### Theorem 60

Scheduling is an NP-complete problem.

• A simple reduction from PARTITION.

# Pseudopolynomial algorithms and strong NP-completeness

| Knapsack           |                                                                                                                                                                     |  |
|--------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Instance:          | Set of items $A$ , size $s(a) \in \mathbb{N}$ and value $v(a) \in \mathbb{N}$<br>associated with each item $a \in A$ . Size of the<br>knapsack $B \in \mathbb{N}$ . |  |
| Feasible solution: | Set $A' \subseteq A$ satisfying that $\sum_{a \in A'} s(a) \leq B$                                                                                                  |  |
| Goal:              | Maximize sum of values of items in $A'$ , that is $\sum_{a \in A'} v(a)$ .                                                                                          |  |

## Pseudopolynomial algorithm for Knapsack (1)

- **Input:** Knapsack size *B*, number of items *n*. Array of sizes *s* and array of values *v* (both of size *n*). We assume that  $(\forall i)[0 \le s(i) \le B]$ .
- **Output:** Set of items *A'* with total size of items at most *B* and with maximum total value.
  - 1:  $V \leftarrow \sum_{i=1}^{n} v[i]$
  - 2: *T* is a new matrix with dimensions  $(n + 1) \times (V + 1)$ , where T[j, c] in the end contains a set of items chosen from  $\{1, \ldots, j\}$  with total value *c* and the minimum total size of items.
  - 3: *S* is a new matrix with dimensions  $(n + 1) \times (V + 1)$ , where S[j, c] in the end contains the sum of sizes of items in set T[j, c] or B + 1, if no set is assigned to T[j, c].

## Pseudopolynomial algorithm for Knapsack (2)

```
4: T[0,0] \leftarrow \emptyset, S[0,0] \leftarrow 0
 5: for c \leftarrow 1 to V do
         T[0,c] \leftarrow \emptyset, S[0,c] \leftarrow B+1
 6:
 7: end for
 8: for i \leftarrow 1 to n do
     T[j,0] \leftarrow \emptyset, S[j,0] \leftarrow 0
 9:
10:
    for c \leftarrow 1 to V do
              T[i,c] \leftarrow T[i-1,c], S[i,c] \leftarrow S[i-1,c]
11:
              if v[j] \le c and S[j, c] > S[j - 1, c - v[j]] + s[j] then
12:
                   T[i, c] \leftarrow T[i-1, c-v[i]] \cup \{i\}
13:
                   S[i, c] \leftarrow S[j-1, c-v[j]] + s[j]
14:
              end if
15:
         end for
16:
17: end for
18: c \leftarrow \max\{c' \mid S[n,c'] \le B\}
19: return T[n,c]
```

## Pseudopolynomial algorithm for Knapsack (3)

- The described algorithm works in time Θ(nV) (if we consider arithmetic operations as constant time).
- In general, the algorithm does not work in polynomial time because the size of the input is O(n log<sub>2</sub>(B + V)).
- Algorithms of this kind shall be called pseudopolynomial.

#### Definition 61

Let A be a decision problem and let I be an instance of A. Then

- len(I) denotes the length (=number of bits) of encoding of I when using binary encoding of numbers.
- max(I) denotes the value of a maximum number parameter in *I*.

We say that *A* is a number problem, if for any polynomial *p* there is an instance *I* of *A* with max(I) > p(len(I)).

For instance

- KNAPSACK and PARTITION are number problems.
- SATISFIABILITY and TILING are not number problems.

#### Definition 62

We say that an algorithm which solves problem A is pseudopolynomial if its running time is bounded by a polynomial in two variables len(I) and max(I).

- We usually measure complexity of an algorithm only with respect to len(*I*).
- If for some polynomial *p* and for every instance *I* of *A* we have that max(*I*) ≤ *p*(len(*I*)) then a pseudopolynomial algorithm is actually polynomial.
- Also, if the numbers in *I* would be encoded in unary, a pseudopolynomial algorithm would run in polynomial time.

## Examples of Pseudopolynomial Algorithms

- Sieve of Eratosthenes
- Naive factorization
- Counting sort

#### **Definition 63**

- Let A be a decision problem and let p be a polynomial. Then A(p) denotes the restriction of problem A to instances I which satisfy max(I) ≤ p(len(I)).
- We say that problem A is strongly NP-complete, if there is a polynomial p for which A(p) is NP-complete.
- Any NP-complete problem which is not a number problem is strongly NP-complete.
- If there is a strongly NP-complete problem which can be solved by a pseudopolynomial algorithm then P = NP.

## Binary vs. unary encoding

- Pseudopolynomial=polynomial when considering unary encoding.
- Strongly NP-complete=NP-complete even when considering unary encoding.

| Binary encoding | Unary encoding                             |
|-----------------|--------------------------------------------|
| Р               | Solvable by a pseudopolynomial algorithms. |
| NP-complete     | Strongly NP-complete.                      |

## Strong NP-completeness of TSP

#### Traveling Salesperson (TSP)

Instance: A set of cities  $C = \{c_1, \dots, c_n\}$ , distances  $d(c_i, c_j) \in \mathbb{N}$  between all pairs of cities, a limit  $D \in \mathbb{N}$ .

Question: Is there a permutation of cities

 $c_{\pi(1)}, c_{\pi(2)}, \ldots, c_{\pi(n)}$ , which satisfies

$$\left(\sum_{i=1}^{n-1} d(c_{\pi(i)}, c_{\pi(i+1)})\right) + d(c_{\pi(n)}, c_{\pi(1)}) \le D$$
?

#### Theorem 64

TRAVELLING SALESPERSON is a strongly NP-complete problem.

# Approximation algorithms

## **Optimization problem**

#### **Definition 65**

- We define optimization problem as a triple
  - $A = (D_A, S_A, \mu_A)$ , where
    - $D_A \subseteq \Sigma^*$  is a set of instances,
    - $S_A(I)$  assigns a set of feasible solutions to each  $I \in D_A$
    - $\mu_A(I, \sigma)$  assigns a positive rational value to every  $I \in D_A$ and every feasible solution  $\sigma \in S_A(I)$ .
- If *A* is a maximization problem, then an optimum solution to instance *I* is a feasible solution  $\sigma \in S_A(I)$ , which has the maximum value  $\mu_A(I, \sigma)$ .
- If *A* is a minimization problem, then an optimum solution to instance *I* is a feasible solution  $\sigma \in S_A(I)$ , which has the minimum value  $\mu_A(I, \sigma)$ .
- The value of an optimum solution is denoted opt(I).


Instance: Set of items U, a size s(u) associated with each item u. The size is a rational value from interval [0, 1].

Feasible Splitting of items to pairwise disjoint bins solution:  $U_1, \ldots, U_m$ , satisfying

$$(\forall i \in \{1, \dots, m\}) \left[\sum_{u \in U_i} s(u) \le 1\right]$$

Goal: Minimize the number of bins m.

The decision version is equivalent to SCHEDULING.

Algorithm *R* is called approximation algorithm for optimization problem *A*, if for each instance  $I \in D_A$  the output of R(I) is a feasible solution  $\sigma \in S_A(I)$  (if there is any).

- If *A* is a maximization problem, then  $\varepsilon \ge 1$  is an approximation ratio of algorithm *R*, if for all instances  $I \in D_A$  we have that  $opt(I) \le \varepsilon \cdot \mu_A(I, R(I))$ .
- If A is a minimization problem, then ε ≥ 1 is an approximation ratio of algorithm R, if for all instances I ∈ D<sub>A</sub> we have that μ<sub>A</sub>(I, R(I)) ≤ ε · opt(I).

# An approximation algorithm for Bin Packing

#### Algorithm 1 First Fit (FF)

- 1: Take items as they come and for each item try to find a bin in which it fits.
- 2: If no such bin exists, add a new bin with the item in it.

#### Theorem 67

- If I is an instance of BIN PACKING and if m is the number of bins created by algorithm FF on instance I, then m < 2 · opt(I).</li>
- For any *m* there is an instance *I* such that opt(*I*) ≥ *m* for which FF returns a solution with at least <sup>5</sup>/<sub>3</sub>opt(*I*) bins.

#### Algorithm 2 First Fit Decreasing (FFD)

- 1: Sort the items by their value decreasing.
- 2: Take items from the biggest to smallest and for each item try to find a bin in which it fits.
- 3: If no such bin exists, add a new bin with the item in it.

#### Theorem 68 (Without proof)

- If I is an instance of BIN PACKING and if m is the number of bins produced by algorithm FFD on instance I, then m ≤ <sup>11</sup>/<sub>9</sub> · opt(I) + 4.
- For each *m* there is an instance *I*, such that opt(*I*) ≥ *m*, for which algorithm FFD produces at least <sup>11</sup>/<sub>9</sub> opt(*I*) bins.

#### Traveling Salesperson (TSP)

Instance: Set of cities  $C = \{c_1, ..., c_n\}$ , distances  $d(c_i, c_j) \in \mathbb{N}$  between all pairs of cities.

Feasible Permutation of cities  $c_{\pi(1)}, c_{\pi(2)}, \ldots, c_{\pi(n)}$ . solution:

Goal: Minimize

$$\left(\sum_{i=1}^{n-1} d(c_{\pi(i)}, c_{\pi(i+1)})\right) + d(c_{\pi(n)}, c_{\pi(1)}).$$

#### Theorem 69

TRAVELLING SALESPERSON is an NP-complete problem.

#### Theorem 70

if  $P \neq NP$ , there is no polynomial approximation algorithm with a constant approximation ratio for *Travelling Salesperson*.

- There is a <sup>3</sup>/<sub>2</sub>-approximation algorithm for TSP if the distance function satisfies triangle inequality.
- There is a polynomial approximation scheme for TSP in Euclidean plane.

# Approximation scheme for Knapsack

- **Input:** Knapsack size *B*, number of items *n*. Array of sizes *s* and array of values *v* (both of size *n*). We assume that  $(\forall i)[0 \le s(i) \le B]$ . Rational number  $\varepsilon > 0$ .
- **Output:** Set of items A' with total size of items at most B and with total value at least  $\frac{1}{1+\varepsilon} \operatorname{opt}(I)$ .
  - 1: function BAPX( $I = (B, n, s, v), \varepsilon$ )
  - **2**:  $m \leftarrow \arg \max_{1 \le i \le n} v[i]$
  - 3: if  $\varepsilon \ge n 1$  then return  $\{m\}$
  - 4: end if
  - 5:  $t \leftarrow \left| \log_2 \left( \frac{\varepsilon \cdot v[m]}{n} \right) \right| 1$
  - 6: c is a new array of size n
  - 7: for  $i \leftarrow 1$  to n do
  - 8:
- $c[i] \leftarrow \left| \frac{v[i]}{2^t} \right|$
- 9: end for
- 10: Using pseudopolynomial algorithm for KNAPSACK find an optimum solution to instance B, s, c and return the solution.
- 11: end function

#### Theorem 71

Let I be an instance of KNAPSACK and let  $\varepsilon > 0$  be a rational number.

 Let bapx(I, ε) be a value of solution returned by algorithm BAPX for a given instance I and rational number ε > 0, then

$$opt(I) \leq (1 + \varepsilon) \cdot bapx(I, \varepsilon).$$

 Algorithm BAPX works in time O(<sup>1</sup>/<sub>ε</sub>n<sup>3</sup>) (if we consider arithmetic operations as constant time).

# Fully polynomial time approximation scheme

## Definition 72

- Algorithm ALG is an approximation scheme for an optimization problem *A*, if on the input instance  $I \in D_A$  and a rational number  $\varepsilon > 0$  it returns a solution  $\sigma \in S_A(I)$  with approximation ratio  $1 + \varepsilon$ .
- If ALG works in polynomial time with respect to len(I), then it is a polynomial time approximation scheme.
- If ALG works in polynomial time with respect to both len(I) and  $\frac{1}{\varepsilon}$ , it is a fully polynomial time approximation scheme (FPTAS).
- BAPX is a fully polynomial time approximation scheme for KNAPSACK.

#### Theorem 73

Let *A* be an optimization problem and let us assume that for any instance  $I \in D_A$  the value  $\mu_A(I, \sigma) \in \mathbb{N}$ . Let us assume that there is a polynomial *q* of two variables so that for any instance  $I \in D_A$  we have that

opt(I) < q(len(I), max(I)).

If there is a fully polynomial time approximation scheme for *A*, then there is also a pseudopolynomial algorithm for *A*.

If P ≠ NP, there is no FPTAS for any strong NP-complete problem satisfying the assumptions of above theorem.

# Classes co-NP and #P

Unsatisfiability (UNSAT)

Instance: Formula  $\varphi$  in CNF

Question: Is it true, that for any assignment v of values to variables  $\varphi(v) = 0$  (unsatisfied)?

- We do not know a polynomial time verifier for problem UNSAT, this problem most probably does not belong to class NP.
- Language UNSAT is (more or less) the complement of language SAT, because for any formula φ in CNF we have

 $\varphi \in \mathsf{UNSAT} \Longleftrightarrow \varphi \notin \mathsf{SAT}$ 

We say that language A belongs to the class co-NP if and only if its complement  $\overline{A}$  belongs to the class NP.

- For instance UNSAT belongs to co-NP. (It is easy to recognize languages which do not encode a formula.)
- Language L belongs to co-NP, iff there is a polynomial time verifier V which satisfies that

 $L = \left\{ x \mid (\forall y) \left[ V(x, y) \text{ accepts } \right] \right\}.$ 

• We have that  $P \subseteq NP \cap co-NP$ .

Problem A is co-NP-complete, if

- 1 A belongs to class co-NP and
- **2** every problem  $B \in \text{co-NP}$  is polynomial time reducible to *A*.
  - Language A is co-NP-complete, if and only if complement  $\overline{A}$  is NP-complete.
  - For example UNSAT is an co-NP-complete problem.
  - If there is an NP-complete language A, which belongs to co-NP, then NP = co-NP.

Function  $f : \Sigma^* \mapsto \mathbb{N}$  belongs to class #P, if there is a polynomial time verifier V such that for each  $x \in \Sigma^*$ 

 $f(x) = |\{y \mid V(x, y) \text{ accepts}\}|.$ 

- We can associate a function #A in #P with every problem  $A \in NP$  (given by the "natural" polynomial time verifier for A).
- Natural verifier verifies that *y* is a solution to the search problem corresponding to *A*.
- For example the natural verifier for SAT accepts a pair φ, v, if φ is a CNF and v is a satisfying assignment for φ.
- Then  $\#SAT(\varphi) = |\{v \mid \varphi(v) = 1\}|.$

## Class #P (properties)

Consider function  $f \in #P$  and problem:



- Problem Nonzero Value of f belongs to NP.
- Value of *f* ∈ #P can be obtained by using polynomial number of queries about an element belonging to the set {(*x*, *N*) | *f*(*x*) ≥ *N*}.
- Value of  $f \in #P$  can be computed in polynomial space.

## Reducing a function to another function

#### Definition 77

Function  $f : \Sigma^* \mapsto \mathbb{N}$  is polynomial time reducible to function  $g : \Sigma^* \mapsto \mathbb{N}$  ( $f \leq_P g$ ) if there are functions  $\alpha : \Sigma^* \times \mathbb{N} \mapsto \mathbb{N}$  a  $\beta : \Sigma^* \mapsto \Sigma^*$ , which can be computed in polynomial time and

$$(\forall x \in \Sigma^*) \left[ f(x) = \alpha \left( x, g\left( \beta(x) \right) \right) \right]$$

This corresponds to the fact that f can be computed in polynomial time with one call of function g (if this call is a constant time operation).

We say that problem  $A \in \Sigma^*$  is polynomial time reducible to problem  $B \in \Sigma^*$  by parsimonious reduction ( $A \leq_c^p B$ ), if there is a function  $f : \Sigma^* \mapsto \Sigma^*$  computable in polynomial time such that

 $|\{y \mid V_A(x, y) \text{ accepts}\}| = |\{y \mid V_B(f(x), y) \text{ accepts}\}|,\$ 

where  $V_A$  and  $V_B$  are natural verifiers for A and B.

- If  $A \leq_c^p B$ , then  $#A \leq_p #B$ .
- The reductions we have presented during the lecture can be modified into parsimonious reductions.

## **#P-completeness**

#### Definition 79

We say that function  $f: \Sigma^* \mapsto \mathbb{N}$  is #P-complete, if

1  $f \in #P$  and

- **2** every function  $g \in #P$  is polynomial time reducible to f.
  - For example #SAT, #VERTEX COVER and other counting versions of NP-complete problems are #P-complete.
  - Using just parsimonious reductions.
  - There are problems in P such that their counting versions are #P-complete.

## Number of perfect matchings in a bipartite graph

Perfect matching in a bipartite graph (BPM)

Instance: Bipartite graph  $G = (V = A \cup B, E \subseteq A \times B)$ , where |A| = |B|.

Question: Is there a matching in *G* of size |A| = |B|?

#### Theorem 80 (Without proof)

Function **#BPM** is **#**P-complete.

Let *A* be a matrix of type  $n \times n$ . Then we define permanent of *A* as

$$\operatorname{perm}(A) = \sum_{\pi \in S(n)} \prod_{i=1}^{n} a_{i,\pi(i)},$$

where S(n) is a set of permutations over set  $\{1, \ldots, n\}$ .

- Like "determinant" without a sign of permutation.
- If A is a adjacency matrix of a bipartite graph G, then perm(A) computes the number of perfect matchings of G.

#### Theorem 82 (Without proof)

*Function* perm *is* #P-complete.

## Term is a conjunction of literals. Disjunctive normal form (DNF) is a disjunction of terms.

| DNF-Satisfiabilit | <b>y</b> ( | (DNF-SAT) |
|-------------------|------------|-----------|
|                   |            | (,        |

**Instance**: Formula  $\varphi$  in DNF

Question: Is there an assignment v such that  $\varphi(v)$  is satisfied?

- DNF-SAT is decidable in polynomial time.
- Function #DNF-SAT is #P-complete.

For those who want to know more, I can recommend lectures in summer semester:

Computability (NTIN064)

Lectured by doc. RNDr. Antonín Kučera, CSc.

Complexity (NTIN063)

Lectured by doc. RNDr. Ondřej Čepek, Ph.D.