
Introduction to Complexity
and Computability

NTIN090

Petr Kučera

2019/20

1/167

Introduction

Syllabus

1 Turing machines and their variants, Church-Turing thesis
2 Halting problem and other undecidable problems
3 RAM and their equivalence with Turing machines. Algorithmically

computable functions
4 Decidable and partially decidable languages and their properties
5 m-reducibility and m-complete languages
6 Rice’s theorem
7 Nondeterministic Turing machines, basic complexity classes, classes P,

NP, PSPACE, EXPTIME
8 Savitch’s theorem
9 Deterministic space and time hierarchy theorems
10 Polynomial reducibility among problems NP-hardness and

NP-completeness
11 Cook-Levin theorem, examples of NP-complete problems, proofs of

NP-completeness
12 Pseudopolynomial algorithms and strong NP-completeness
13 Approximations of NP-hard optimization problems, approximation

algorithms and schemes
14 Classes co-NP and #P

3/167

Literature

Both
Sipser, M. Introduction to the Theory of Computation. Vol. 2. Boston:
Thomson Course Technology, 2006.

Computability
Soare R.I.: Recursively enumerable sets and degrees. Springer-Verlag,
1987
Odifreddi P.: Classical recursion theory, North-Holland, 1989

Complexity
Garey, Johnson: Computers and intractability — a guide to the theory of
NP-completeness, W.H. Freeman 1978
Arora S., Barak B.: Computational Complexity: A Modern Approach.
Cambridge University Press 2009.

4/167

Motivational questions

1 What is an algorithm?
2 What can be computed using algorithms?
3 Can all problems be solved using algorithms?
4 How can we recognize whether a given problem can be

solved by an algorithm?
5 Which algorithms are “fast” and which problems can be

solved with them?
6 What is the difference between time and space?
7 Which problems are “easy” and which are “hard”? How can

we recognize them?
8 Is it easier to examine or to be examined?
9 How we can solve problems for which we do not know any

“fast” algorithm?
5/167

Computability

A Light Introduction into
the Theory of Algorithms

The first program: Hello, world!

As in other programming lectures, we, too, shall start with a
“Hello world” program. Let us say in C.
helloworld.c

#include <stdio.h>

int main(int argc, char *argv[])
{

printf(”Hello,␣world\n”);
return 0;

}

We can immediately see that this program always finishes
and the first twelve characters it outputs are Hello, world.
This is not the only way how to write a program with the
same functionality…

8/167

Program Hello, world! (2nd version)

helloworld2.c

#include <stdio.h>

int exp(int i, int n)
/* Returns the n-th power of i */
{

int pow, j;
pow=1;
for (j=1; j<=n; ++j) pow *= i;
return pow;

}

9/167

Program Hello, world! (2nd version)

int main(int argc, char *argv[]) {
int n, total, x, y, z;
scanf(”%d”, &n);
total=3;
while (1) {

for (x=1; x<=total-2; ++x) {
for (y=1; y<=total-x-1; ++y) {

z=total-x-y;
if (exp(x,n)+exp(y,n)==exp(z,n)) {

printf(”Hello,␣world\n”);
return 0;

}
}

}
++total;

}
}

10/167

In which cases helloworld2 finishes
with the first twelve characters it outputs
being Hello, world?

Program helloworld2 finishes and the first
twelve characters it outputs are Hello, world, if
and only if scanf reads a number n ≤ 2. For
n > 2 program helloworld2 will not finish its

computation.

Proof of this fact is equivalent to proving
the Fermat’s Last Theorem!

11/167

Problem Helloworld

Helloworld

Instance: Source code of program P in language C and
input file I.

Question: Is it true that the first 12 characters which are
output by P on input I are Hello, world? (Finish-
ing is not required.)

Is it possible to write a program H in language
C which given source code P and I answers
the question of problem Helloworld?

We shall show it is not possible.
12/167

Undecidability of Helloworld

Let us consider program H
which solves problem
Helloworld.

Program H
Source code P

Input I

yes

no

Answer to
Helloworld(P, I)

We assume that the input is passed to the standard input
of programs P and H and is only accessed by function
scanf.
We assume that the output is written to the standard output
only by function printf.

13/167

Say hello instead of rejecting

We shall modify program H (to H1) so that instead of no it
outputs Hello, world.

Program H1

Source code P

Input I

yes

Hello, world

The following simple modification gives us program H1:

If the first character written by H to the standard output is n, we
know H will write no eventually. We can thus modify printf so
that Hello, world is output instead.

14/167

What can H1 say about itself?

What can program H1 say about itself?

H1 expects a source code P and an input file I.
Thus we cannot pass H1 directly to H1 (there is
no input file to pass).

We have to modify H1 so that it expects only one input file
which is used as both source code P and input file I.

15/167

Two inputs in one

Program H2 expects only one input file which is passed to H1

as both the source code P and input file I.

H1

H2

yes

Hello, world

Source
code P

P

I

1 Program H2 first reads the whole input and stores it in
array A which is allocated in memory (e.g. using malloc).

2 After that H1 is simulated, whereas:
a When H1 reads input using scanf, H2 uses array A (i.e.

scanf is replaced with reading from A).
b Two indices in array A are used to remember where in P

and I is H1 currently reading.

16/167

Let us ask H2 about itself…

If H2 receives as the input
the source code of H2

H2

yes
answers

Hello, world

H2 outputs
Hello, world

if and only if

H2 does not output
Hello, world

E
17/167

So what?

⇒ Program H2 cannot exist.
⇒ Program H1 cannot exist.
⇒ Program H cannot exist.
⇒ Problem Helloworld cannot be solved by any program in

C (and is thus algorithmically undecidable).

18/167

Calling function foo

Let us consider the following problem.

Calling function foo

Instance: Source code of program Q in C and input file V.
Question: Does program Q call function named foo when

working on input I?

We want to show that problem Calling function foo is
algorithmically undecidable.
We shall show that if we would be able to decide problem
Calling function foo, we would be able to decide
problem Helloworld as well.

19/167

A light introduction to reducibility

If we are able to solve problem A using a solver for problem B
we say that A is reducible to B.

Instance α of
problem A

Reduction
algorithm

Instance β of
problem B

Decide Byes

no

If and only if instance
α of problem A
has answer yes.

If and only if instance
α of problem A
has answer no.

20/167

Call “Hello, world”

We shall reduce problem Helloworld to problem Calling
function foo.
We shall describe how to transform an instance of problem
Helloworld (program P and input I) into an instance of
problem Calling function foo (program Q and input V).
We have to ensure that

program P with input I writes Hello, world as the first 12
characters of the output,

if and only if

program Q with input V calls function named foo.

Problem Calling function foo is thus algorithmically
undecidable.

21/167

How to make a call from a greeting

The input to the reduction is program P and input file I.
1 If P contains function foo, we rename it and its calls

(refactoring, the modified program is called P1).
2 Add function named foo to P1, it does nothing and is not

called (→P2).
3 Modify P2 so that it stores the first 12 characters it outputs

in array A (→P3).
4 Modify P3 so that when it uses an output command, it first

checks, whether the first 12 characters in A are Hello,
world. If so, it calls function foo.

5 The last step above gives us the required program Q and
input V = I.

22/167

Disadvantages of C for computability theory

C language is too complicated.
We would have to define a model of computation (i.e.
generalized computer) for the C language.
At the time of origins of computability theory, no computers
or higher level languages were available and thus the
theory is usually built using more traditional tools.
We need a simple computation model, which would be
powerful enough to capture our intuitive notion of an
algorithm.

23/167

A bit of history …

10th Hilbert’s problem

In year 1900, David Hilbert formulated 23 problems. The 10th
problem can be formulated as follows.

Given a Diophantine equation with any number of
unknown quantities and with rational integral
numerical coefficients: To devise a process
according to which it can be determined in a finite
number of operations whether the equation is
solvable in rational integers.

To answer this question a formal notion of an algorithm and
effective computability was needed.

Intuitively: An algorithm is a finite sequence of
simple instructions which leads to a solution of
given problem. 25/167

Church’s thesis

In year 1934, Alonzo Church proposed the following thesis:

Effectively computable functions are exactly those
which are λ-definable.

Later (1936) he revised the thesis in the following way.

Effectively computable functions are exactly those
which are partially recursive.

26/167

Turing’s thesis

In year 1936, Alan Turing proposed the following thesis

To every algorithm in intuitive sense we can
construct a Turing machine which implements it.

The above mentioned models of computation (λ-calculus,
partially recursive functions, Turing machines) define the
same class of algorithmically computable functions.
The above thesis is usually refered to as Church-Turing
thesis.

27/167

10th Hilbert’s problem

Hilbert’s 10th problem can be restated as follows.

Find an algorithm to determine whether a given
polynomial Diophantine equation with integer
coefficients has an integer solution.

In year 1970, Yuri Matiyasevich gave a negative answer.

There is no algorithm which would determine
whether a given polynomial Diophantine equation
with integer coefficients has an integer solution.

28/167

Equivalent computation models

According to Church-Turing thesis, intuitive notion of algorithm
is also equivalent with…

description of a Turing machine,
program for RAM,
derivation of a partial recursive function,
derivation of a function in λ-calculus,
program in a higher level programming language, such as
C, Pascal, Java, Basic etc.,
program in a functional programming language such as
Lisp, Haskell etc.

In all these models we can compute the same functions and
solve the same problems.

29/167

Turing machines

By Rocky Acosta — Own work, CC BY 3.0

https://commons.wikimedia.org/w/index.php?curid=24369879

Turing machine

δ q

… H e l l o w o r l d …

Control unit Current state

Transition
function

Unbounded tape

Symbols of tape
alphabet

Empty
cell

Head for reading and
writing which can move
in both direction.

31/167

Turing machine (definition)

(1-tape deterministic) Turing machine (TM) M is a quintuple

M = (Q ,Σ, δ, q0 , F)

Q is a finite set of states.
Σ is a finite tape alphabet which contains character λ for an
empty cell.

We shall often differentiate between a tape (inner) and an
input (outer) alphabets.

δ : Q × Σ 7→ Q × Σ × {R,N, L} ∪ {⊥} is a transition
function, where ⊥ denotes an undefined transition.
q0 ∈ Q is an initial state.
F ⊆ Q is a set of accepting states.

32/167

Configuration and display of a Turing machine

Turing machine consists of
a control unit,
a tape which is potentially infinite in both directions, and
a head for reading and writing which can move in both
directions.

Display is a pair (q , a), where q ∈ Q is the current state of a
Turing machine and a ∈ Σ is a symbol below the head.

Based on display TM decides what to do next.
Configuration captures the full state of computation of a
Turing machine, it consists of

the current state of the control unit.
word on the tape (from the leftmost to rightmost empty cell),
and
position of its head within the word on the tape.

33/167

Computation of a Turing machine

Computation of TM M starts in the initial configuration:
the control unit is in the initial state,
the tape contains the input word, and

The input word does not contain an empty cell symbol.
the head is on the leftmost character of the input.

Assume the control unit of M is in state q ∈ Q and the
head of M reads symbol a ∈ Σ:
If δ(q , a) = ⊥ computation of M terminates,
If δ(q , a) = (q′, a′, Z), where q′ ∈ Q, a′ ∈ Σ and
Z ∈ {L,N,R}, then M

changes the current state to q′,
rewrites the symbol below the head to a′, and
moves head one cell to left (if Z = L), right (Z = R), or the
head stays at the same position (Z = N).

34/167

Words and languages

Word (also string) over alphabet Σ is a finite sequence of
characters w = a1a2 . . . ak , where a1 , a2 , . . . , ak ∈ Σ.
Length of a string w = a1a2 . . . ak is denoted as |w | = k.
The set of all words over alphabet Σ is denoted as Σ∗.
Empty word is denoted as ε.
Concatenation of words w1 and w2 is denoted as w1w2.
Language L ⊆ Σ∗ is a set of words over alphabet Σ.
Complement of language L is denoted as L = Σ∗ \ L.
Concatenation of languages L1 and L2 is language
L1 · L2 = {w1w2 | w1 ∈ L1 , w2 ∈ L2}.
Kleene star operation on language L produces language
L∗ = {w | (∃k ∈ �)(∃w1 , . . . , wk ∈ L)[w = w1w2 . . .wk]}.

A decision problem is formalized as a question whether given
instance belongs to the language of positive instances.

35/167

Turing decidable languages

TM M accepts w ∈ Σ∗, if computation of M with input w
terminates in an accepting state.
TS M rejects w, if computation of M with input w
terminates in a state which is not accepting.
Language of words accepted by TM M is denoted as L(M).
We denote the fact that the computation of TM M on w
terminates as M(w)↓ (computation converges).
We denote the fact that the computation of TM M on w
does not terminate as M(w)↑ (computation diverges).
Language L is partially (Turing) decidable (also recursively
enumerable), if there is a TM M such that L = L(M).
Language L is (Turing) decidable (also recursive), if there
is a TM M which always stops and L = L(M).

36/167

Turing computable functions

Each Turing machine M with tape alphabet Σ computes
some partial function fM : Σ∗ 7→ Σ∗.
If M(w)↓ for a given input w ∈ Σ∗, the value fM(w) is
defined which is denoted as fM(w)↓.
The value of fM(w) is then the word on an (output) tape of
M(w) after the computation terminates.
If M(w)↑, then the value fM(w) is undefined, which is
denoted as fM(w)↑.
Function f : Σ∗ 7→ Σ∗ is Turing computable, if there is a
Turing machine M which computes it.

To each Turing computable function there is
infinitely many Turing machines computing it!

37/167

Variants of Turing machines

Turing machines have a lot of variants, for example
TM with a tape potentially infinite only in one direction.
TM with multiple tapes (we can differentiate
input/output/work tapes).
TM with multiple heads on tapes,
TM with only binary alphabet,
Nondeterministic TM’s.

All these variants are equivalent to “our” model.

38/167

Structure of a 3-Tape Turing Machine

δ q

… I n p u t t a p e …

… W o r k t a p e …

… O u t p u t t a p e …

39/167

Multitape Turing Machine

k-Tape Turing Machine differs from a single tape Turing
machine as follows:

It has k tapes with a head on each of them.
Input tape contains the input at the beginning.

Often read-only.
Work tapes are read-write.
Output tape at the end contains the output string.

Often write-only with head moving only to the right.
Heads on tapes move independently on each other.
Transition function is defined as
δ : Q × Σk 7→ Q × Σk × {R,N, L}k ∪ {⊥}.

Theorem 1

To each k-tape Turing machine M there is a single tape Turing
machine M′, which simulates the computation of M, accepts
the same language and computes the same function as M.

40/167

Representation of k tapes on a single tape

δ q

Turing machine M

a b c d e

f g h i j

k l m n o

δ′ q′

Turing machine M′

O O O H O O O O

a b c d e

f g h i j

k l m n o

41/167

Random Access Machine

Random Access Machine (RAM)

ALUInput Output

1: READ(r0)
2: READ(r1)
3: LOAD(1, r3)
4: JNZ(r0 , 6)
5: JNZ(r3 , 9)
6: ADD(r2 , r1 , r2)
7: SUB(r0 , r3 , r0)
8: JNZ(r0 , 6)
9: PRINT(r2)

r0 15

r1 13

r2 195

r3 1

...
...

Program

Memory
split into an unbounded

number of registers

43/167

Random Access Machine (definition)

Random Access Machine (RAM) consists of
a control unit (processor, CPU), and
an unbounded memory.

Memory of RAM is split into registers which we shall
denote as ri, i ∈ �.
A register can store any natural number (0 initially).
Number stored in register ri shall be denoted as [ri].
Indirect addressing: [[ri]] = [r[ri]].
Program for RAM is a finite sequence of instructions
P = I0 , I1 , . . . , I`.
Instructions are executed in the order given by the program.

44/167

Possible RAM instructions

Instruction Effect
LOAD(C, ri) ri ← C
ADD(ri , r j , rk) rk ← [ri] + [r j]
SUB(ri , r j , rk) rk ← [ri]

.− [r j]
COPY([rp], rd) rd ← [[rp]]
COPY(rs , [rd]) r[rd] ← [rs]
JNZ(ri , Iz) if [ri] > 0 then goto z
READ(ri) ri ← input
PRINT(ri) output← [ri]

x .− y =

{
x − y x > y
0 otherwise

45/167

Languages decidable with RAM

Consider alphabet Σ = {σ1 , σ2 , . . . , σk}.
We pass a string w = σi1σi2 . . . σin to RAM R as a
sequence of numbers i1 , . . . , in.
End of the input can R recognize because READ returns 0
when no more input is available.
RAM R accepts w, if R(w)↓ and the first number written to
the output by R is1.
RAM R rejects w, if R(w)↓ and R either does not output
any number or the first number written to the output is not 1.
Language of strings accepted by RAM R is denoted as
L(R).
If language L = L(R) for some RAM R, then it is partially
decidable (with RAM).
If moreover this R terminates with every input, then we say
that L = L(R) is decidable (with RAM).

46/167

Arithmetic functions computable with RAM

We say that RAM R computes a partial arithmetic function
f : �n 7→ �, n ≥ 0, if with input n-tuple (x1 , . . . , xn):

If f (x1 , . . . , xn)↓, then R(x1 , . . . , xn)↓ and R outputs value
f (x1 , . . . , xn).
If f (x1 , . . . , xn)↑, then R(x1 , . . . , xn)↑.

Function f which is computable by some RAM R is called RAM
computable.

47/167

String functions computable with RAM

RAM R computes a partial function f : Σ∗ 7→ Σ∗, where
Σ = {σ1 , σ2 , . . . , σk}, if the following is satisfied:

The input strring w = σi1σi2 . . . σin is passed as a
sequence of numbers i1 , . . . , in.
End of the input can R recognize because READ returns 0
when no more input is available.
If f (w)↓= σ j1σ j2 . . . σ jm , then R(w)↓ and it writes numbers
j1 , j2 , . . . , jm , 0 to the output.
If f (w)↑, then R(w)↑.

Function f which is computable by some RAM R is called RAM
computable.

48/167

Programming on RAM

Programs for RAM corresponds to a procedural language:
We can use variables (scalar and unbounded arrays).
Cycles (for and while) — using conditional jump and a
counter variable.
Uncoditional jump (goto) — using an auxiliary register
where we store 1 and use a conditional jump.
Conditional statement — using a conditional jump.
Functions and procedures — we can inline a body of a
function directly to the place where it is used (inline)
We don’t have recursive calls — we can implement them
using a cycle while and a stack.

49/167

Variables in a program for RAM

Assume that we use arrays A1 , . . . ,Ap and scalar variables
x0 , . . . , xs .

Arrays are indexed with natural numbers (that is starting
from 0).
Element Ai[j], where i ∈ {1, . . . , p}, j ∈ �, is stored in
register ri+ j∗(p+1).
Elements of array Ai, i = 1, . . . , p are thus stored in
registers ri , ri+p+1 , ri+2(p+1) ,
A scalar variable xi, where i ∈ {0, . . . , s} is stored in
register ri∗(p+1).
Scalar variables are thus stored in registers
r0 , rp+1 , r2(p+1) ,

50/167

Turing machine −→ RAM

Theorem 2
To each Turing machine M there is an equivalent RAM R.

Content of the tape is stored in two arrays:
Tr contains the right hand side and
Tl contains the left hand side.

Position of head — index in variable h and side (right/left)
in variable s
State — variable q.
Choosing instruction — conditional statement based on h,
s, and q.

51/167

RAM −→ Turing machine

Theorem 3
To each RAM R there is an equivalent Turing machine M.

Content of the memory of R is represented on a tape of M as
follows:

If the currently used registers are ri1 , ri2 , . . . , rim ,
where i1 < i2 < · · · < im, then the tape contains
string:

(i1)B |([ri1])B#(i2)B |([ri2])B# . . . #(im)B |([rim])B

52/167

RAM −→ Turing machine (structure of TM)

We shall describe a 4-tape TM M to a RAM R.
Input tape sequence of numbers passed to R as the input.

Numbers are written in binary and separated with
#. M only reads this tape.

Output tape M writes here the numbers output by R. They are
written in binary and separated with #. M only
writes to this tape.

Memory of RAM content of memory of R.
Auxiliary tape for computing addition, subtraction, indirect

indices, copying part of the memory tape, etc.

53/167

Numbering Turing machines

How to number Turing machines

Our goal is to assign a natural number to each Turing machine.
1 Encode a Turing machine as a string over a small alphabet.
2 Encode any string over Γ as a binary string.
3 Assign a number to each binary string.
4 The number we get in this way for a given Turing machine

is called a Gödel number.

55/167

A few technical restrictions

We shall restrict to Turing machines which
1 have a single accepting state and
2 use only binary input alphabet Σin = {0, 1}.

Restriction on the input alphabet means that the input
strings are passed to Turing machines only as sequences
of 0-es and 1-s.
Work alphabet is not restricted — during its computation a
Turing machine can write any symbols to a tape.
Any finite alphabet can be encoded in binary.
Any Turing machine M can be easily modified into a Turing
machine satisfying these restrictions.

56/167

Encoding transition function

M = (Q ,Σ, δ, q0 , F = {q1})

δ is written as a string vM in alphabet
Γ = {0, 1, L,N, R, |, #, ; }

Each characters of vM is encoded with 3 bits

〈M〉
Binary string representing M

vM

57/167

Encoding transition function in alphabet Γ

Assume that
Q = {q0 , q1 , . . . , qr} for some r ≥ 1, where q0 is the initial
state and q1 is the accepting state.
Σ = {X0 ,X1 ,X2 , . . . ,Xs} for some s ≥ 2, where X0 = ‘0’,
X1 = ‘1’, and X2 = ‘λ’.

Instruction δ(qi ,X j) = (qk ,Xl , Z), where Z ∈ {L,N, R} is
encoded as string

(i)B |(j)B |(k)B |(l)B |Z .

If C1 , . . . , Cn are the codes of all instructions of TM M, then
the transition function δ is encoded as

C1#C2# . . . #Cn .

58/167

Write it in binary

Γ kód

0 000

1 001

L 010

N 011

R 100

| 101

110

; 111

δ(q3 ,X7) = (q5 ,X2 , R)

11|111|101|10|R

001001101001001001101001000001101001000101100

Characters of
alphabet Γ are
encoded using
this table.

λ

59/167

Numbering binary strings

Given a binary string
w ∈ {0, 1}∗ we assign it
number i such that (i)B = 1w.
String with number i is
denoted as wi (i.e.
(i)B = 1wi).
We get a 1–1 correspondence
(bijection) between {0,1}∗ and
positive natural numbers.
Moreover we shall assume
that 0 corresponds to an empty
string, i.e. w0 = w1 = ε.

wi 1wi i
ε 1 1
0 10 2
1 11 3
00 100 4
...

...
...

001011 1001011 75
...

...
...

60/167

Gödel number

We can associate a Gödel number e with a Turing machine
M such that we is an encoding of M.
Turing machine with Gödel number e is denoted as Me .
If string we is not a syntactically correct encoding of a
Turing machine, then Me is an empty Turing machine
which immediately rejects every input and thus L(Me) = ∅.
Now we can assign a Turing machine Me to every natural
number e.

61/167

Disambiguity of encodings of TMs

Encoding of a TM is not unique because it depends on
the order of instructions,
numbering of states (except initial and accepting),
numbering of characters of tape alphabet (except 0, 1, λ),
binary encoding of a number can contain any number of
leading 0s.

Every TM has actually an infinite number of possible
encodings and infinitely many Gödel numbers.

M δ

w100

w414

w1241

414
One of the
Gödel
numbers of M

62/167

Encoding of objects (notation)

Every object (e.g. number, string, Turing machine, RAM,
graph, or formula) can be encoded into a binary string.
We can encode n-tuples of objects as well.

Definition 4
〈X〉 denotes a binary string encoding object X.
〈X1 , . . . ,Xn〉 denotes a binary string encoding n-tuple of
objects X1 , . . . ,Xn.

For example if M is a Turing machine, then 〈M〉 denotes a
binary string which encodes M.
If M is a Turing machine and x is a string, then 〈M, x〉
denotes a binary string encoding the pair of M and x.

63/167

Universal Turing machine

Universal Turing machine

The input to a universal Turing machineU is a pair 〈M, x〉,
where M is a Turing machine and x is a string.
U simulates computation of M on input x.
The result ofU(〈M, x〉) (i.e.
terminating/accepting/rejecting and contents of the output
tape) is given by the result of computation M(x).
For simplicity, we shall describeU as a 3-tape TM.
We can transform it into a single tape universal Turing
machine.
The language ofU is called universal language and it is
denoted as Lu that is

Lu = L(U) = {〈M, x〉 | x ∈ L(M)}.

65/167

Structure of a universal Turing machine

〈M, x〉

. . . |010|001|100|000|010|011| . . .

10011 (= (i)B)

1st tape contains the input of U that is the code 〈M, x〉.

2nd tape contains the work tape of M. Symbols Xi are en-
coded as (i)B in blocks of the same length separated with |.

3rd tape contains the number of the current state qi of M.

66/167

Algorithmically (un)de-
cidable languages

Definition

Definition 5
Language L is partially decidable, if it is accepted by some
Turing machine M (i.e. L = L(M)).
Language L is decidable, if there is a Turing machine M
which accepts L (i.e. L = L(M)) and moreover its
compution over any input x stops (i.e. M(x)↓).

Partially decidable languages = recursively enumerable
languages.
Decidable languages = recursive languages.

68/167

Basic properties of decidable languages

Theorem 6
If L1 and L2 are (partially) decidable languages, then L1 ∪ L2,
L1 ∩ L2, L1 · L2, L∗1 are also (partially) decidable languages.

Theorem 7 (Post’s theorem)
Language L is decidable if and only if L and L are both partially
decidable languages.

1 Are all languages over a finite alphabet at least
partially decidable?

2 Are all partially decidable languages also
decidable?

69/167

How many decidable languages are there?

Definition 8
Set A is countable if there is a 1–1 function f : A 7→ �, i.e. if
the elements of A can be numbered.

There is only countable many Turing machines — each
has a Gödel number.
Each partially decidable language is accepted by some
Turing machine.

Lemma 9
There is only countable many partially decidable languages.

70/167

Are all languages decidable?

A language L ⊆ {0, 1}∗ corresponds to a set of natural numbers

A = {i − 1 | i ∈ � \ {0} ∧ wi ∈ L}.

P(�) is uncountable.
There is uncountable many languages over alphabet {0,1}.

There must be languages over alphabet {0,1}
which are not partially decidable!

We could even say that most of the languages are not partial
decidable.

71/167

Diagonal language

Let us define the diagonal language as follows.

DIAG = {〈M〉 | 〈M〉 < L(M)}

Its complement is then defined as

DIAG = {〈M〉 | 〈M〉 ∈ L(M)}

Theorem 10
1 Language DIAG is not partially decidable (it is not

recursively enumerable).
2 Language DIAG is not decidable, but it is partially

decidable.

72/167

Universal language

Problem of deciding whether a given string y belongs to
the universal language Lu is a formalization of the
Universal problem:

Universal problem

Instance: Code of Turing machine M and an input x.
Question: Is x ∈ L(M)? In other words, does M accept

input x?

Theorem 11
Universal language (and Universal problem) is partially
decidable but it is not decidable.

73/167

Halting problem

A classical example of an algorithmically undecidable
problem is the Halting problem.

Halting problem

Instance: Code of Turing machine M and input x.
Question: Is M(x) ↓? In other words does the computation

of M over input x terminate?

Theorem 12
Halting problem is partially decidable but it is not decidable.

74/167

Algorithmically com-
putable function

Functions — notation

Let f , g : Σ∗ 7→ Σ∗ be two partial functions, then
Domain of f is the set

dom f = {x ∈ Σ∗ | f (x)↓}

Range of f is the set

rng f = {y ∈ Σ∗ | (∃x ∈ Σ∗)[f (x)↓= y]}

f and g are conditionally equal (f ' g) if

f ' g ⇐⇒
[
dom f = dom g and (∀x ∈ dom f)[f (x) = g(x)]

]
76/167

Algorithmically computable function

Intuitively: (Algorithmically) computable function is a function
computable by some algorithm.

Definition 13
A partial function f : Σ∗ 7→ Σ∗ is (algorithmically)
computable if it is Turing computable.
ϕe denotes the function computed by Turing machine Me .

Computable functions = partial recursive functions.
Total computable functions = (total) recursive functions.
We also consider functions of multiple parameters and
arithmetic functions, e.g. f (x , y) = x2 + y2 corresponds to
a function over strings f ′(〈x , y〉) = 〈x2 + y2〉.
There is only countable many computable functions �⇒
not all functions are computable.

77/167

Universal function

Theorem 14
A universal function Ψ for computable functions satisfying

Ψ(〈e , x〉) ' ϕe(〈x〉)

is a computable function.

…because we have a universal Turing machine.

78/167

Properties of (partially)
decidable languages

Partially decidable languages

Theorem 15
Given a language L ⊆ Σ∗, the following are equivalent:

1 L is partially decidable.
2 There is a Turing machine M satisfying

L = {x ∈ Σ∗ | M(x)↓ } .

3 There is an algorithmically computable function f (x)
satisfying

L = dom f =
{

x ∈ Σ∗ | f (x)↓
}

4 There is a decidable language B satisfying

L =
{

x ∈ Σ∗ | (∃y ∈ Σ∗)[〈x , y〉 ∈ B]
}

80/167

Decidable languages

Theorem 16
Language L ⊆ Σ∗ is decidable if and only if its characteristic
function

χL(x) =

{
1 x ∈ L
0 x < L

is computable.

81/167

Strings ordering

Definition 17 (Lexicographic order)
Let Σ be an alphabet and let us assume that < is a strict order
over characters in Σ. Let u , v ∈ Σ∗ be two different strings. We
say that u is lexicographically smaller than v if

1 u is shorter (i.e. |u | < |v |), or
2 both strings have the same length (i.e. |u | = |v |) and if i is

the first index with u[i] , v[i], then u[i] < v[i].
This fact is denoted with u ≺ v. As usual we extend this
notation to u � v, u � v and u � v.

82/167

Enumerating

An enumerator for a language L is a Turing machine E, which
ignores its input,
during its computation writes strings w ∈ L to a special
output tape separated with ‘#’, and
each string w ∈ L is eventually written by E.
If L is infinite, E never stops.

Theorem 18
1 Language L is partially decidable if and only if there is an

enumerator E for L.
2 Language L is decidable if and only if there is an

enumerator E for L which outputs elements of L in
lexicographic order.

83/167

Enumerating and functions

Theorem 19
Let L be an infinite language, then L is …

1 …partially decidable, if and only if it is a range of a total
algorithmically computable function f (i.e. L = rng f).

2 …decidable, if and only if it is a range of an increasing total
algorithmically computable function f (i.e. L = rng f).

Function f : Σ∗ → Σ∗ is increasing, if u ≺ v implies
f (u) ≺ f (v) for every pair of strings u , v ∈ Σ∗ where f (u)↓
and f (v)↓ .

84/167

Reducibility and completeness

Reducibility and completeness

Definition 20
A language A is m-reducible to a language B (which is denoted
as A ≤m B) if there is a total computable function f s.t.

(∀x ∈ Σ∗)[x ∈ A⇐⇒ f (x) ∈ B]

Language A is m-complete if A is partially decidable and any
partially decidable language B is m-reducible to A.

1-reducibility and 1-completeness — we require the
function f to be moreover 1–1.
≤m is a reflexive and transitive relation (it is a quasiorder).
If A ≤m B and B is (partially) decidable, then so is A.
If A ≤m B, B is partially decidable and A is m-complete,
then B is also m-complete.

86/167

Complete languages

The Halting problem can be formalized as language

HALT = {〈M, x〉 | M(x)↓ }

Theorem 21
Lu, DIAG, and HALT are m-complete languages. In particular,
they are partially decidable, but not decidable.

87/167

Rice’s theorem

Theorem 22 (Rice’s theorem (languages))
Let C be a class of partially decidable languages and let us
define LC = {〈M〉 | L(M) ∈ C}. Then language LC is decidable
if and only if C is either empty or it contains all partially
decidable languages.

Theorem 23 (Rice’s theorem (functions))
Let C be a class of computable functions and let us define
AC = {we | ϕe ∈ C}. Then language AC is decidable if and only
if C is either empty or it contains all computable functions.

88/167

Rice’s theorem (consequences)

Rice’s theorem implies that the following languages are
undecidable:

K1 = {〈M〉 | L(M) , ∅}
Fin = {〈M〉 | L(M) is a finite language }
Cof = {〈M〉 | L(M) is a finite language}
Inf = {〈M〉 | L(M) is an infinite language}

Dec = {〈M〉 | L(M) is a decidable language}
Tot = {〈M〉 | L(M) = Σ∗}
Reg = {〈M〉 | L(M) is a regular language}

89/167

Post correspondence problem

Post correspondence problem (PCP)

Instance: Collection P of “dominos” (pairs of strings):

P =

{ [
t1
b1

]
,

[
t2
b2

]
, . . . ,

[
tk

bk

] }
where t1 , . . . , tk , b1 , . . . , bk ∈ Σ∗.

Question: Is there a matching sequence i1 , i2 , . . . , il where
l ≥ 1 and ti1 ti2 . . . til = bi1bi2 . . . bil ?

Theorem 24
Post correspondence problem is undecidable.

90/167

S-m-n theorem

Theorem 25 (s-m-n)
For any two natural numbers m , n ≥ 1 there is a 1–1 total
computable function sm

n : �m+1 → � such that for every
x , y1 , y2 , . . . , ym , z1 , . . . , zn ∈ Σ∗b:

ϕ
(n)
sm

n (x ,y1 ,y2 ,...,ym)
(z1 , . . . , zn) ' ϕ(m+n)

x (y1 , . . . , ym , z1 , . . . , zn)

91/167

Complexity

Basic complexity classes

Decision problems

In a decision problem we want to decide whether a given
instance x satisfies a specified condition.
Answer is yes/no.
Formalized as a language L ∈ Σ∗ of positive instances and
a decision whether x ∈ L.
Examples of decision problems:

Is a given graph connected?
Does a given logical formula have a model?
Does a given linear program admit a feasible solution?
Is a given number prime?

94/167

Search and optimization problems

In a search problem we aim to find for a given instance x
an output y which satisfies a specified condition.
Answer is y or information that no suitable y exists.
Formalized as a relation R ⊆ Σ∗ × Σ∗.
Examples of search problems:

Find all strong components of a directed graph.
Find a satisfying assignment to a logical formula.
Find a feasible solution to a given linear program.

In an optimization problem we moreover require the output
y to be maximal or minimal with respect to some measure.
Examples of optimization problems:

Find a maximum flow in a network.
Find a shortest path in a graph.
Find an optimum solution to a linear program.

95/167

Time and space complexity of a Turing machine

Definition 26
Let M be (deterministic) Turing machine and let f : � 7→ � be
a function.

We say that M runs (or works) in time f (n) if for any string
x of length |x | = n the computation of M over x terminates
within f (n) steps.
We say that M works in space f (n) if for any string x of
length |x | = n the computation of M over x terminates and
uses at most f (n) tape cells.

96/167

Basic deterministic complexity classes

Definition 27
Let f : � 7→ � be a function, then we define classes:
TIME(f (n)) class of languages which can be accepted by

Turing machines running in time O(f (n)).
SPACE(f (n)) class of languages which can be accepted by

Turing machines working in space O(f (n)).

Trivially, TIME(f (n)) ⊆ SPACE(f (n)) for any function
f : � 7→ �.

97/167

Notable deterministic complexity classes

Definition 28
Class of problems solvable in polynomial time:

P =
⋃
k∈�

TIME(nk)

Class of problems solvable in polynomial space:

PSPACE =
⋃
k∈�

SPACE(nk).

Class of problems solvable in exponential time:

EXPTIME =
⋃
k∈�

TIME(2nk
).

98/167

Why polynomials?

Thesis 29 (Strong Church-Turing thesis)
Realistic computation models can by simulated on TM with
polynomial delay/space increase.

Polynomials are closed under composition.
Polynomials (usually) do not increase too rapidly
Definition of P does not depend on particular
computational model we use.

Thesis 30 (Cobham-Edmonds thesis, 1965)
P roughly corresponds to the class of problems that are
realistically solvable on a computer.

99/167

Verifier

Definition 31
A verifier for a language A is an algorithm V, where

A =
{

x | (∃y)[V accepts 〈x , y〉]
}

.

String y is also called a certificate of x.
The time of a verifier is measured only in terms of |x |.
A polynomial time verifier runs in time polynomial in |x |.
It follows that if a polynomial time verifier V accepts 〈x , y〉,
then y has length polynomial in the length of x.
String y is then a polynomial certificate of x.

100/167

Class NP

Definition 32
NP is the class of languages that have polynomial time verifiers.

Corresponds to a class of search problems where we do
not how to find a solution in polynomial time but we can
check if a given string is a solution to our problem.
Languages in NP are exactly those which are accepted by
nondeterministic polynomial time Turing machines.
Nondeterminism corresponds to “guessing” the right
certificate y of x.

101/167

Nondeterministic Turing machine

Nondeterministic Turing machine (NTM) is a quintuple
M = (Q ,Σ, δ, q0 , F), where

Q, Σ, q0, F have the same meaning as in the case of a
“regular” deterministic Turing machine (DTM).
NTM differs from a DTM in transition function, now

δ : Q × Σ 7→ P(Q × Σ × {L,N, R}).

Possible views
M “guesses” or “chooses” the “right” transition at each step.
M performs all transitions at once (in parallel) and can be in
many possible configurations at each time.

Nondeterministic Turing machine is not a realistic
computation model in the sense of strong Church-Turing
thesis.

102/167

Language accepted by a nondeterministic TM

Computation of NTM M over string x is a sequence of
configurations C0 , C1 , C2 , . . . , where

C0 is an initial configuration and
Ci+1 originates from Ci by applying transition function δ.

Computation is accepting if it is finite and M is in an
accepting state in the last configuration.
String x is accepted by NTM M if there is an accepting
computation of M over x.
Language of string accepted by NTM M is denoted as
L(M).

103/167

Time and space complexity of NTM

Definition 33
Let M be a nondeterministic Turing machine and let f : � 7→ �
be a function.

We say that M works in time f (n) if every computation of
M over any input x of length |x | = n terminates within f (n)
steps.
We say that M works in space f (n) if every computation of
M over any input x of length |x | = n terminates and uses
at most f (n) cells of work tape.

104/167

Basic nondeterministic complexity classes

Definition 34
Let f : � 7→ � be a function, then we define classes:
NTIME(f (n)) class of languages accepted by nondeterministic

TMs working in time O(f (n)).
NSPACE(f (n)) class of languages accepted by

nondeterministic TMs working in space O(f (n)).

Theorem 35
For any function f : � 7→ � we have that

TIME(f (n)) ⊆ NTIME(f (n)) ⊆ SPACE(f (n)) ⊆ NSPACE(f (n))

105/167

NP=nondeterministically polynomial

Theorem 36 (Alternative definition of class NP)
Class NP consists of languages accepted by nondeterministic
Turing machines working in polynomial time, that is

NP =
⋃
k∈�

NTIME(nk).

106/167

TMs using sublinear space

In case of sublinear space complexity, we use multiple tapes:

Read-only input tape

Read-write working tapes

Write-only output tape (head moves only to the right)

Only work tapes are inluded into space complexity.
Configuration consists of

state,
position of head on the input tape,
position of heads on work tapes,
contents of work tapes.

Configuration does not contain the input string.
107/167

Further space complexity classes

Definition 37

L = SPACE(log2 n)
NL = NSPACE(log2 n)

NPSPACE =
⋃
k∈�

NSPACE(nk)

108/167

Relation of space and time

Theorem 38
Let f (n) be a function satisfying f (n) ≥ log2 n. For any
language L we have that

L ∈ NSPACE(f (n))⇒ (∃cL ∈ �)
[
L ∈ TIME(2cL f (n))

]
.

Corollary 39
Let f (n) be a function satisfying f (n) ≥ log2 n and let g(n) be a
function satisfying f (n) = o(g(n)), then

NSPACE(f (n)) ⊆ TIME(2g(n)).

109/167

Relations between classes

Theorem 40
The following chain of inclusions holds:

L ⊆ NL ⊆ P ⊆ NP ⊆ PSPACE ⊆ NPSPACE ⊆ EXPTIME.

110/167

Savitch’s theorem

Savitch’s theorem

Theorem 41 (Savitch’s theorem)
For any function f (n) ≥ log2 n we have that

NSPACE(f (n)) ⊆ SPACE(f 2(n))

Corollary 42

PSPACE = NPSPACE

112/167

Hierarchy theorems

Space hierarchy theorem

Definition 43
A function f : �→ �, where f (n) ≥ log n, is called space
constructible if the function that maps 1n to the binary
representation of f (n) is computable in space O(f (n)).

Theorem 44 (Deterministic Space Hierarchy Theorem)
For any space constructible function f : �→ �, there exists a
language A that is decidable in space O(f (n)) but not in space
o(f (n)).

114/167

Space hierarchy

Corollary 45
1 For any two functions f1 , f2 : �→ �, where

f1(n) ∈ o(f2(n)) and f2 is space constructible,

SPACE(f1(n)) (SPACE(f2(n)).

2 For any two real numbers 0 ≤ ε1 < ε2,

SPACE(nε1) (SPACE(nε2).

3 NL (PSPACE (EXPSPACE =
⋃

k∈� SPACE(2nk
).

115/167

Time hierarchy theorem

Definition 46
A function f : �→ �, where f (n) ∈ Ω(n log n), is called time
constructible if the function that maps 1n to the binary
representation of f (n) is computable in time O(f (n)).

Theorem 47 (Deterministic Time Hierarchy Theorem)
For any time constructible function f : �→ �, there exists a
language A that is decidable in time O(f (n)) but not in time
o(f (n)/ log f (n)).

116/167

Time hierarchy

Corollary 48
1 For any two functions f1 , f2 : �→ �, where

f1(n) ∈ o(f2(n)/ log f2(n)) and f2 is time constructible,

TIME(f1(n)) (TIME(f2(n)).

2 For any two real numbers 1 ≤ ε1 < ε2,

TIME(nε1) (TIME(nε2).

3 P (EXPTIME.

117/167

Polynomial reducibility
and NP-completeness

Polynomial reducibility

Definition 49
Language A is polynomial time reducible to language B, written
as A ≤P

m B, if a polynomial time computable function
f : Σ∗ 7→ Σ∗ exists, where

(∀w ∈ Σ∗) [w ∈ A⇐⇒ f (w) ∈ B] .

≤P
m is reflexive and transitive relation (it is a quasiorder).

If A ≤P
m B and B ∈ P, then A ∈ P.

If A ≤P
m B and B ∈ NP, then A ∈ NP.

119/167

NP-completeness

Definition 50
Language B is NP-hard if every problem A in NP is
polynomial time reducible to B.
An NP-hard language B which belongs to NP is called
NP-complete.

If we want to show that problem B is NP-complete we can
1 show that B ∈ NP and
2 find another NP-complete problem A and reduce it to B

(show that A ≤P
m B).

Assuming P , NP, if B is an
NP-complete problem then B < P.

120/167

An NP-complete problem

Tiling

Instance: Set of colors B, natural number s, square grid
S of size s × s, in which border cells have outer
edges colored by colors in B. Set of tile types
K, every tile is a square with edges colored by
colors in B.

Question: Is it possible to place tiles from K to the cells of
S without rotation, so that the tiles sharing a bor-
der have matching color and the tiles placed in a
border cell have the colors matching outer edge
colors of S.

Theorem 51
Tiling is NP-complete.

121/167

Satisfiability

Literal a variable (e.g. x) or its negation (e.g. x).
Clause a disjunction of literals.

Conjunctive normal form (CNF) a formula is in CNF if it is a
conjunction of clauses.

Satisfiability (SAT)

Instance: A formula ϕ in CNF.
Question: Is there an assignment v of truth values to vari-

ables so that ϕ(v) is satisfied?

Theorem 52 (Cook-Levin theorem)
SAT belongs to P if and only if P = NP. In particular SAT is
NP-complete.

122/167

3-Satisfiability

3-CNF A formula ϕ is in 3-CNF if it is in CNF and every
clause consists of exactly 3 literals.

3-Satisfiability (3-SAT)

Instance: Formula ϕ in 3-CNF.
Question: Is there an assignment v of truth values to vari-

ables so that ϕ(v) is satisfied?

Theorem 53
3-Satisfiability is NP-complete.

123/167

Vertex Cover

Vertex Cover

Instance: An undirected graph G = (V, E) and an integer
k ≥ 0.

Question: Is there a set of vertices S ⊆ V of size at most
k so that each edge {u , v} ∈ E has one of its
endpoints in S (that is {u , v} ∩ S , ∅)?

Theorem 54 (Without proof)
Vertex Cover is NP-complete.

124/167

Vertex Cover (related problems)

NP-complete problems related to Vertex Cover:
Clique: Does a given graph G contain a complete
subgraph (=clique) on k vertices?
Independent Set: Does a given graph G contain an
independent set of size k? (A set of vertices is independent
in G, if it induces subgraph without edges.)

An analogous problem Edge Cover, in which we are
looking for a smallest set of edges which together contain
all vertices, is solvable in polynomial time.

125/167

Hamiltonian Cycle

Hamiltonian Cycle (HC)

Instance: An undirected graph G = (V, E).
Question: Is there a cycle in G which would go through all

vertices?

Theorem 55 (Without proof)
Hamiltonian cycle is an NP-complete problem.

126/167

Travelling Salesperson

Traveling Salespersion (TSP)

Instance: A set of cities C = {c1 , . . . , cn}, distances
d(ci , c j) ∈ � between all pairs of cities, a limit
D ∈ �.

Question: Is there a permutation of cities
cπ(1) , cπ(2) , . . . , cπ(n), which satisfies(

n−1∑
i=1

d(cπ(i) , cπ(i+1))

)
+ d(cπ(n) , cπ(1)) ≤ D?

Theorem 56
Travelling Salesperson is an NP-complete problem.

127/167

3-Dimensional Matching

3-Dimensional Matching (3DM)

Instance: Set M ⊆ W × X × Y, where W , X, and Y are sets
of size q.

Question: Can we find a perfect matching in M? In partic-
ular, is there a set M′ ⊆ M of size q so that all
triples in M′ are pairwise disjoint?

Theorem 57 (Without proof)
3-Dimensional Matching is an NP-complete problem.

128/167

Partition

Partition

Instance: A set of items A and a natural number s(a) asso-
ciated with each item a ∈ A (weight, value, size).

Question: Is there a subset A′ ⊆ A satisfying∑
a∈A′

s(a) =
∑

a∈A\A′
s(a)?

Theorem 58
Partition is an NP-complete problem.

129/167

Knapsack

Knapsack

Instance: A set of items A and for each item a we have
specified its size s(a) ∈ � and value v(a) ∈ �.
The knapsack size B ∈ � and value limit K ∈ �.

Question: Is there a subset of items A′ ⊆ A satisfying∑
a∈A′

s(a) ≤ B and
∑
a∈A′

v(a) ≥ K?

Theorem 59
Knapsack is an NP-complete problem.

A simple reduction from Partition. 130/167

Scheduling

Scheduling

Instance: A set of tasks U, processing time d(u) ∈ � asso-
ciated with every task u ∈ U, number of proces-
sors m, deadline D ∈ �.

Question: Is it possible to assign all tasks to processors so
that the (parallel) processing time is at most D?

Theorem 60
Scheduling is an NP-complete problem.

A simple reduction from Partition.

131/167

Pseudopolynomial algorithms
and strong NP-completeness

Knapsack (optimization version)

Knapsack

Instance: Set of items A, size s(a) ∈ � and value v(a) ∈ �
associated with each item a ∈ A. Size of the
knapsack B ∈ �.

Feasible
solution:

Set A′ ⊆ A satisfying that
∑

a∈A′ s(a) ≤ B

Goal: Maximize sum of values of items in A′, that is∑
a∈A′ v(a).

133/167

Pseudopolynomial algorithm for Knapsack (1)

Input: Knapsack size B, number of items n. Array of sizes s
and array of values v (both of size n). We assume that
(∀i)[0 ≤ s(i) ≤ B].

Output: Set of items A′ with total size of items at most B and
with maximum total value.

1: V ← ∑n
i=1 v[i]

2: T is a new matrix with dimensions (n + 1) × (V + 1), where
T[j, c] in the end contains a set of items chosen from
{1, . . . , j} with total value c and the minimum total size of
items.

3: S is a new matrix with dimensions (n + 1) × (V + 1), where
S[j, c] in the end contains the sum of sizes of items in set
T[j, c] or B + 1, if no set is assigned to T[j, c].

134/167

Pseudopolynomial algorithm for Knapsack (2)

4: T[0, 0]← ∅, S[0, 0]← 0
5: for c ← 1 to V do
6: T[0, c]← ∅, S[0, c]← B + 1
7: end for
8: for j ← 1 to n do
9: T[j, 0]← ∅, S[j, 0]← 0

10: for c ← 1 to V do
11: T[j, c]← T[j − 1, c], S[j, c]← S[j − 1, c]
12: if v[j] ≤ c and S[j, c] > S[j − 1, c − v[j]] + s[j] then
13: T[j, c]← T[j − 1, c − v[j]] ∪ { j}
14: S[j, c]← S[j − 1, c − v[j]] + s[j]
15: end if
16: end for
17: end for
18: c ← max{c′ | S[n , c′] ≤ B}
19: return T[n , c]

135/167

Pseudopolynomial algorithm for Knapsack (3)

The described algorithm works in time Θ(nV) (if we
consider arithmetic operations as constant time).
In general, the algorithm does not work in polynomial time
because the size of the input is O(n log2(B + V)).
Algorithms of this kind shall be called pseudopolynomial.

136/167

Number problems

Definition 61
Let A be a decision problem and let I be an instance of A. Then

len(I) denotes the length (=number of bits) of encoding
of I when using binary encoding of numbers.

max(I) denotes the value of a maximum number
parameter in I.

We say that A is a number problem, if for any polynomial p
there is an instance I of A with max(I) > p(len(I)).

For instance
Knapsack and Partition are number problems.
Satisfiability and Tiling are not number problems.

137/167

Pseudopolynomial algorithm

Definition 62
We say that an algorithm which solves problem A is
pseudopolynomial if its running time is bounded by a
polynomial in two variables len(I) and max(I).

We usually measure complexity of an algorithm only with
respect to len(I).
If for some polynomial p and for every instance I of A we
have that max(I) ≤ p(len(I)) then a pseudopolynomial
algorithm is actually polynomial.
Also, if the numbers in I would be encoded in unary, a
pseudopolynomial algorithm would run in polynomial time.

138/167

Examples of Pseudopolynomial Algorithms

Sieve of Eratosthenes
Naive factorization
Counting sort

139/167

Strong NP-completeness

Definition 63
Let A be a decision problem and let p be a polynomial.
Then A(p) denotes the restriction of problem A to
instances I which satisfy max(I) ≤ p(len(I)).
We say that problem A is strongly NP-complete, if there is
a polynomial p for which A(p) is NP-complete.

Any NP-complete problem which is not a number problem
is strongly NP-complete.
If there is a strongly NP-complete problem which can be
solved by a pseudopolynomial algorithm then P = NP.

140/167

Binary vs. unary encoding

Pseudopolynomial=polynomial when considering unary
encoding.
Strongly NP-complete=NP-complete even when
considering unary encoding.

Binary encoding Unary encoding
P Solvable by a pseudopolynomial algorithms.

NP-complete Strongly NP-complete.

141/167

Strong NP-completeness of TSP

Traveling Salesperson (TSP)

Instance: A set of cities C = {c1 , . . . , cn}, distances
d(ci , c j) ∈ � between all pairs of cities, a limit
D ∈ �.

Question: Is there a permutation of cities
cπ(1) , cπ(2) , . . . , cπ(n), which satisfies(

n−1∑
i=1

d(cπ(i) , cπ(i+1))

)
+ d(cπ(n) , cπ(1)) ≤ D?

Theorem 64
Travelling Salesperson is a strongly NP-complete problem.

142/167

Approximation algorithms

Optimization problem

Definition 65
We define optimization problem as a triple
A = (DA , SA , µA), where

DA ⊆ Σ∗ is a set of instances,
SA(I) assigns a set of feasible solutions to each I ∈ DA
µA(I , σ) assigns a positive rational value to every I ∈ DA
and every feasible solution σ ∈ SA(I).

If A is a maximization problem, then an optimum solution
to instance I is a feasible solution σ ∈ SA(I), which has the
maximum value µA(I , σ).
If A is a minimization problem, then an optimum solution to
instance I is a feasible solution σ ∈ SA(I), which has the
minimum value µA(I , σ).
The value of an optimum solution is denoted opt(I).

144/167

Bin Packing

Bin Packing (BP)

Instance: Set of items U, a size s(u) associated with each
item u. The size is a rational value from interval
[0, 1].

Feasible
solution:

Splitting of items to pairwise disjoint bins
U1 , . . . ,Um, satisfying

(∀i ∈ {1, . . . ,m})
[∑

u∈Ui

s(u) ≤ 1

]
.

Goal: Minimize the number of bins m.

The decision version is equivalent to Scheduling.
145/167

Approximation algorithm

Definition 66
Algorithm R is called approximation algorithm for optimization
problem A, if for each instance I ∈ DA the output of R(I) is a
feasible solution σ ∈ SA(I) (if there is any).

If A is a maximization problem, then ε ≥ 1 is an
approximation ratio of algorithm R, if for all instances
I ∈ DA we have that opt(I) ≤ ε · µA(I , R(I)).
If A is a minimization problem, then ε ≥ 1 is an
approximation ratio of algorithm R, if for all instances
I ∈ DA we have that µA(I , R(I)) ≤ ε · opt(I).

146/167

An approximation algorithm for Bin Packing

Algorithm 1 First Fit (FF)
1: Take items as they come and for each item try to find a bin

in which it fits.
2: If no such bin exists, add a new bin with the item in it.

Theorem 67
If I is an instance of Bin Packing and if m is the number of
bins created by algorithm FF on instance I, then
m < 2 · opt(I).
For any m there is an instance I such that opt(I) ≥ m for
which FF returns a solution with at least 5

3opt(I) bins.

147/167

A better algorithm for Bin Packing

Algorithm 2 First Fit Decreasing (FFD)
1: Sort the items by their value decreasing.
2: Take items from the biggest to smallest and for each item try

to find a bin in which it fits.
3: If no such bin exists, add a new bin with the item in it.

Theorem 68 (Without proof)
If I is an instance of Bin Packing and if m is the number of
bins produced by algorithm FFD on instance I, then
m ≤ 11

9 · opt(I) + 4.
For each m there is an instance I, such that opt(I) ≥ m, for
which algorithm FFD produces at least 11

9 opt(I) bins.

148/167

Travelling Salesperson (optimization version)

Traveling Salesperson (TSP)

Instance: Set of cities C = {c1 , . . . , cn}, distances d(ci , c j) ∈
� between all pairs of cities.

Feasible
solution:

Permutation of cities cπ(1) , cπ(2) , . . . , cπ(n).

Goal: Minimize(
n−1∑
i=1

d(cπ(i) , cπ(i+1))

)
+ d(cπ(n) , cπ(1)).

Theorem 69
Travelling Salesperson is an NP-complete problem.

149/167

Hardness of approximation

Theorem 70
if P , NP, there is no polynomial approximation algorithm with a
constant approximation ratio for Travelling Salesperson.

There is a 3
2 -approximation algorithm for TSP if the

distance function satisfies triangle inequality.
There is a polynomial approximation scheme for TSP in
Euclidean plane.

150/167

Approximation scheme for Knapsack

Input: Knapsack size B, number of items n. Array of sizes s and
array of values v (both of size n). We assume that
(∀i)[0 ≤ s(i) ≤ B]. Rational number ε > 0.

Output: Set of items A′ with total size of items at most B and with
total value at least 1

1+εopt(I).
1: function BAPX(I = (B, n , s , v), ε)
2: m ← arg max1≤i≤n v[i]
3: if ε ≥ n − 1 then return {m}
4: end if
5: t ←

⌊
log2

(
ε·v[m]

n

) ⌋
− 1

6: c is a new array of size n
7: for i ← 1 to n do
8: c[i]←

⌊
v[i]
2t

⌋
9: end for

10: Using pseudopolynomial algorithm for Knapsack find an
optimum solution to instance B, s , c and return the solution.

11: end function
151/167

Properties of Knapsack approximation

Theorem 71
Let I be an instance of Knapsack and let ε > 0 be a rational
number.

Let bapx(I , ε) be a value of solution returned by algorithm
BAPX for a given instance I and rational number ε > 0,
then

opt(I) ≤ (1 + ε) · bapx(I , ε).

Algorithm BAPX works in time O(1εn3) (if we consider
arithmetic operations as constant time).

152/167

Fully polynomial time approximation scheme

Definition 72
Algorithm ALG is an approximation scheme for an
optimization problem A, if on the input instance I ∈ DA and
a rational number ε > 0 it returns a solution σ ∈ SA(I) with
approximation ratio 1 + ε.
If ALG works in polynomial time with respect to len(I), then
it is a polynomial time approximation scheme.
If ALG works in polynomial time with respect to both len(I)
and 1

ε , it is a fully polynomial time approximation scheme
(FPTAS).

BAPX is a fully polynomial time approximation scheme for
Knapsack.

153/167

FPTAS and strong NP-completeness

Theorem 73
Let A be an optimization problem and let us assume that for
any instance I ∈ DA the value µA(I , σ) ∈ �. Let us assume that
there is a polynomial q of two variables so that for any instance
I ∈ DA we have that

opt(I) < q(len(I),max(I)).

If there is a fully polynomial time approximation scheme for A,
then there is also a pseudopolynomial algorithm for A.

If P , NP, there is no FPTAS for any strong NP-complete
problem satisfying the assumptions of above theorem.

154/167

Classes co-NP and #P

Unsatisfiability

Unsatisfiability (UNSAT)

Instance: Formula ϕ in CNF
Question: Is it true, that for any assignment v of values to

variables ϕ(v) = 0 (unsatisfied)?

We do not know a polynomial time verifier for problem
UNSAT, this problem most probably does not belong to
class NP.
Language UNSAT is (more or less) the complement of
language SAT, because for any formula ϕ in CNF we have

ϕ ∈ UNSAT⇐⇒ ϕ < SAT

156/167

Class co-NP

Definition 74
We say that language A belongs to the class co-NP if and only
if its complement A belongs to the class NP.

For instance UNSAT belongs to co-NP. (It is easy to
recognize languages which do not encode a formula.)
Language L belongs to co-NP, iff there is a polynomial time
verifier V which satisfies that

L =
{

x | (∀y) [V(x , y) accepts]
}

.

We have that P ⊆ NP ∩ co-NP.

157/167

co-NP-completeness

Definition 75
Problem A is co-NP-complete, if

1 A belongs to class co-NP and
2 every problem B ∈ co-NP is polynomial time reducible to A.

Language A is co-NP-complete, if and only if complement
A is NP-complete.
For example UNSAT is an co-NP-complete problem.
If there is an NP-complete language A, which belongs to
co-NP, then NP = co-NP.

158/167

Class #P

Definition 76
Function f : Σ∗ 7→ � belongs to class #P, if there is a
polynomial time verifier V such that for each x ∈ Σ∗

f (x) = |{y | V(x , y) accepts}|.

We can associate a function #A in #P with every problem
A ∈ NP (given by the “natural” polynomial time verifier for
A).
Natural verifier verifies that y is a solution to the search
problem corresponding to A.
For example the natural verifier for SAT accepts a pair ϕ, v,
if ϕ is a CNF and v is a satisfying assignment for ϕ.
Then #SAT(ϕ) = |{v | ϕ(v) = 1}|.

159/167

Class #P (properties)

Consider function f ∈ #P and problem:

Nonzero Value of f

Instance: x ∈ Σ∗.
Question: f (x) > 0?

Problem Nonzero Value of f belongs to NP.
Value of f ∈ #P can be obtained by using polynomial
number of queries about an element belonging to the set
{(x ,N) | f (x) ≥ N}.
Value of f ∈ #P can be computed in polynomial space.

160/167

Reducing a function to another function

Definition 77
Function f : Σ∗ 7→ � is polynomial time reducible to function
g : Σ∗ 7→ � (f ≤P g) if there are functions α : Σ∗ ×� 7→ � a
β : Σ∗ 7→ Σ∗, which can be computed in polynomial time and

(∀x ∈ Σ∗) [f (x) = α (x , g (β(x)))]

This corresponds to the fact that f can be computed in
polynomial time with one call of function g (if this call is a
constant time operation).

161/167

Parsimonious reduction

Definition 78
We say that problem A ∈ Σ∗ is polynomial time reducible to
problem B ∈ Σ∗ by parsimonious reduction (A ≤P

c B), if there is
a function f : Σ∗ 7→ Σ∗ computable in polynomial time such that

|{y | VA(x , y) accepts}| = |{y | VB(f (x), y) accepts}|,

where VA and VB are natural verifiers for A and B.

If A ≤P
c B, then #A ≤P #B.

The reductions we have presented during the lecture can
be modified into parsimonious reductions.

162/167

#P-completeness

Definition 79
We say that function f : Σ∗ 7→ � is #P-complete, if

1 f ∈ #P and
2 every function g ∈ #P is polynomial time reducible to f .

For example #SAT, #Vertex Cover and other counting
versions of NP-complete problems are #P-complete.
Using just parsimonious reductions.
There are problems in P such that their counting versions
are #P-complete.

163/167

Number of perfect matchings in a bipartite graph

Perfect matching in a bipartite graph (BPM)

Instance: Bipartite graph G = (V = A∪B, E ⊆ A×B), where
|A| = |B |.

Question: Is there a matching in G of size |A| = |B |?

Theorem 80 (Without proof)
Function #BPM is #P-complete.

164/167

Permanent of a matrix

Definition 81
Let A be a matrix of type n × n. Then we define permanent of A
as

perm(A) =
∑
π∈S(n)

n∏
i=1

ai ,π(i),

where S(n) is a set of permutations over set {1, . . . , n}.

Like “determinant” without a sign of permutation.
If A is a adjacency matrix of a bipartite graph G, then
perm(A) computes the number of perfect matchings of G.

Theorem 82 (Without proof)
Function perm is #P-complete.

165/167

#DNF-SAT

Term is a conjunction of literals.
Disjunctive normal form (DNF) is a disjunction of terms.

DNF-Satisfiability (DNF-SAT)

Instance: Formula ϕ in DNF
Question: Is there an assignment v such that ϕ(v) is satis-

fied?

DNF-SAT is decidable in polynomial time.
Function #DNF-SAT is #P-complete.

166/167

An Advertisement

For those who want to know more, I can recommend lectures in
summer semester:

Computability (NTIN064)

Lectured by doc. RNDr. Antonín Kučera, CSc.

Complexity (NTIN063)

Lectured by doc. RNDr. Ondřej Čepek, Ph.D.

167/167

https://is.cuni.cz/studium/predmety/index.php?do=predmet&kod=NTIN064
https://is.cuni.cz/studium/predmety/index.php?do=predmet&kod=NTIN063

	Introduction
	Computability
	A Light Introduction into the Theory of Algorithms
	A bit of history …
	Turing Machines
	Random Access Machine
	Numbering Turing machines
	Universal Turing machine
	Algorithmically (un)decidable languages
	Algorithmically computable function
	Properties of (partially) decidable languages
	Reducibility and completeness

	Complexity
	Basic complexity classes
	Savitch's theorem
	Hierarchy theorems
	Polynomial reducibility and NP-completeness
	Pseudopolynomial algorithms and strong NP-completeness
	Approximation algorithms
	Classes coNP and #P

