Decision Procedures and SAT/SMT Solvers
NAIL094

Petr Ku&era

Charles University

2024/25 (1st lecture)

Introduction

Overview

Introduction, motivation, basic notions.
Normal forms: CNF, DNF, NNF

Satisfiability of boolean formulas
Modern SAT solvers
Local search
Binary decision diagrams (BDD)
Decision procedures for theories

Equality and uninterpreted functions
Linear arithmetic

Bit vectors

Arrays, memory, pointers

Combination of theories
Quantified boolean formulas (QBF)

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 3/68

Literature

Aaron R. Bradley
Zohar Manna

Daniel Kroening
Ofer Strichman

Decision

The Calculus
Procedures

of Computation

An Algorithmic Point of View

Second Edition

Kroening, D., & Strichman, O. Bradley, A. R., & Manna, Z. (2007).
(2016). Decision procedures. The calculus of computation.
Springer. Springer.

_ Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 4/68

https://link.springer.com/book/10.1007/978-3-662-50497-0
https://link.springer.com/book/10.1007/978-3-662-50497-0
https://link.springer.com/book/10.1007%2F978-3-540-74113-8
https://link.springer.com/book/10.1007%2F978-3-540-74113-8

Literature

HANDBOOK

oo of satisfiability

Handbook of satisfiability 2nd Dennis Yurichev (2024).
Edition. IOS press 2021. SAT/SMT by Example
Editors: Armin Biere, Marijn Heule,

Hans Van Maaren and Toby Walsh

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 5/68

https://www.iospress.nl/book/handbook-of-satisfiability/
https://www.iospress.nl/book/handbook-of-satisfiability/
https://yurichev.com/SAT_SMT.html
https://yurichev.com/SAT_SMT.html

Decision Procedure

Intuition
A decision procedure is an algorithm that,
given a logical formula, decides if it is

satisfiable.

Satisfiable — satisfying assignment (model)
Unsatisfiable — proof of unsatisfiability

Picture by llya Yodovsky Jr. (taken from Decision Procedures by D. Kroening and O. Strichman)

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 6/68

Applications

Model checking
Hardware verification
Verifying designs of electronic circuits
Software verification
Verifying that an assertion in code cannot be violated
Compiler optimizations
Correctness of transformations
Software package dependencies
Dependency hell
Planning and scheduling

Chemical reaction networks

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 7/68

Propositional SAT Solving

Language of Propositional Logic

A propositional logic formula is defined by the following grammar:

fla:flaAfla|-fla|(fla)|atom

atom:boolean-identifier | true | false

Other connectives can be derived using A and -
v, =, <, ® (XOR), ...

Example
"(x = (yez))v(y < 2)
" (Yyrx = z) = ((y = z)A (x = 2))

" (xvy) = =(~xAr-y)

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture)

9/68

Motivation | — Radio Stations

Consider a set of radio stations S = {s1,...,s,}

Every station should get allocated one of k transmission
frequencies for some k < n

Stations that are too close should not share the same frequency

Graph coloring problem

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 10/68

Radio Stations — Example Instance

Radio Stations — A Possible Solution

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 12/68

Radio Stations — Model

[We want to model the problem in propositional logic.]

Variables x; j,i=1,...,n,j=1,...,k
x;,; = 1 — “Radio station s; has frequency j”
E denotes the set of pairs of stations that are too close

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 13/68

Radio Stations — Formula
Every station is assigned at least one frequency
n k
AV xi
i=1j=1

Every station is assigned not more than one frequency

n k-1
NN = N -xip)
i-1j-1

j<t<k

Close stations are not assigned the same frequency.

=

Ny = -xjt) (for each (i,) € E)
t=1

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 14/68

Motivation Il — Code equivalence

Snippet A Snippet B

i if(l'a && !'b) h(); i if(a) f£();

2 else 2 else

3 if(ta) g(); 3 if(b) g0 ;
4 else f(); 4 else h();

Are the snippets A and B equivalent?

BN O S Dccision Procedures and SAT/SMT Solvers 2024/25 (1stlecture) 15/68

If-then-else

Ternary operator if-then-else can be represented with a
propositional formula

“if xthenyelsez’= (x Ay) v (-xAz)

Replace boolean variables and function calls with propositional
variables

Form the corresponding propositional formulas and check their
equivalence

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 16/68

Motivation Il — Code equivalence

Snippet A Snippet B

if —|ﬂ/\—|b then I’l
else

if a then f

1 1

2 2 else

3 if -a then g 3 if b then g
4 else f 4 else h

BN O S Dccision Procedures and SAT/SMT Solvers 2024/25 (1stlecture) 17/68

Motivation Il — Code equivalence

Snippet A Snippet B

1
2
3
4

if -an-b then h
else
if —-a then g
else f

1
2
3
4

if a then f
else
if b then g
else h

Pa =

—aA=bAhv

~(man-b)yA(-~angvanf)

_ Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture)

17/68

Motivation Il — Code equivalence

Snippet A Snippet B

1 if -aA-b then h 1 if a then f

2 else 2 else

3 if -a then g 3 if b then g

4 else f 4 else h
@a=-an-bnhv Ppp=anfv

~(man-b)yA(-~angvanf) —an(brngv-=bnah)

BN O S Dccision Procedures and SAT/SMT Solvers 2024/25 (1stlecture) 17/68

Motivation Il — Code equivalence

Snippet A Snippet B

1 if -aA-b then h 1 if a then f

2 else 2 else

3 if -a then g 3 if b then g

4 else f 4 else h
@a=-an-bnhv Ppp=anfv

~(man-b)yA(-~angvanf) —an(brngv-=bnah)

Check the validity of ¢, < ¢,

B O S D<cision Procedures and SAT/SMT Solvers 2024/25 (1stlecture) 17/68

Assignments and Satisfaction

x denotes a set of variables x1, .., x,

lit(x) literals over variables in x

Assignment a maps propositional variables to true or false
lor0O,Tort

An assignment a satisfies formula ¢ if ¢ (a) evaluates to true
a is a model of ¢
aEQ

Satisfiable formula admits a model

Unsatisfiable formula has no model
Contradiction

Valid formula is satisfied by every assignment
Tautology

[@ is a tautology < -¢ is unsatisfiable.]

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 18/68

Negation Normal Form

Literal a propositional variable x or its negation -x

NNF a formula is in negation normal form if it uses only A, v, -
and negation is only in front of variables (in literals)

Example
[n n
p1={A\ A ﬁ(xi/\ﬁx]-)] = y Not NNF
[i=1 j=i+1
[n n
P2 = \/\/X,‘/\—\x]' vy
[i=1 j=i+1

@2 is a NNF equivalent to ¢

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 19/68

CNF and DNF

Term a conjunction of literals, e.g. x A =y A -z
Clause a disjunction of literals, e.g. x v -y v -z
CNF a formula is in conjunctive normal form if it is a
conjunction of clauses
DNF a formula is in disjunctive normal form if it is a disjunction
of terms
The empty term and empty CNF are valid — 1
The empty clause and empty DNF are contradictions — 1

Example

p1=(xVv-yvz)A(-xVvy) CNF
p2=(xAny)v(-xan-y)v(-xnrz)v(yaz) |anequivalent DNF

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 20/68

SAT and Related Problems

Given a CNF formula ¢
SAT Is ¢ satisfiable?
UNSAT Is ¢ unsatisfiable?
MaxSAT Maximize the number of satisfied clauses of ¢
#SAT Count the models of ¢
Model Enumeration Enumerate the models of ¢

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture)

21/68

Why Study Propositional SAT?

Interesting from both theoretical and practical perspective
The first problem to be proven NP-complete

Cook, 1971; Levin, 1973
Generic problem — many problems encoded into SAT

Hardware and software verification
Planning and scheduling

Product configuration

...and many others

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 22/68

Progress in SAT Solving

1,000,000

100,000 -

10,000 -

1,000 -

Variables

100 |

1960 1970 1980 1990 2000 2010

Year

The size of industrial CNF formulas that are regularly solved by SAT
solvers in a few hours, according to year.

Image source: Decision Procedures. Kroening D., Strichman O.

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 23/68

Progress in SAT Solving

Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout
1200

T T T T T T
2002 %
2003 K .
2004 X
2005 X 6)6@ ¢ Pl
1000 2006 o x

2007 + x
2008
2009 N o
2010 o
2011 o+ X
2012 &
2013 X

o) T
[e]

X +

o
SNe)

800 -

*O4» OO0

CPU Time (in seconds)

180

Number of problems solved

Image source: Decision Procedures. Kroening D., Strichman O.

_ Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 24/68

Progress in SAT Solving

1000

100

Relative solving time (log scale)

10
1
—_ — —_ = [P~ @ o~
g] 3 =S =] & =5
g g g 3) I8 8§ 5g
o £ 8 2 P o o @
) a o o =] + "' +
[5 = 2 H '] H
(2] N g % n & E 3
x = E H [
5 R H
]
Solver

Sharad Malik, Lintao Zhang Communications of the ACM, August 2009, Vol. 52 No. 8, Pages 76-82

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 25/68

Progress in SAT Solving

SAT Competition Winners on the SC2020 Benchmark Suite

250

—&— kissat-2020
—&— maple-lem-dise-ch-d1-v3-2019
. d —a— maple-lem-dist-cb-2018
200 = —e— maple-lem-dist-2017
g 5 A i —— maple-comsps-drp-2016
—— lingeling-2014
s abodsat-2015
. 4 Y el lingeling-2013
150 ; p | oot 4 . ——— plucose-2012
& g p—all e — i glucose-2011
cryptominisat-2010
4 —&— precosat-2009
p) ¥ i —&— minisat-2008
100 5 berkmin-2003
y q 2 - —&— minisat-2006
——+—— rsat-2007
—&— satelite-gti-2005
—&— zchaif-2004
—&— limmat-2002

solved instances

| | | |
0 1,000 2,000 3,000 4,000 5,000

CPU time data produced by Armin Biere and Marijn Heule

Source and more details: http://fmv. jku.at/kissat

_ Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 26/68

http://fmv.jku.at/kissat

Progress in SAT Solving

SAT Competition Winners on the SC2019 Benchmark Suite

250

—&— kissat-2020

—&— maple-lem-dise-ch-d1-v3-2019

—a— maple-lem-dist-cb-2018

—o— maple-lem-dist-2017

—— maple-comsps-drp-2016

—a— abodsat-2015

—— lingeling-2014
lingeling-2013

—&— minisat-2008
cryptominisat-2010
glucose-2011

———— glucose-2012

—— precosat-2009

—A— minisat-2006

—&— satelite-gti-2005

——+—— rsat-2007
berkmin-2003

—&— limmat-2002

—@— zchaff-2004

200

150

100

solved instances

| | 1 |
0 1,000 2,000 3,000 4,000 5,000
CPU time data produced by Armin Biere and Marijn Heule

Source and more details: http://fmv. jku.at/kissat

_ Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 27/68

http://fmv.jku.at/kissat

Progress in SAT Solving

SAT Competition Winners on the SC2011 Benchmark Suite
250 T T T I

—&— kissat-2020

—#— maple-lem-dist-2017

—&— maple-lem-dise-ch-d1-v3-2019

—&— maple-lem-dist-cb-2018

—=— abedsat-2015

—4#— maple-comsps-drup-2016

—— lingeling-2014
cryptominisat-2010

—— precosat-2000
glucose-2011
lingeling-2013

~+—— glucose-2012

—&— minisat-2008

—&— satelite-gti-2005

—&— minisat-2006

——+—— rsat-2007

—&— limmat-2002
berkmin-2003

—@— zchaff-2004

200

solved instances

| | | | I
0 1,000 2,000 3,000 4,000 5,000

CPU time data produced by Armin Biere and Marijn Heule

Source and more details: http://fmv. jku.at/kissat

_ Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 28/68

http://fmv.jku.at/kissat

SAT encodings

Converting Formula to an Equivalent CNF

Lemma
To every formula we can construct an equivalent CNF.

Convert to NNF

Rewrite connectives using only A, v, and -
Use De Morgan’s laws to propagate negations to variables
Remove double negation (--x = x)

Use distributivity to propagate disjunction over conjunction

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture)

30/68

Converting Formula to an Equivalent CNF

Lemma
To every formula we can construct an equivalent CNF.

Convert to NNF

Rewrite connectives using only A, v, and -
Use De Morgan’s laws to propagate negations to variables
Remove double negation (--x = x)

Use distributivity to propagate disjunction over conjunction

[The result can be exponentially larger!]

Any CNF equivalent to \/, (x; A y;) has at least 2" clauses

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture)

30/68

Tseitin’s Encoding

Lemma (Tseitin)

Every formula ¢ can be converted to an equisatisfiable formula v in
CNF which is larger only by a constant factor.

Equisatisfiable 1) is satisfiable if and only if ¢ is satisfiable
Idea:
Draw a derivation tree of the formula
Assign a fresh variable to each connective
Add clauses to define the function of each connective
Add the root variable as a unit clause

Can be used to convert a logical circuit into a CNF as well.

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 31/68

Tseitin’s Encoding (example)

(x=y)r(y—=2)=(x>2)

Draw the derivation tree

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 32/68

Tseitin’s Encoding (example)

(x=y)r(y—=2)=(x>2)

(4]

Assign variables
to its nodes

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 32/68

Tseitin’s Encoding (example)
(x=>y)r(y—2) - (x—>2)

Vo =01 = 09
Add definitions of
the new variables

U1 =03 AN04

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture)

32/68

Tseitin’s Encoding (example)
(x=>y)r(y—2) - (x—>2)

Rewrite as a conjunction of definitions of new variables

(4]

0p =01 —> 03

V1 =03 N0y
V2 =X —>2Z
U3=Xx—>Y
U4=Y —>2Z

es University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 33/68

Tseitin’s Encoding (example)

(x=y)r(y—=2)=(x>2)

Rewrite as a conjunction of definitions of new variables
rewrite definitions only using -, A, and v

00

Vg =01 > 09 =201 VO
V1 =03 N0y

V9=X >Z=-XVZ
UV3=X > Y=-XVY

Uy=Yy >Z=-Yyvz

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 33/68

Tseitin’s Encoding (example)

(x=y)r(y—=2)=(x>2)

Rewrite as a conjunction of definitions of new variables
rewrite definitions only using -, A, and v

0o

Vo = =01 V U3 (vg = —v1 VV2) A (=01 VU2 = D))
V1= U3AUy (v1 > v3AVy) A (V3 ATy —> D7)
Vg = -XVZ (vg > =xVvzZ)A(-XxVZ—>03)
V3= X VY (v3 > -xVY)A(-xVYy —>03)
V=Y Vz (va»>-yvz)A(-yvz-—>0y)

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 33/68

Tseitin’s Encoding (example)

(x=y)r(y—=2)=(x>2)

Rewrite as a conjunction of definitions of new variables
rewrite definitions only using -, A, and v
rewrite as a conjunction of clauses

U0 Uo

Vo = U1 V Vg (vg = =v1 VV2) A (=v1 = vg) A (V2 = Dg)
V1= U3AUy (v1 = v3) A (V1 = v4) A (V3 ADg = V1)
Vo= -XV2Z (vg > =xVvzZ)A (=X > v2) A(z > 02)
V3= X VY (v3 > -xVYy)A(-x >v3)A(Yy = 0v3)
V=Y Vz (04 > -y Vvz)A(~y > v4) A (2 > 0y)

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 33/68

Tseitin’s Encoding (example)

(x=y)r(y—=2)=(x>2)

Rewrite as a conjunction of definitions of new variables
rewrite definitions only using -, A, and v
rewrite as a conjunction of clauses

00 0o

Vg = =01 V U3 (=00 vV =01 V) A (01 VOg) A (=02 VD)
V1 = U3 A0y (=01 Vo3) A (=01 VOg) A (=03 V =04 VDY)
Vy=-XV2Z (=2 vV -xVvz)A(xVU2)A (=2 V02)
V3= X VY (mvgVv-xVvy)A(xvog)A(-yVvos)
V=Y Vz (mva vy vz)A(Yy Vo) A(-z Vo)

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 33/68

Tseitin’s Encoding (example)

(x=y)r(y—=2)=(x>2)

Rewrite as a conjunction of definitions of new variables
rewrite definitions only using -, A, and v
rewrite as a conjunction of clauses

00 0o

Vg = =01 V U3 (=00 vV =01 V) A (01 VOg) A (=02 VD)
V1 = U3 A0y (=01 Vo3) A (=01 VOg) A (=03 V =04 VDY)
Vy=-XV2Z (=2 vV -xVvz)A(xVU2)A (=2 V02)
V3= X VY (mv3Vv-xVvy)A(xvos)A(=y Vo)
V=Y Vz (mva vy vz)A(Yy Vo) A(-z Vo)

Equisatisfiable, not equivalent.

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture)

33/68

Resolution

Certifying Unsatisfiability

CNF ¢ is satisfiable = SAT solver returns a model
easy to check its correctness

@ is unsatisfiable = SAT solver returns UNSAT
how to check that the answer is correct?

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture)

35/68

Certifying Unsatisfiability

CNF ¢ is satisfiable = SAT solver returns a model
easy to check its correctness

@ is unsatisfiable = SAT solver returns UNSAT
how to check that the answer is correct?

SAT solvers can return the proof of unsatisfiability
resolution refutation of ¢

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture)

35/68

Resolution

Given clauses A, B, and a variable x

parent clauses

AvVx Bv -x
AvVB

— —
resolvent

Definition
Resolution derivation of a clause C from a CNF ¢ is a sequence of
clauses Cq,...,Cr suchthat C, =C and foreachi=1,...,k either
Cieq,or
C; is a resolvent of some clauses preceding it in the list.

Resolution refutation of ¢ is the resolution derivation of the empty
clause 1 (contradiction).

v

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 36/68

Resolution Graph

Resolution graph represents a resolution derivation
A directed acyclic graph (DAG)
nodes clauses
leaves clauses of ¢
inner nodes resolvents
edges from parent clauses to resolvents
sink node the derived clause (1 in case of a refutation)

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture)

37/68

Resolution Graph (example)

p=-xA(yv-z)A(xv-y)r(xvyvz)a(-xvz)

yVv-z XVay xXVyvz
-X XV -z XVz -XVz

NI
\./

Petr Ku€era (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture)

38/68

Tree Resolution

Tree resolution refutation resolution graph is a tree
clauses of ¢ can be in several leaves

p=-xA(yv-z)A(xv-y)A(xvyvz)a(-xVvz)

YV -z XV -y XV -y XVyvz

N/ N/

XV -z XVz —XVZ

./ \./

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture)

39/68

Resolution and Tree Resolution

@ £ C every model of ¢ is a model of C as well.

Clause C is an implicate of ¢
Equivalentto ¢ A Ajecc -l = L

@ e L if and only if ¢ is unsatisfiable
@ + C clause C can be derived by resolution from ¢.

(Tree) Resolution is sound and complete

@ = Lifand only if ¢ - 1 for every CNF formula ¢.

Resolution refutations can have exponential length
Pigeon hole principle formulas

Tree resolution refutations may be exponentially longer than
general resolution refutations

_ Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 40/68

Unit Resolution

unit resolution one of the parent clauses is a unit clause (single literal)
@ +1 C clause C can be derived from ¢ by unit resolution

Unit resolution is sound but incomplete

p=(xvy)A(=xvy)r(xVv=y)A(-xV=-y)

= Unsatisfiable
= Has no unit resolution refutation

Unit resolution refutation can be found in linear time if it exists

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 41/68

Unit Resolution (Example)

p=-xA(yv-z)A(xv-y)r(xvyvz)a(-xvz)

XV -y XVyvz
yVv-z yvz

\/\/
\/

Petr Ku€era (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture)

42/68

Partial Assignments — Notation

x set of variables
lit(x) literals over variables in x

partial assignment a non-contradictory set of literals, considered as a
conjunction of literals
@[a] Application of a partial assignment « c lit(x):
Removed clauses containing a literal from «

Removed the negations of the literals in a from the
remaining clauses

p=(yv-z)A(xv-y)r(xvyvz)A(-xVvz)

pl-x] = yvﬂZ)A(ﬂy)A(yVZ)
@[x,-z] =1 (The empty clause — contradiction)
@[x,y,z] =T (The empty CNF — satisfied)

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 43/68

Unit Propagation Algorithm

Function UnitProp (¢)

Input: CNF formula ¢ on variables x
Output: («, 1) where a is a set of literals which can be derived by
unit resolution from ¢, 1 = p[a].
if L € ¢ then return («, 1)
a«g
while ¢ contains a unit clause / do
a<auf{l}
¢ < ¢[l]
if L € ¢ then return (o, 1)

return (o, @)

Efficient procedure
Linear time implementation
Efficient data structures (watched literals)

Used very often in SAT solvers
Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 44/68

Unit Propagation Example

= -x Ayv-z)r(xv-y)rA(xvyvz)a(-xvz),a=g
——

unit clause

Petr Kuéera (Ch: \' Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 45/68

Unit Propagation Example

= -x Ayv-z)r(xv-y)rA(xvyvz)a(-xvz),a=g
——

unit clause
p=-x Ayv-z)A(X Vv-y)A(Xx vyvz)r(=-x vz),a={-x}
| —
unit clause

Petr Kucera (Chz Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 45/68

Unit Propagation Example

= -x Ayv-z)r(xv-y)rA(xvyvz)a(-xvz),a=g
——

unit clause
p=-x Ayv-z)A(X Vv-y)A(Xx vyvz)r(=-x vz),a={-x}
[—
unit clause

==X A(YyVv-z)r(x Vv =y)A(x vy vz)r(-x vz),
| S
unit clause

a={-x,-y}

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 45/68

Unit Propagation Example

= -x Ayv-z)r(xv-y)rA(xvyvz)a(-xvz),a=g
——

unit clause
p=-x Ayv-z)A(X Vv-y)A(Xx vyvz)r(=-x vz),a={-x}
—_—
unit clause
==X A(YyVv-z)r(x Vv =y)A(x vy vz)r(-x vz),
N
unit clause
a={-x,~y}
p=-xA(yviEz)r(xv -y)r(xviyvz)r(-xvz),
N

empty clause
a = {ﬂx, ﬂy, Z}

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 45/68

Unit Propagation Example

= -x Ayv-z)r(xv-y)rA(xvyvz)a(-xvz),a=g
——

unit clause
p=-x Ayv-z)A(X Vv-y)A(Xx vyvz)r(=-x vz),a={-x}
| S —
unit clause
==X A(YyVv-z)r(x Vv =y)A(x vy vz)r(-x vz),
| S ——
unit clause
a={-x,-y}
p=-xA(yviEz)r(xv -y)r(xviyvz)r(-xvz),
—_—
empty clause
a={-x,-y,2}
Empty clause derived — Unit propagation returns ({-x, -y, z}, 1).]

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 45/68

DPLL

DPLL

DP algorithm — existential quantification (Davis and Putnam,
1960) by DP-elimination

High space complexity (can soon blow up exponentially)
Davis Putnam Logemann Loveland (Davis, Logemann, and
Loveland, 1962)
Branch and bound algorithm

Branch on values of a variable
Use unit propagation to prune the search tree
Polynomial space complexity

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 47/68

DPLL Algorithm

Function DPLL (CNF ¢)
Output: A set of literals (partial model) or UNSAT
(a,) < UnitProp (@)
if = o then return a
if 1 € ¢ then return UNSAT
I < aliteral in ¢
B < DPLL (Y[I])
if § + UNSAT then
| return aupu{l}

B < DPLL ([-I])
if B # UNSAT then
| return aupu{-l}

return UNSAT

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 48/68

DPLL — running example

@=(x1vax3Vvxg)A(=x1VxaVxs)A(=x1V-x3)A(=x2V-xg) A (X3VXy)
Decide x1

(x1 vxgvaxg)A((=x1 vxevag) A((=x1 v -xg) A(=xg V-xg) A(xg Vixg)

N —
unit clause

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 49/68

DPLL — running example

@=(x1vax3Vvxg)A(=x1VxaVxs)A(=x1V-x3)A(=x2V-xg) A (X3VXy)
Decide x1

(x1 vxgvaxg)A((=x1 vxevag) A((=x1 v -xg) A(=xg V-xg) A(xg Vixg)

N —
unit clause

Derive —x3 by unit propagation

(x1 vixg vxg)A((=x1 vxavixg)A((=x1 v =x3) A (=xav-x4)A (X3 Vxg)
N —_—
unit clause unit clause

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 49/68

DPLL — running example

@=(x1vax3Vvxg)A(=x1VxaVxs)A(=x1V-x3)A(=x2V-xg) A (X3VXy)
Decide x1

(x1 vxgvaxg)A((=x1 vxevag) A((=x1 v -xg) A(=xg V-xg) A(xg Vixg)
N
unit clause

Derive —x3 by unit propagation

(x1 vixg vxg)A((=x1 vxavixg)A((=x1 v =x3) A (=xav-x4)A (X3 Vxg)
N —_—

unit clause unit clause
Derive x2, x4 by unit propagation
(x1 vVixg vV xq4)A([=x1 Vv x5 Vixg)A((=x1 v =x3)A([=x2 vVI=xg)A((X3 vV xq)

_
empty clause

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 49/68

DPLL — running example

@=(x1vax3Vvxg)A(=x1VxaVxs)A(=x1V-x3)A(=x2V-xg) A (X3VXy)

Decide —x1

(‘x1 vxsvxg)A(=x1 vxavas)A(=x1 V-xg)A(=x2V-xg)A(xgVxg)

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 50/68

DPLL — running example

@=(x1vax3Vvxg)A(=x1VxaVxs)A(=x1V-x3)A(=x2V-xg) A (X3VXy)

Decide —x1

(‘x1 vxsvxg)A(=x1 vxavas)A(=x1 V-xg)A(=x2V-xg)A(xgVxg)

Decide x5

((x1 vxsvaxg)A(=x1 v x2 vag)A(=x1 V-x3)A (X2 V-xga)A(x3Vxyg)

N —
unit clause

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 50/68

DPLL — running example

@=(x1vax3Vvxg)A(=x1VxaVxs)A(=x1V-x3)A(=x2V-xg) A (X3VXy)

Decide —x1

(‘x1 vxsvxg)A(=x1 vxavas)A(=x1 V-xg)A(=x2V-xg)A(xgVxg)

Decide x5

((x1 vxsvaxg)A(=x1 v x2 vag)A(=x1 V-x3)A (X2 V-xga)A(x3Vxyg)

N —
unit clause

Derive -x4 by unit propagation
(lx1 vxgvixza)A(-x1 v x2 Vxz)A(=x1 V-x3)A((=xg vV —xq4)A(x3V(xg)

———
unit clause

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 50/68

DPLL — running example

@=(x1vax3Vvxg)A(=x1VxaVxs)A(=x1V-x3)A(=x2V-xg) A (X3VXy)
Decide —x1

(‘x1 vxsvxg)A(=x1 vxavas)A(=x1 V-xg)A(=x2V-xg)A(xgVxg)

Decide x5

((x1 vxsvaxg)A(=x1 v x2 vag)A(=x1 V-x3)A (X2 V-xga)A(x3Vxyg)
———
unit clause

Derive -x4 by unit propagation

(lx1 vxgvixza)A(-x1 v x2 Vxz)A(=x1 V-x3)A((=xg vV —xq4)A(x3V(xg)

———
unit clause

Derive x3 by unit propagation

(x1 V X3 ViXa)/\(—‘xl V X2 V X3)/\(—|X1 V X3)/\(—Xg V X4)/\(X3 \% X4)

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 50/68

DPLL — running example
@=(x1vx3Vvxg)A(=x1VxaVvaxg)A(-x1V-xg)A(=x2V-xg)A(X3VX4)
Decide —x1

(‘x1 vxsvxg)A(=x1 vxavas)A(=x1 V-xg)A(=x2V-xg)A(xgVxg)

Decide x5

((x1 vxsvaxg)A(=x1 v x2 vag)A(=x1 V-x3)A (X2 V-xga)A(x3Vxyg)
———
unit clause

Derive -x4 by unit propagation
(lx1 vxgvixza)A(-x1 v x2 Vxz)A(=x1 V-x3)A((=xg vV —xq4)A(x3V(xg)

———
unit clause

Derive x3 by unit propagation

(x1 V X3 ViXa)/\(—‘xl V X2 V X3)/\(—|X1 V X3)/\(—Xg V X4)/\(X3 \% X4)

a ={-x1,x9,x3,-x4} is a satisfying assignment of ¢

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 50/68

DPLL Variants and Extensions

CDCL
Decide quickly
Quickly arrive at a conflict (empty clause)
Learn from conflicts

Look-ahead solvers

Spend more time with decisions
Simplify formula between decision (e.g. eliminate pure literals)

Cube and Conquer

Use look-ahead solver to split into subproblems
Solve the subproblems using a CDCL solver

Model counters and enumerators
DPLL(T) — Satisfiability modulo theory (SMT)

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 51/68

Conflict Driven Clause Learning
(part 1)

CDCL Extensions to DPLL

Non-chronological backtracking (backjumping)
GRASP, Marques-Silva and Sakallah, 1997

Learning new clauses from conflicts
Exploiting structure of conflicts during clause learning

Chaff, Moskewicz et al., 2001

Using lazy data structures for the representation of formulas
Branching heuristics must have low computational overhead and
must receive feedback from backtrack search

Periodic restarts (Gomes, Selman, Kautz, et al., 1998)

Deletion policies for learnt clauses (BerkMin, Goldberg and
Novikov, 2007)

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 53/68

CDCL Solver Structure

Input formula

Unit -
Decide . Back jump
propagation

no
no

Done?

yes yes no
SAT Conflict Top

analysis level?
lyes
UNSAT

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture)

54/68

Values

Value of a literal I € lit(x) relative to a partial assignment «

1 lea
val(a,l) =20 -lea
* otherwise

1 literal is defined and satisfied (true)
0 literal is defined and unsatisfied (false)
+ literal is undefined (also unassigned)

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture)

55/68

Clause State

State of a clause C relative to a partial assignment «
Unsatisfied all literals in C are false in o
Satisfied C contains a satisfied literal from «

Unit C is not satisfied and
exactly one literal in C is undefined in a

Unresolved C is not satisfied and
two or more literals in C are undefined in a

a={-x1,-x2,x3}

unsatisfied satisfied

Q=1 vixag viaxz)A(—x2 VIi=X3 V)

A((xg vV -xg)A (X7 VgV -Xxs)

unit unresolved

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture)

56/68

Variable Types

Decision variable the value is set heuristically when picking the next
literal for branching

Decision literal literal specifying the value of a decision variable

Implied variable the value is derived by unit propagation following
previous decisions

Undefined the value has not been fixed yet (also unassigned)

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 57/68

Decision Level

Values of literals are put into a value stack
Removed when backtracking

Current decision level = number of decisions in the value stack
Each variable x; has a decision level 6(x;)

x; is undefined = 6(x;) = -1

x; is a d-th decision variable in the value stack = 6(x;) =d

x; is an implied variable = 6(x;) = number of decision variables

before x; in the value stack

0(x;) =0 < x; is implied by the input formula

6(x;) >0 and ant(x;) = NIL < x; is a decision variable

[@d — value of literal [was set at decision level d)

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 58/68

Assertive Clause

Assume a CNF ¢, a value stack «, and current decision level d
Clause C is assertive if
pEC (C is an implicate of ¢)
C is false under o
C has exactly one literal at the current decision level

Assertion level of C is defined as

the second highest decision level of literals in C, or
0if C is unit

[Assertive clause is unit after backtracking to assertion level]

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 59/68

Assertive Clauses

@ =([=x11 v —x31) A (x2 v x3) A (K31 V[=Xa2 vV —X62)A

((x31 v =Xg2 Vv (X73 Vv x83) A ((X73 v [(=Xxg3) A (—X73 Vv [(=Xs3)

a = (xn@l, —|X31@1,3642@2,3(62@2,—\X73@3,X83@3)

Clause Assertive

((S%11) v (X3 v (SXs3) 2 assertion level 1
((5%83) g assertion level 0
((=x11 v (X317 Vv (X73 V[—Xs3) e -X73@3, xg3@3
(x11 VI X31 Vv —-xg3) el satisfied

(x2 V(X371 VI =Xxs3) £ unit

(=x42 v (x73) el not implicate

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 60/68

Function DPLL+ (CNF ¢)

Output: A set of literals (partial model) or UNSAT

a< () // empty value stack
r<{} // empty set of learned clauses
d<0 // decision level

while true do

(B,¢) < UnitProp(p AT Aa)

if = 1 then // backtrack to assertion level
if 4 = 0 then return UNSAT

C < an assertive clause

d < assertion level of C

a<a~x{l@Qm|leanm>d}

I'<Tu{C} // learn clause C
else // contradiction not detected
a<—au{lQd|lep~a}

if is empty then return «

I < aliteral in ¢ // new decision literal
d<~d+1 // Increase the decision level
a<au{lQd} // Add decision to the value stack

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture)

61/68

DPLL+ — running example

@=(x1Vvx3Vvxg)A(=x1 VX2 Vxg)A(=x1V-x3)A(=xe Vv -xg) A (X3 Vxg)

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 62/68

DPLL+ — running example

@=(x1Vvx3Vvxg)A(=x1 VX2 Vxg)A(=x1V-x3)A(=xe Vv -xg) A (X3 Vxg)

Decide x; @1:
(x1 vxsvxg)A((=x1 vxavag)a((=xg v -xs)A(-x2 V-xg)A(xsVvig)
[
unit clause

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 62/68

DPLL+ — running example

@=(x1Vvx3Vvxg)A(=x1 VX2 Vxg)A(=x1V-x3)A(=xe Vv -xg) A (X3 Vxg)

Decide x; @1:
(x1 vxsvxg)A((=x1 vxavag)a((=xg v -xs)A(-x2 V-xg)A(xsVvig)
[
unit clause

Derive —x3 @ 1 by unit propagation:
(x1 vixg vxg)A((=x1 vxavixg)A((=x1 v =x3)A(=x2V-xg) A (X3 Vixg)
—,——— ———
unit clause unit clause

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 62/68

DPLL+ — running example

@=(x1Vvx3Vvxg)A(=x1 VX2 Vxg)A(=x1V-x3)A(=xe Vv -xg) A (X3 Vxg)

Decide x; @1:
(x1 vxsvxg)A((=x1 vxavag)a((=xg v -xs)A(-x2 V-xg)A(xsVvig)
[
unit clause

Derive —x3 @ 1 by unit propagation:
(x1 vixg vxg)A((=x1 vxavixg)A((=x1 v =x3)A(=x2V-xg) A (X3 Vixg)
N N
unit clause unit clause

Derive x5 @ 1, x4 @ 1 by unit propagation:
(x1 vixg v xg)A([=x1 Vv x2 vVixg)A((=x1 vV —~x3)A((=x2 vV (=xg)A((x3 Vv X1)

—_—
empty clause

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 62/68

DPLL+ — running example

@=(x1Vvx3Vvxg)A(=x1 VX2 Vxg)A(=x1V-x3)A(=xe Vv -xg) A (X3 Vxg)

Decide x; @1:
(x1 vxsvxg)A((=x1 vxavag)a((=xg v -xs)A(-x2 V-xg)A(xsVvig)
[
unit clause

Derive —x3 @ 1 by unit propagation:
(x1 vixg vxg)A((=x1 vxavixg)A((=x1 v =x3)A(=x2V-xg) A (X3 Vixg)
N N
unit clause unit clause

Derive x5 @ 1, x4 @ 1 by unit propagation:
(x1 vixg v xg)A([=x1 Vv x2 vVixg)A((=x1 vV —~x3)A((=x2 vV (=xg)A((x3 Vv X1)
—_———

empty clause

Learn assertive clause —x1, backtrack to assertion level 0

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 62/68

DPLL+ — running example

@=(x1Vvx3Vvxg)A(=x1 VX2 Vxg)A(=x1V-x3)A(=xe Vv -xg) A (X3 Vxg)

Decide x; @1:
(x1 vxsvxg)A((=x1 vxavag)a((=xg v -xs)A(-x2 V-xg)A(xsVvig)
[
unit clause

Derive —x3 @ 1 by unit propagation:
(x1 vixg vxg)A((=x1 vxavixg)A((=x1 v =x3)A(=x2V-xg) A (X3 Vixg)
N N
unit clause unit clause

Derive x5 @ 1, x4 @ 1 by unit propagation:
(x1 vixg v xg)A([=x1 Vv x2 vVixg)A((=x1 vV —~x3)A((=x2 vV (=xg)A((x3 Vv X1)
—_———

empty clause

Learn assertive clause —x1, backtrack to assertion level 0

@=(x1vxgvxg)A(=x]VxaVvxg)A(-x1V-xs)A(-xgV-xg)A(xsVviy)
I= (—.xl)

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 62/68

DPLL+ — running example

@=(x1Vx3Vvxg)A(=x1 VX2 Vxg)A(=x1V-x3)A(=xe Vv -xg) A (XgVxg)
T

= (-x1)

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 63/68

DPLL+ — running example

@=(x1Vx3Vvxg)A(=x1 VX2 Vxg)A(=x1V-x3)A(=xe Vv -xg) A (XgVxg)
T

= (-x1)

Derive —x1 @0 by unit propagation (not decided like in DPLL!):
(X1 \/X3\/X4)/\(-X1 VXg \/X3)/\(—X1 \/ﬁX3)/\(ﬁJC2 \/ﬁX4)/\(X3\/X4)/\(—X1)

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 63/68

DPLL+ — running example

@=(x1Vx3Vvxg)A(=x1 VX2 Vxg)A(=x1V-x3)A(=xe Vv -xg) A (XgVxg)
T

= (-x1)

Derive —x1 @0 by unit propagation (not decided like in DPLL!):
(X1 \/X3\/X4)/\(-X1 VXg \/X3)/\(—X1 \/ﬁX3)/\(ﬁJC2 \/ﬁX4)/\(X3\/X4)/\(—X1)

Decide x5, @1:
(‘x1 vxsvaxa)A(=x1 vV xg vag)A(=x1 V-x3)A((=xg vV -xg)A(x3Vxyg)
[——
unit clause

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 63/68

DPLL+ — running example

@=(x1Vx3Vvxg)A(=x1 VX2 Vxg)A(=x1V-x3)A(=xe Vv -xg) A (XgVxg)
T

= (-x1)

Derive —x1 @0 by unit propagation (not decided like in DPLL!):
(X1 \/X3\/X4)/\(-X1 VXg \/X3)/\(—X1 \/ﬁX3)/\(ﬁJC2 \/ﬁX4)/\(X3\/X4)/\(—X1)

Decide x5, @1:
(‘x1 vxsvaxa)A(=x1 vV xg vag)A(=x1 V-x3)A((=xg vV -xg)A(x3Vxyg)
[——
unit clause

Derive —x4 @1 by unit propagation:
(‘x1 vxsvixa)An(=x1 v x2 Vxz)A(=x1 Vox3)A((=x2 vV —xq)A(x3Vixa)
—_———
unit clause

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 63/68

DPLL+ — running example

@=(x1Vx3Vvxg)A(=x1 VX2 Vxg)A(=x1V-x3)A(=xe Vv -xg) A (XgVxg)
T

= (-x1)

Derive —x1 @0 by unit propagation (not decided like in DPLL!):
(X1 \/X3\/X4)/\(-X1 VXg \/X3)/\(—X1 \/ﬁX3)/\(ﬁJC2 \/ﬁX4)/\(X3\/X4)/\(—X1)

Decide x5, @1:
(‘x1 vxsvaxa)A(=x1 vV xg vag)A(=x1 V-x3)A((=xg vV -xg)A(x3Vxyg)
[——
unit clause

Derive —x4 @1 by unit propagation:
(‘x1 vxsvixa)An(=x1 v x2 Vxz)A(=x1 Vox3)A((=x2 vV —xq)A(x3Vixa)
—_———
unit clause

Derive x3 @ 1 by unit propagation:
(‘x1 vV x3 vVixga)A(=x1 vV x3 vV x3)A(=x1 Vi=xz)A((=xg v =x4)A(X3 ViXg)

Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 63/68

DPLL+ — running example

@=(x1Vx3Vvxg)A(=x1 VX2 Vxg)A(=x1V-x3)A(=xe Vv -xg) A (XgVxg)
T

= (-x1)

Derive —x1 @0 by unit propagation (not decided like in DPLL!):
(X1 \/X3\/X4)/\(-X1 VXg \/X3)/\(—X1 \/ﬁx:;)/\(ﬁJCQ \/ﬁX4)/\(X3\/X4)/\(—X1)

Decide x5, @1:
(‘x1 vxsvaxa)A(=x1 vV xg vag)A(=x1 V-x3)A((=xg vV -xg)A(x3Vxyg)
[——
unit clause

Derive —x4 @1 by unit propagation:
(‘x1 vxsvixa)An(=x1 v x2 Vxz)A(=x1 Vox3)A((=x2 vV —xq)A(x3Vixa)
—_———
unit clause

Derive x3 @ 1 by unit propagation:
(‘x1 vV x3 vVixga)A(=x1 vV x3 vV x3)A(=x1 Vi=xz)A((=xg v =x4)A(X3 ViXg)

a ={-x1,x9,x3,-x4} is a satisfying assignment of ¢

Petr Kuce /) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 63/68

What remains?

How to find assertive clauses?

Conflict-driven clauses
Resolution based on the implication graph

Directed graph defined based on current values of variables and their
antecedents

How to backtrack quickly?

Lazy data structures in unit propagation
Watched literals

How to manage learned clauses?

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 64/68

References

References |

B “The complexity of theorem-proving
procedures.”

http://doi.acm.org/10.1145/800157.805047
“A machine program for theorem-proving.”

10.1145/368273.368557
El “A Computing
Procedure for Quantification Theory.”
10.1145/321033.321034

B “BerkMin: A fast and
robust SAT-solver.”

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 66/68

https://doi.org/http://doi.acm.org/10.1145/800157.805047
https://doi.org/10.1145/368273.368557
https://doi.org/10.1145/321033.321034

References Il

B “Boosting
combinatorial search through randomization.”

& “Universal’nye zadachi perebora.”

[“GRASP—a

New Search Algorithm for Satisfiability.”

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 67/68

References llI

B “Chaff: Engineering an
Efficient SAT Solver.”

10.1145/378239.379017

Petr Kuéera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 68/68

https://doi.org/10.1145/378239.379017

	Introduction
	Propositional SAT Solving
	SAT encodings
	Resolution

	DPLL
	Conflict Driven Clause Learning (part 1)
	References
	References

