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Introduction



Overview

Introduction, motivation, basic notions.
Normal forms: CNF, DNF, NNF
Satisfiability of boolean formulas

Modern SAT solvers
Local search
Binary decision diagrams (BDD)

Decision procedures for theories
Equality and uninterpreted functions
Linear arithmetic
Bit vectors
Arrays, memory, pointers

Combination of theories
Quantified boolean formulas (QBF)
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Decision Procedure

Intuition
A decision procedure is an algorithm that,
given a logical formula, decides if it is
satisfiable.

Satisfiable Ð→ satisfying assignment (model)
Unsatisfiable Ð→ proof of unsatisfiability

Picture by Ilya Yodovsky Jr. (taken from Decision Procedures by D. Kroening and O. Strichman)
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Applications

Model checking
Hardware verification

Verifying designs of electronic circuits
Software verification

Verifying that an assertion in code cannot be violated
Compiler optimizations

Correctness of transformations
Software package dependencies

Dependency hell
Planning and scheduling
Chemical reaction networks
…
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Propositional SAT Solving



Language of Propositional Logic

A propositional logic formula is defined by the following grammar:

fla ∶ fla ∧ fla ∣ ¬fla ∣ (fla) ∣ atom
atom ∶ boolean-identifier ∣ true ∣ false

Other connectives can be derived using ∧ and ¬
∨, Ô⇒ , ⇐⇒ , ⊕ (XOR), …

Example
(G Ô⇒ (H ⊕ I)) ∨ (H ⇐⇒ I)
(H ∧ G Ô⇒ I) ⇐⇒ ((H Ô⇒ I) ∧ (G Ô⇒ I))
(G ∨ H) ⇐⇒ ¬(¬G ∧ ¬H)

Petr Kučera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 9 / 68



Motivation I — Radio Stations

Consider a set of radio stations ( = {B1 , . . . , B=}
Every station should get allocated one of : transmission
frequencies for some : < =
Stations that are too close should not share the same frequency

Graph coloring problem
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Radio Stations — Example Instance
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Radio Stations — A Possible Solution
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Radio Stations — Model

We want to model the problem in propositional logic.

Variables G8 , 9, 8 = 1, . . . , =, 9 = 1, . . . , :
G8 , 9 = 1 — “Radio station B8 has frequency 9”
� denotes the set of pairs of stations that are too close
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Radio Stations — Formula

Every station is assigned at least one frequency

=

⋀
8=1

:

⋁
9=1

G8 , 9

Every station is assigned not more than one frequency

=

⋀
8=1

:−1
⋀
9=1
(G8 , 9 Ô⇒ ⋀

9<C≤:
¬G8 ,C)

Close stations are not assigned the same frequency.

:

⋀
C=1
(G8 ,C Ô⇒ ¬G 9 ,C) (for each (8 , 9) ∈ �)
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Motivation II — Code equivalence

Snippet A

1 if(!a && !b) h();
2 else
3 if(!a) g();
4 else f();

Snippet B

1 if(a) f();
2 else
3 if(b) g();
4 else h();

Are the snippets A and B equivalent?
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If-then-else

Ternary operator if-then-else can be represented with a
propositional formula

“if G then H else I” ≡ (G ∧ H) ∨ (¬G ∧ I)

Replace boolean variables and function calls with propositional
variables
Form the corresponding propositional formulas and check their
equivalence
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Motivation II — Code equivalence

Snippet A

1 if ¬0 ∧ ¬1 then ℎ
2 else
3 if ¬0 then 6
4 else 5

!0 = ¬0 ∧ ¬1 ∧ ℎ∨
¬(¬0 ∧ ¬1) ∧ (¬0 ∧ 6 ∨ 0 ∧ 5 )

Snippet B

1 if 0 then 5
2 else
3 if 1 then 6
4 else ℎ

!1 = 0 ∧ 5 ∨
¬0 ∧ (1 ∧ 6 ∨ ¬1 ∧ ℎ)

Check the validity of !0 ⇐⇒ !1
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Assignments and Satisfaction

x denotes a set of variables G1 , .., G=

lit(x) literals over variables in x
Assignment a maps propositional variables to true or false

1 or 0, ⊺ or �
An assignment a satisfies formula ! if !(a) evaluates to true

a is a model of !
a ⊧ !

Satisfiable formula admits a model
Unsatisfiable formula has no model

Contradiction
Valid formula is satisfied by every assignment

Tautology

! is a tautology ⇐⇒ ¬! is unsatisfiable.
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Negation Normal Form

Literal a propositional variable G or its negation ¬G
NNF a formula is in negation normal form if it uses only ∧, ∨, ¬

and negation is only in front of variables (in literals)

Example

!1 =
⎡⎢⎢⎢⎢⎣

=

⋀
8=1

=

⋀
9=8+1

¬(G8 ∧ ¬G 9)
⎤⎥⎥⎥⎥⎦
Ô⇒ H Not NNF

!2 =
⎡⎢⎢⎢⎢⎣

=

⋁
8=1

=

⋁
9=8+1

G8 ∧ ¬G 9
⎤⎥⎥⎥⎥⎦
∨ H NNF

!2 is a NNF equivalent to !1
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CNF and DNF

Term a conjunction of literals, e.g. G ∧ ¬H ∧ ¬I
Clause a disjunction of literals, e.g. G ∨ ¬H ∨ ¬I

CNF a formula is in conjunctive normal form if it is a
conjunction of clauses

DNF a formula is in disjunctive normal form if it is a disjunction
of terms

The empty term and empty CNF are valid — ⊺
The empty clause and empty DNF are contradictions — �

Example

!1 = (G ∨ ¬H ∨ I) ∧ (¬G ∨ H) CNF
!2 = (G ∧ H) ∨ (¬G ∧ ¬H) ∨ (¬G ∧ I) ∨ (H ∧ I) an equivalent DNF
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SAT and Related Problems

Given a CNF formula !

SAT Is ! satisfiable?
UNSAT Is ! unsatisfiable?

MaxSAT Maximize the number of satisfied clauses of !
#SAT Count the models of !

Model Enumeration Enumerate the models of !
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Why Study Propositional SAT?

Interesting from both theoretical and practical perspective
The first problem to be proven NP-complete

Cook, 1971; Levin, 1973
Generic problem — many problems encoded into SAT

Hardware and software verification
Planning and scheduling
Product configuration
…and many others
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Progress in SAT Solving

30 2 Decision Procedures for Propositional Logic

right value, simplify the problem immensely.2 All of these factors contribute
to the fast solving of both satisfiable and unsatisfiable instances. There is
empirical evidence in [213] that shows that solving satisfiable instances fast
requires a different set of heuristics than those that are necessary for solving
unsatisfiable instances.

1960 1970 1980 1990 2000 2010

1,000,000

100,000

10,000

1,000

100

10

Year

V
ar
ia
b
le
s

Fig. 2.3. The size of industrial CNF formulas (instances generated for solving var-
ious realistic problems such as verification of circuits and planning problems) that
are regularly solved by SAT solvers in a few hours, according to year. Most of the
progress in efficiency has been made in the last decade

The majority of modern SAT solvers can be classified into two main cat-
egories. The first category is based on the Conflict-Driven Clause Learning
(CDCL) framework: in this framework the tool can be thought of as travers-
ing and backtracking on a binary tree, in which internal nodes represent par-
tial assignments, and the leaves represent full assignments. Building a simple
CDCL solver is surprisingly easy: one can do so with fewer than 500 lines of
C++ and STL.

The second category is based on a stochastic search: the solver guesses
a full assignment, and then, if the formula is evaluated to false under this
assignment, starts to flip values of variables according to some (greedy) heuris-
tic. Typically it counts the number of unsatisfied clauses and chooses the flip
that minimizes this number. There are various strategies that help such solvers
avoid local minima and avoid repeating previous bad moves. CDCL solvers,
however, are considered better in most cases according to annual competitions
that measure their performance with numerous CNF instances. CDCL solvers
also have the advantage that, unlike most stochastic search methods, they are
complete (see Definition 1.6). Stochastic methods seem to have an average

2 Specifically, every formula has what is known as backdoor variables [284], which
are variables that, once given the right value, simplify the formula to the point
that it is polynomial to solve.

The size of industrial CNF formulas that are regularly solved by SAT
solvers in a few hours, according to year.

Image source: Decision Procedures. Kroening D., Strichman O.
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Progress in SAT Solving2.2 SAT Solvers 31
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Fig. 2.4. Annual competitions measure the success of SAT solvers when applied
to randomly selected benchmarks arriving from industry. The graph shows a com-
parison between the winners of these competitions as of 2002, when applied to a
common benchmark set and using the same single-core hardware. Such graphs are
nicknamed “cactus plots”. A point (x, y) means that x benchmarks are solved within
y amount of time each. Hence, the more the graph is to the right, the better it is.
One may observe that the number of solved instances within 20 minutes has more
than doubled within a decade, thanks to better algorithms. The instances in this set
are large, and solvers created before 2002 run out of memory when trying to solve
them. (Courtesy of Daniel Le-Berre)

advantage in solving randomly generated (satisfiable) CNF instances, which
is not surprising: in these instances there is no structure to exploit and learn
from, and no obvious choices of variables and values, which makes the heuris-
tics adopted by CDCL solvers ineffective. We shall focus on CDCL solvers
only.

A historical note: CDCL was developed over time as a series of improve-
ments to the Davis–Putnam–Loveland–Logemann (DPLL) framework. See
the bibliographic notes at the end of this chapter for further discussion.

2.2.2 The CDCL Framework

In its simplest form, a CDCL solver progresses by making a decision about a
variable and its value, propagating implications of this decision that are easy
to detect, and backtracking in the case of a conflict. Viewing the process as
a search on a binary tree, each decision is associated with a decision level,
which is the depth in the binary decision tree at which it is made, starting

Image source: Decision Procedures. Kroening D., Strichman O.

Petr Kučera (Charles University) Decision Procedures and SAT/SMT Solvers 2024/25 (1st lecture) 24 / 68



Progress in SAT Solving

Sharad Malik, Lintao Zhang Communications of the ACM, August 2009, Vol. 52 No. 8, Pages 76–82
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Progress in SAT Solving

Source and more details: http://fmv.jku.at/kissat
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Progress in SAT Solving

Source and more details: http://fmv.jku.at/kissat
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SAT encodings



Converting Formula to an Equivalent CNF

Lemma
To every formula we can construct an equivalent CNF.

1 Convert to NNF
a Rewrite connectives using only ∧, ∨, and ¬
b Use De Morgan’s laws to propagate negations to variables
c Remove double negation (¬¬G = G)

2 Use distributivity to propagate disjunction over conjunction

The result can be exponentially larger!

Any CNF equivalent to ⋁=
8=1(G8 ∧ H8) has at least 2= clauses
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Tseitin’s Encoding

Lemma (Tseitin)
Every formula ! can be converted to an equisatisfiable formula # in
CNF which is larger only by a constant factor.

Equisatisfiable # is satisfiable if and only if ! is satisfiable
Idea:

1 Draw a derivation tree of the formula
2 Assign a fresh variable to each connective
3 Add clauses to define the function of each connective
4 Add the root variable as a unit clause

Can be used to convert a logical circuit into a CNF as well.
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Tseitin’s Encoding (example)

(G → H) ∧ (H → I)→ (G → I)

→

∧

→

G H

→

H I

→

G I

Draw the derivation tree
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Tseitin’s Encoding (example)

(G → H) ∧ (H → I)→ (G → I)

→
E0

∧
E1

→
E3

G H

→
E4

H I

→
E2

G I

Assign variables
to its nodes
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Tseitin’s Encoding (example)

(G → H) ∧ (H → I)→ (G → I)

→
E0 ≡ E1 → E2

∧
E1 ≡ E3 ∧ E4

→
E3 ≡ G → H

G H

→
E4 ≡ H → I

H I

→
E2 ≡ G → I

G I

Add definitions of
the new variables
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Tseitin’s Encoding (example)

(G → H) ∧ (H → I)→ (G → I)

1 Rewrite as a conjunction of definitions of new variables

2 rewrite definitions only using ¬, ∧, and ∨
3 rewrite as a conjunction of clauses

E0

E0 ≡ E1 → E2

E1 ≡ E3 ∧ E4

E2 ≡ G → I

E3 ≡ G → H

E4 ≡ H → I

Equisatisfiable, not equivalent.
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Resolution



Certifying Unsatisfiability

CNF ! is satisfiable Ô⇒ SAT solver returns a model
easy to check its correctness

! is unsatisfiable Ô⇒ SAT solver returns UNSAT
how to check that the answer is correct?

SAT solvers can return the proof of unsatisfiability
resolution refutation of !
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Resolution

Given clauses �, �, and a variable G

parent clauses
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
� ∨ G � ∨ ¬G

� ∨ �
´¹¹¸¹¹¹¶

resolvent

Definition
Resolution derivation of a clause � from a CNF ! is a sequence of
clauses �1 , . . . , �: such that �: = � and for each 8 = 1, . . . , : either

�8 ∈ !, or
�8 is a resolvent of some clauses preceding it in the list.

Resolution refutation of ! is the resolution derivation of the empty
clause � (contradiction).
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Resolution Graph

Resolution graph represents a resolution derivation
A directed acyclic graph (DAG)

nodes clauses
leaves clauses of !

inner nodes resolvents
edges from parent clauses to resolvents

sink node the derived clause (� in case of a refutation)
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Resolution Graph (example)

! = ¬G ∧ (H ∨ ¬I) ∧ (G ∨ ¬H) ∧ (G ∨ H ∨ I) ∧ (¬G ∨ I)

�

¬I

¬G G ∨ ¬I

H ∨ ¬I G ∨ ¬H

I

G ∨ I

G ∨ H ∨ I

¬G ∨ I
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Tree Resolution

Tree resolution refutation resolution graph is a tree
clauses of ! can be in several leaves

! = ¬G ∧ (H ∨ ¬I) ∧ (G ∨ ¬H) ∧ (G ∨ H ∨ I) ∧ (¬G ∨ I)

�

¬I

¬G G ∨ ¬I

H ∨ ¬I G ∨ ¬H

I

G ∨ I

G ∨ ¬H G ∨ H ∨ I

¬G ∨ I
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Resolution and Tree Resolution

! ⊧ � every model of ! is a model of � as well.
Clause � is an implicate of !
Equivalent to ! ∧⋀;∈� ¬; ⊧ �

! ⊧ � if and only if ! is unsatisfiable
! ⊢ � clause � can be derived by resolution from !.

(Tree) Resolution is sound and complete

! ⊧ � if and only if ! ⊢ � for every CNF formula !.

Resolution refutations can have exponential length
Pigeon hole principle formulas

Tree resolution refutations may be exponentially longer than
general resolution refutations
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Unit Resolution

unit resolution one of the parent clauses is a unit clause (single literal)
! ⊢1 � clause � can be derived from ! by unit resolution
Unit resolution is sound but incomplete

! ≡ (G ∨ H) ∧ (¬G ∨ H) ∧ (G ∨ ¬H) ∧ (¬G ∨ ¬H)

Unsatisfiable
Has no unit resolution refutation

Unit resolution refutation can be found in linear time if it exists
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Unit Resolution (Example)

! = ¬G ∧ (H ∨ ¬I) ∧ (G ∨ ¬H) ∧ (G ∨ H ∨ I) ∧ (¬G ∨ I)

�

¬I

H ∨ ¬I ¬H

G ∨ ¬H ¬G

I

H ∨ I

G ∨ H ∨ I
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Partial Assignments — Notation

x set of variables
lit(x) literals over variables in x

partial assignment a non-contradictory set of literals, considered as a
conjunction of literals

![] Application of a partial assignment  ⊆ lit(x):
Removed clauses containing a literal from 
Removed the negations of the literals in  from the
remaining clauses

! = (H ∨ ¬I) ∧ (G ∨ ¬H) ∧ (G ∨ H ∨ I) ∧ (¬G ∨ I)
![¬G] = (H ∨ ¬I) ∧ (¬H) ∧ (H ∨ I)

![G,¬I] = � (The empty clause — contradiction)
![G, H, I] = ⊺ (The empty CNF — satisfied)
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Unit Propagation Algorithm

Function UnitProp(!)

Input: CNF formula ! on variables x
Output: (,#) where  is a set of literals which can be derived by

unit resolution from !, # = ![].
if � ∈ ! then return (, �)
 ← ∅
while ! contains a unit clause ; do

 ←  ∪ {;}
! ← ![;]
if � ∈ ! then return (, �)

return (,!)

Efficient procedure
Linear time implementation
Efficient data structures (watched literals)

Used very often in SAT solvers
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Unit Propagation Example

1 ! = ¬G
´¸¶

unit clause

∧(H ∨ ¬I) ∧ (G ∨ ¬H) ∧ (G ∨ H ∨ I) ∧ (¬G ∨ I),  = ∅

2 ! = ¬G ∧ (H ∨ ¬I) ∧ ( G ∨ ¬H)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
unit clause

∧( G ∨ H ∨ I) ∧ ( ¬G ∨ I),  = {¬G}

3 ! = ¬G ∧ ( H ∨ ¬I) ∧ ( G ∨ ¬H ) ∧ ( G ∨ H ∨ I)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

unit clause

∧( ¬G ∨ I),

 = {¬G,¬H}
4 ! = ¬G ∧ ( H ∨ ¬I )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
empty clause

∧( G ∨ ¬H ) ∧ ( G ∨ H ∨ I ) ∧ ( ¬G ∨ I ),

 = {¬G,¬H, I}

Empty clause derived — Unit propagation returns ({¬G,¬H, I}, �).
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DPLL



DPLL

DP algorithm — existential quantification (Davis and Putnam,
1960) by DP-elimination

High space complexity (can soon blow up exponentially)
Davis Putnam Logemann Loveland (Davis, Logemann, and
Loveland, 1962)
Branch and bound algorithm

Branch on values of a variable
Use unit propagation to prune the search tree
Polynomial space complexity
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DPLL Algorithm

Function DPLL(CNF !)

Output: A set of literals (partial model) or UNSAT
(,#)← UnitProp(!)
if # = ∅ then return 
if � ∈ # then return UNSAT
; ← a literal in #
� ← DPLL(#[;])
if � ≠ UNSAT then

return  ∪ � ∪ {;}
� ← DPLL(#[¬;])
if � ≠ UNSAT then

return  ∪ � ∪ {¬;}
return UNSAT
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DPLL — running example
! = (G1 ∨ G3 ∨ G4)∧ (¬G1 ∨ G2 ∨ G3)∧ (¬G1 ∨¬G3)∧ (¬G2 ∨¬G4)∧ (G3 ∨ G4)

1 Decide G1

( G1 ∨ G3 ∨ G4) ∧ ( ¬G1 ∨ G2 ∨ G3) ∧ ( ¬G1 ∨ ¬G3)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

unit clause

∧(¬G2 ∨ ¬G4) ∧ (G3 ∨ G4)

2 Derive ¬G3 by unit propagation

( G1 ∨ G3 ∨ G4) ∧ ( ¬G1 ∨ G2 ∨ G3 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

unit clause

∧( ¬G1 ∨ ¬G3 ) ∧ (¬G2 ∨ ¬G4) ∧ ( G3 ∨ G4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

unit clause

3 Derive G2, G4 by unit propagation

( G1 ∨ G3 ∨ G4 )∧( ¬G1 ∨ G2 ∨ G3 )∧( ¬G1 ∨ ¬G3 )∧( ¬G2 ∨ ¬G4 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

empty clause

∧( G3 ∨ G4 )
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DPLL — running example
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4 Derive G3 by unit propagation

( G1 ∨ G3 ∨ G4 )∧( ¬G1 ∨ G2 ∨ G3 )∧( ¬G1 ∨ ¬G3 )∧( ¬G2 ∨ ¬G4 )∧( G3 ∨ G4 )

 = {¬G1 , G2 , G3 ,¬G4} is a satisfying assignment of !
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3 Derive ¬G4 by unit propagation

( G1 ∨ G3 ∨ G4 ) ∧ ( ¬G1 ∨ G2 ∨ G3) ∧ ( ¬G1 ∨ ¬G3) ∧ ( ¬G2 ∨ ¬G4 ) ∧ (G3 ∨ G4 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

unit clause

4 Derive G3 by unit propagation

( G1 ∨ G3 ∨ G4 )∧( ¬G1 ∨ G2 ∨ G3 )∧( ¬G1 ∨ ¬G3 )∧( ¬G2 ∨ ¬G4 )∧( G3 ∨ G4 )

 = {¬G1 , G2 , G3 ,¬G4} is a satisfying assignment of !
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DPLL — running example
! = (G1 ∨ G3 ∨ G4)∧ (¬G1 ∨ G2 ∨ G3)∧ (¬G1 ∨¬G3)∧ (¬G2 ∨¬G4)∧ (G3 ∨ G4)

1 Decide ¬G1

( G1 ∨ G3 ∨ G4) ∧ ( ¬G1 ∨ G2 ∨ G3) ∧ ( ¬G1 ∨ ¬G3) ∧ (¬G2 ∨ ¬G4) ∧ (G3 ∨ G4)

2 Decide G2

( G1 ∨ G3 ∨ G4) ∧ ( ¬G1 ∨ G2 ∨ G3) ∧ ( ¬G1 ∨ ¬G3) ∧ ( ¬G2 ∨ ¬G4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

unit clause

∧(G3 ∨ G4)

3 Derive ¬G4 by unit propagation

( G1 ∨ G3 ∨ G4 ) ∧ ( ¬G1 ∨ G2 ∨ G3) ∧ ( ¬G1 ∨ ¬G3) ∧ ( ¬G2 ∨ ¬G4 ) ∧ (G3 ∨ G4 )
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

unit clause

4 Derive G3 by unit propagation

( G1 ∨ G3 ∨ G4 )∧( ¬G1 ∨ G2 ∨ G3 )∧( ¬G1 ∨ ¬G3 )∧( ¬G2 ∨ ¬G4 )∧( G3 ∨ G4 )

 = {¬G1 , G2 , G3 ,¬G4} is a satisfying assignment of !
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DPLL Variants and Extensions

CDCL
Decide quickly
Quickly arrive at a conflict (empty clause)
Learn from conflicts

Look-ahead solvers
Spend more time with decisions
Simplify formula between decision (e.g. eliminate pure literals)

Cube and Conquer
Use look-ahead solver to split into subproblems
Solve the subproblems using a CDCL solver

Model counters and enumerators
DPLL(T) — Satisfiability modulo theory (SMT)
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Conflict Driven Clause Learning
(part 1)



CDCL Extensions to DPLL

Non-chronological backtracking (backjumping)
GRASP, Marques-Silva and Sakallah, 1997

Learning new clauses from conflicts
Exploiting structure of conflicts during clause learning

Chaff, Moskewicz et al., 2001
Using lazy data structures for the representation of formulas
Branching heuristics must have low computational overhead and
must receive feedback from backtrack search

Periodic restarts (Gomes, Selman, Kautz, et al., 1998)
Deletion policies for learnt clauses (BerkMin, Goldberg and
Novikov, 2007)
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CDCL Solver Structure

Input formula

Unit
propagation

Conflict?

Conflict
analysis

Top
level?

UNSAT

BackjumpDecide

Done?

SAT

yes

no

no

yes no

yes
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Values

Value of a literal ; ∈ lit(x) relative to a partial assignment 

val(, ;) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 ; ∈ 
0 ¬; ∈ 
∗ otherwise

1 literal is defined and satisfied (true)
0 literal is defined and unsatisfied (false)
∗ literal is undefined (also unassigned)
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Clause State

State of a clause � relative to a partial assignment 
Unsatisfied all literals in � are false in 

Satisfied � contains a satisfied literal from 

Unit � is not satisfied and
exactly one literal in � is undefined in 

Unresolved � is not satisfied and
two or more literals in � are undefined in 

 = {¬G1 ,¬G2 , G3}

! =

unsatisfied
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
( G1 ∨ G2 ∨ ¬G3 )∧

satisfied
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ
( ¬G2 ∨ ¬G3 ∨ G4)

∧ ( G2 ∨ ¬G4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

unit

∧ ( G1 ∨ G4 ∨ ¬G5)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

unresolved
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Variable Types

Decision variable the value is set heuristically when picking the next
literal for branching

Decision literal literal specifying the value of a decision variable
Implied variable the value is derived by unit propagation following

previous decisions
Undefined the value has not been fixed yet (also unassigned)
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Decision Level

Values of literals are put into a value stack
Removed when backtracking

Current decision level = number of decisions in the value stack
Each variable G8 has a decision level �(G8)

G8 is undefined⇒ �(G8) = −1
G8 is a 3-th decision variable in the value stack⇒ �(G8) = 3
G8 is an implied variable⇒ �(G8) = number of decision variables
before G8 in the value stack

E �(G8) = 0⇔ G8 is implied by the input formula
E �(G8) > 0 and ant(G8) = NIL⇔ G8 is a decision variable

; @ 3 — value of literal ; was set at decision level 3
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Assertive Clause

Assume a CNF !, a value stack , and current decision level 3
Clause � is assertive if

! ⊧ � (� is an implicate of !)
� is false under 
� has exactly one literal at the current decision level

Assertion level of � is defined as
the second highest decision level of literals in �, or
0 if � is unit

Assertive clause is unit after backtracking to assertion level
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Assertive Clauses

! =( ¬G11 ∨ ¬G31 ) ∧ (G2 ∨ G3) ∧ ( G31 ∨ ¬G42 ∨ ¬G62 )∧
( G31 ∨ ¬G42 ∨ G73 ∨ G83 ) ∧ ( G73 ∨ ¬G83 ) ∧ ( ¬G73 ∨ ¬G83 )

 = (G11 @ 1,¬G31 @ 1, G42 @ 2, G62 @ 2,¬G73 @ 3, G83 @ 3)

Clause Assertive
( ¬G11 ∨ G31 ∨ ¬G83 ) u assertion level 1
( ¬G83 ) u assertion level 0
( ¬G11 ∨ G31 ∨ G73 ∨ ¬G83 ) d ¬G73 @ 3, G83 @ 3
( G11 ∨ G31 ∨ ¬G83 ) d satisfied
(G2 ∨ G31 ∨ ¬G83 ) d unit
( ¬G42 ∨ G73 ) d not implicate
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Function DPLL+(CNF !)
Output: A set of literals (partial model) or UNSAT
 ← () // empty value stack
Γ← {} // empty set of learned clauses
3 ← 0 // decision level
while true do
(�,#)← UnitProp(! ∧ Γ ∧ )
if # = � then // backtrack to assertion level

if 3 = 0 then return UNSAT
� ← an assertive clause
3 ← assertion level of �
 ←  ∖ {; @< ∣ ; ∈  ∧< > 3}
Γ← Γ ∪ {�} // learn clause �

else // contradiction not detected
 ←  ∪ {; @ 3 ∣ ; ∈ � ∖ }
if # is empty then return 
; ← a literal in # // new decision literal
3 ← 3 + 1 // Increase the decision level
 ←  ∪ {; @ 3} // Add decision to the value stack
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DPLL+ — running example
! = (G1 ∨ G3 ∨ G4) ∧ (¬G1 ∨ G2 ∨ G3) ∧ (¬G1 ∨ ¬G3) ∧ (¬G2 ∨ ¬G4) ∧ (G3 ∨ G4)

1 Decide G1 @ 1:
( G1 ∨ G3 ∨ G4) ∧ ( ¬G1 ∨ G2 ∨ G3) ∧ ( ¬G1 ∨ ¬G3)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
unit clause

∧(¬G2 ∨ ¬G4) ∧ (G3 ∨ G4)

2 Derive ¬G3 @ 1 by unit propagation:
( G1 ∨ G3 ∨ G4) ∧ ( ¬G1 ∨ G2 ∨ G3 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
unit clause

∧( ¬G1 ∨ ¬G3 ) ∧ (¬G2 ∨ ¬G4) ∧ ( G3 ∨ G4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

unit clause

3 Derive G2 @ 1, G4 @ 1 by unit propagation:
( G1 ∨ G3 ∨ G4 )∧( ¬G1 ∨ G2 ∨ G3 )∧( ¬G1 ∨ ¬G3 )∧( ¬G2 ∨ ¬G4 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
empty clause

∧( G3 ∨ G4 )

4 Learn assertive clause ¬G1, backtrack to assertion level 0

! = (G1 ∨ G3 ∨ G4) ∧ (¬G1 ∨ G2 ∨ G3) ∧ (¬G1 ∨ ¬G3) ∧ (¬G2 ∨ ¬G4) ∧ (G3 ∨ G4)

Γ = (¬G1)
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DPLL+ — running example
! = (G1 ∨ G3 ∨ G4) ∧ (¬G1 ∨ G2 ∨ G3) ∧ (¬G1 ∨ ¬G3) ∧ (¬G2 ∨ ¬G4) ∧ (G3 ∨ G4)

1 Decide G1 @ 1:
( G1 ∨ G3 ∨ G4) ∧ ( ¬G1 ∨ G2 ∨ G3) ∧ ( ¬G1 ∨ ¬G3)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
unit clause

∧(¬G2 ∨ ¬G4) ∧ (G3 ∨ G4)

2 Derive ¬G3 @ 1 by unit propagation:
( G1 ∨ G3 ∨ G4) ∧ ( ¬G1 ∨ G2 ∨ G3 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
unit clause

∧( ¬G1 ∨ ¬G3 ) ∧ (¬G2 ∨ ¬G4) ∧ ( G3 ∨ G4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

unit clause

3 Derive G2 @ 1, G4 @ 1 by unit propagation:
( G1 ∨ G3 ∨ G4 )∧( ¬G1 ∨ G2 ∨ G3 )∧( ¬G1 ∨ ¬G3 )∧( ¬G2 ∨ ¬G4 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
empty clause

∧( G3 ∨ G4 )

4 Learn assertive clause ¬G1, backtrack to assertion level 0

! = (G1 ∨ G3 ∨ G4) ∧ (¬G1 ∨ G2 ∨ G3) ∧ (¬G1 ∨ ¬G3) ∧ (¬G2 ∨ ¬G4) ∧ (G3 ∨ G4)

Γ = (¬G1)
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DPLL+ — running example
! = (G1 ∨ G3 ∨ G4) ∧ (¬G1 ∨ G2 ∨ G3) ∧ (¬G1 ∨ ¬G3) ∧ (¬G2 ∨ ¬G4) ∧ (G3 ∨ G4)

1 Decide G1 @ 1:
( G1 ∨ G3 ∨ G4) ∧ ( ¬G1 ∨ G2 ∨ G3) ∧ ( ¬G1 ∨ ¬G3)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
unit clause

∧(¬G2 ∨ ¬G4) ∧ (G3 ∨ G4)

2 Derive ¬G3 @ 1 by unit propagation:
( G1 ∨ G3 ∨ G4) ∧ ( ¬G1 ∨ G2 ∨ G3 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
unit clause

∧( ¬G1 ∨ ¬G3 ) ∧ (¬G2 ∨ ¬G4) ∧ ( G3 ∨ G4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

unit clause

3 Derive G2 @ 1, G4 @ 1 by unit propagation:
( G1 ∨ G3 ∨ G4 )∧( ¬G1 ∨ G2 ∨ G3 )∧( ¬G1 ∨ ¬G3 )∧( ¬G2 ∨ ¬G4 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
empty clause

∧( G3 ∨ G4 )

4 Learn assertive clause ¬G1, backtrack to assertion level 0

! = (G1 ∨ G3 ∨ G4) ∧ (¬G1 ∨ G2 ∨ G3) ∧ (¬G1 ∨ ¬G3) ∧ (¬G2 ∨ ¬G4) ∧ (G3 ∨ G4)

Γ = (¬G1)
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DPLL+ — running example
! = (G1 ∨ G3 ∨ G4) ∧ (¬G1 ∨ G2 ∨ G3) ∧ (¬G1 ∨ ¬G3) ∧ (¬G2 ∨ ¬G4) ∧ (G3 ∨ G4)

1 Decide G1 @ 1:
( G1 ∨ G3 ∨ G4) ∧ ( ¬G1 ∨ G2 ∨ G3) ∧ ( ¬G1 ∨ ¬G3)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
unit clause

∧(¬G2 ∨ ¬G4) ∧ (G3 ∨ G4)

2 Derive ¬G3 @ 1 by unit propagation:
( G1 ∨ G3 ∨ G4) ∧ ( ¬G1 ∨ G2 ∨ G3 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
unit clause

∧( ¬G1 ∨ ¬G3 ) ∧ (¬G2 ∨ ¬G4) ∧ ( G3 ∨ G4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

unit clause

3 Derive G2 @ 1, G4 @ 1 by unit propagation:
( G1 ∨ G3 ∨ G4 )∧( ¬G1 ∨ G2 ∨ G3 )∧( ¬G1 ∨ ¬G3 )∧( ¬G2 ∨ ¬G4 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
empty clause

∧( G3 ∨ G4 )

4 Learn assertive clause ¬G1, backtrack to assertion level 0

! = (G1 ∨ G3 ∨ G4) ∧ (¬G1 ∨ G2 ∨ G3) ∧ (¬G1 ∨ ¬G3) ∧ (¬G2 ∨ ¬G4) ∧ (G3 ∨ G4)

Γ = (¬G1)
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DPLL+ — running example
! = (G1 ∨ G3 ∨ G4) ∧ (¬G1 ∨ G2 ∨ G3) ∧ (¬G1 ∨ ¬G3) ∧ (¬G2 ∨ ¬G4) ∧ (G3 ∨ G4)

1 Decide G1 @ 1:
( G1 ∨ G3 ∨ G4) ∧ ( ¬G1 ∨ G2 ∨ G3) ∧ ( ¬G1 ∨ ¬G3)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
unit clause

∧(¬G2 ∨ ¬G4) ∧ (G3 ∨ G4)

2 Derive ¬G3 @ 1 by unit propagation:
( G1 ∨ G3 ∨ G4) ∧ ( ¬G1 ∨ G2 ∨ G3 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
unit clause

∧( ¬G1 ∨ ¬G3 ) ∧ (¬G2 ∨ ¬G4) ∧ ( G3 ∨ G4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

unit clause

3 Derive G2 @ 1, G4 @ 1 by unit propagation:
( G1 ∨ G3 ∨ G4 )∧( ¬G1 ∨ G2 ∨ G3 )∧( ¬G1 ∨ ¬G3 )∧( ¬G2 ∨ ¬G4 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
empty clause

∧( G3 ∨ G4 )

4 Learn assertive clause ¬G1, backtrack to assertion level 0

! = (G1 ∨ G3 ∨ G4) ∧ (¬G1 ∨ G2 ∨ G3) ∧ (¬G1 ∨ ¬G3) ∧ (¬G2 ∨ ¬G4) ∧ (G3 ∨ G4)

Γ = (¬G1)
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DPLL+ — running example
! = (G1 ∨ G3 ∨ G4) ∧ (¬G1 ∨ G2 ∨ G3) ∧ (¬G1 ∨ ¬G3) ∧ (¬G2 ∨ ¬G4) ∧ (G3 ∨ G4)

1 Decide G1 @ 1:
( G1 ∨ G3 ∨ G4) ∧ ( ¬G1 ∨ G2 ∨ G3) ∧ ( ¬G1 ∨ ¬G3)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
unit clause

∧(¬G2 ∨ ¬G4) ∧ (G3 ∨ G4)

2 Derive ¬G3 @ 1 by unit propagation:
( G1 ∨ G3 ∨ G4) ∧ ( ¬G1 ∨ G2 ∨ G3 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
unit clause

∧( ¬G1 ∨ ¬G3 ) ∧ (¬G2 ∨ ¬G4) ∧ ( G3 ∨ G4)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

unit clause

3 Derive G2 @ 1, G4 @ 1 by unit propagation:
( G1 ∨ G3 ∨ G4 )∧( ¬G1 ∨ G2 ∨ G3 )∧( ¬G1 ∨ ¬G3 )∧( ¬G2 ∨ ¬G4 )

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
empty clause

∧( G3 ∨ G4 )

4 Learn assertive clause ¬G1, backtrack to assertion level 0

! = (G1 ∨ G3 ∨ G4) ∧ (¬G1 ∨ G2 ∨ G3) ∧ (¬G1 ∨ ¬G3) ∧ (¬G2 ∨ ¬G4) ∧ (G3 ∨ G4)

Γ = (¬G1)
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DPLL+ — running example

! = (G1 ∨ G3 ∨ G4) ∧ (¬G1 ∨ G2 ∨ G3) ∧ (¬G1 ∨ ¬G3) ∧ (¬G2 ∨ ¬G4) ∧ (G3 ∨ G4)
Γ = (¬G1)

1 Derive ¬G1 @ 0 by unit propagation (not decided like in DPLL!):
( G1 ∨ G3 ∨ G4) ∧ ( ¬G1 ∨ G2 ∨ G3) ∧ ( ¬G1 ∨ ¬G3) ∧ (¬G2 ∨ ¬G4) ∧ (G3 ∨ G4) ∧ ( ¬G1 )
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What remains?

1 How to find assertive clauses?
Conflict-driven clauses
Resolution based on the implication graph

Directed graph defined based on current values of variables and their
antecedents

2 How to backtrack quickly?
Lazy data structures in unit propagation
Watched literals

3 How to manage learned clauses?
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