Decision Procedures and SAT/SMT Solvers NAIL094

Petr Kučera

Charles University

2024/25 (1st lecture)

1/68

Introduction

Overview

- Introduction, motivation, basic notions.
- Normal forms: CNF, DNF, NNF
- Satisfiability of boolean formulas
 - Modern SAT solvers
 - Local search
 - Binary decision diagrams (BDD)
- Decision procedures for theories
 - Equality and uninterpreted functions
 - Linear arithmetic
 - Bit vectors
 - Arrays, memory, pointers
- Combination of theories
- Quantified boolean formulas (QBF)

Literature

Kroening, D., & Strichman, O. (2016). <u>Decision procedures</u>. Springer. Bradley, A. R., & Manna, Z. (2007). <u>The calculus of computation</u>. Springer.

Literature

Handbook of satisfiability 2nd Edition. IOS press 2021. Editors: Armin Biere, Marijn Heule, Hans Van Maaren and Toby Walsh Dennis Yurichev (2024). SAT/SMT by Example

Decision Procedure

Intuition

A decision procedure is an algorithm that, given a logical formula, decides if it is satisfiable.

6/68

Satisfiable \longrightarrow satisfying assignment (model) Unsatisfiable \longrightarrow proof of unsatisfiability

Picture by Ilya Yodovsky Jr. (taken from Decision Procedures by D. Kroening and O. Strichman)

Applications

. . .

- Model checking
- Hardware verification
 - Verifying designs of electronic circuits
- Software verification
 - Verifying that an assertion in code cannot be violated
- Compiler optimizations
 - Correctness of transformations
- Software package dependencies
 - Dependency hell
- Planning and scheduling
- Chemical reaction networks

Propositional SAT Solving

Language of Propositional Logic

A propositional logic formula is defined by the following grammar:

```
fla:fla \land fla |\negfla | (fla) | atom
atom:boolean-identifier | true | false
```

- Other connectives can be derived using \land and \neg

$$\bullet \lor, \implies, \iff, \oplus (\mathsf{XOR}), \dots$$

Example

•
$$(x \implies (y \oplus z)) \lor (y \iff z)$$

•
$$(y \land x \Longrightarrow z) \iff ((y \Longrightarrow z) \land (x \Longrightarrow z))$$

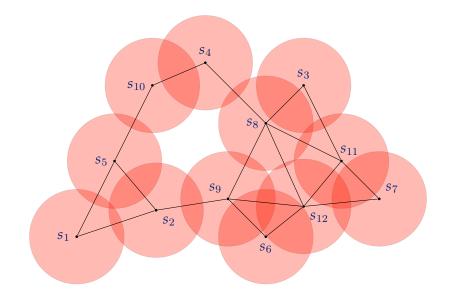
•
$$(x \lor y) \iff \neg(\neg x \land \neg y)$$

Motivation I — Radio Stations

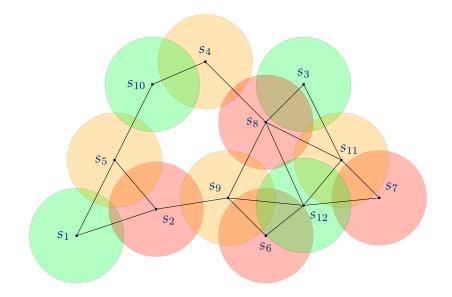
- Consider a set of radio stations S = {s₁,...,s_n}
- Every station should get allocated one of k transmission frequencies for some k < n
- Stations that are too close should not share the same frequency

Graph coloring problem

Radio Stations — Example Instance



Radio Stations — A Possible Solution



Radio Stations — Model

We want to model the problem in propositional logic.

- Variables $x_{i,j}$, i = 1, ..., n, j = 1, ..., k
- x_{i,j} = 1 "Radio station s_i has frequency j"
- *E* denotes the set of pairs of stations that are too close

Radio Stations — Formula

Every station is assigned at least one frequency

$$\bigwedge_{i=1}^{n}\bigvee_{j=1}^{k}x_{i,j}$$

Every station is assigned not more than one frequency

$$\bigwedge_{i=1}^{n} \bigwedge_{j=1}^{k-1} (x_{i,j} \implies \bigwedge_{j < t \le k} \neg x_{i,t})$$

Close stations are not assigned the same frequency.

$$\bigwedge_{t=1}^{k} (x_{i,t} \implies \neg x_{j,t}) \qquad (\text{for each } (i,j) \in E)$$

Snippet A

```
1 if(!a && !b) h();
2 else
3 if(!a) g();
4 else f();
```

Snippet B

1	if(a)	f()	;	
2	else			
3	if	(b)	g()	;

```
4 else h();
```

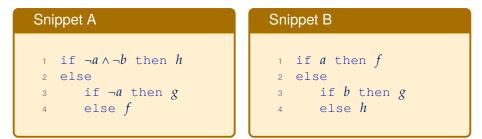
Are the snippets A and B equivalent?

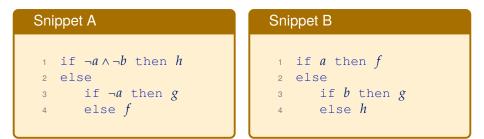
lf-then-else

Ternary operator if-then-else can be represented with a propositional formula

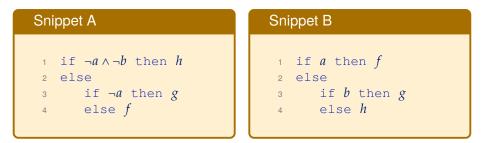
```
"if x then y else z" \equiv (x \wedge y) \vee (\negx \wedge z)
```

- Replace boolean variables and function calls with propositional variables
- Form the corresponding propositional formulas and check their equivalence



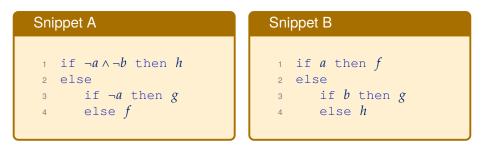


$$\varphi_a = \neg a \land \neg b \land h \lor \\ \neg (\neg a \land \neg b) \land (\neg a \land g \lor a \land f)$$



 $\varphi_{a} = \neg a \wedge \neg b \wedge h \vee \qquad \qquad \varphi_{b} = a \wedge f \vee \\ \neg (\neg a \wedge \neg b) \wedge (\neg a \wedge g \vee a \wedge f) \qquad \qquad \neg a \wedge (b \wedge g \vee \neg b \wedge h)$

17/68



 $\begin{aligned} \varphi_{a} &= \neg a \wedge \neg b \wedge h \vee & \varphi_{b} &= a \wedge f \vee \\ \neg (\neg a \wedge \neg b) \wedge (\neg a \wedge g \vee a \wedge f) & \neg a \wedge (b \wedge g \vee \neg b \wedge h) \end{aligned}$

Check the validity of $\varphi_a \iff \varphi_b$

Decision Procedures and SAT/SMT Solvers

Assignments and Satisfaction

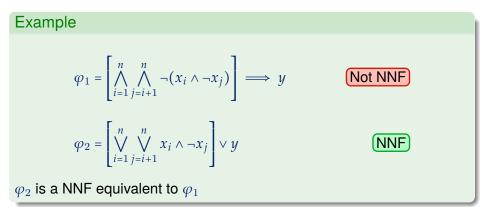
- x denotes a set of variables x₁,.., x_n
- lit(x) literals over variables in x
- Assignment a maps propositional variables to true or false
 - $1 \text{ or } 0, \top \text{ or } \bot$
- An assignment a satisfies formula φ if $\varphi(\mathbf{a})$ evaluates to true
 - a is a model of φ
 - $\mathbf{a} \models \varphi$
- Satisfiable formula admits a model
- Unsatisfiable formula has no model
 - Contradiction
- Valid formula is satisfied by every assignment
 - Tautology

 φ is a tautology $\iff \neg \varphi$ is unsatisfiable.

Negation Normal Form

Literal a propositional variable x or its negation $\neg x$

NNF a formula is in negation normal form if it uses only \land , \lor , \neg and negation is only in front of variables (in literals)



CNF and DNF

Term a conjunction of literals, e.g. $x \land \neg y \land \neg z$

- Clause a disjunction of literals, e.g. $x \lor \neg y \lor \neg z$
 - CNF a formula is in conjunctive normal form if it is a conjunction of clauses
 - DNF a formula is in disjunctive normal form if it is a disjunction of terms
- The empty term and empty CNF are valid ${\scriptscriptstyle \top}$
- The empty clause and empty DNF are contradictions 1

Example

$$\varphi_1 = (x \lor \neg y \lor z) \land (\neg x \lor y)$$

$$\varphi_2 = (x \land y) \lor (\neg x \land \neg y) \lor (\neg x \land z) \lor (y \land z)$$
an equivalent DNF

SAT and Related Problems

Given a CNF formula φ

SAT Is φ satisfiable?

UNSAT Is φ unsatisfiable?

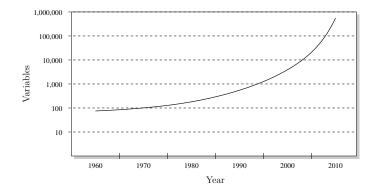
MaxSAT Maximize the number of satisfied clauses of φ

#SAT Count the models of φ

Model Enumeration Enumerate the models of φ

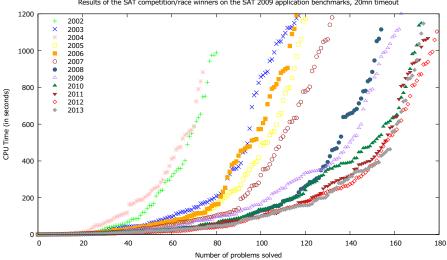
Why Study Propositional SAT?

- Interesting from both theoretical and practical perspective
- The first problem to be proven NP-complete
 - Cook, 1971; Levin, 1973
- Generic problem many problems encoded into SAT
 - Hardware and software verification
 - Planning and scheduling
 - Product configuration
 - ...and many others



The size of industrial CNF formulas that are regularly solved by SAT solvers in a few hours, according to year.

Image source: Decision Procedures. Kroening D., Strichman O.

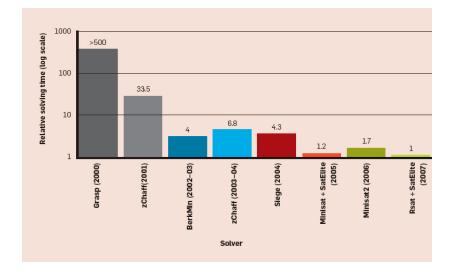


Results of the SAT competition/race winners on the SAT 2009 application benchmarks, 20mn timeout

Image source: Decision Procedures. Kroening D., Strichman O.

Petr Kučera (Charles University)

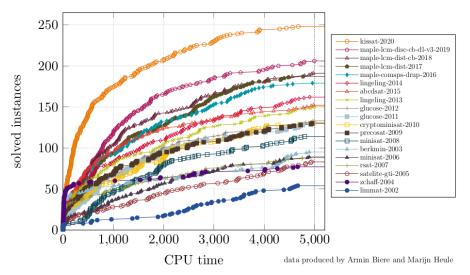
Decision Procedures and SAT/SMT Solvers



Sharad Malik, Lintao Zhang Communications of the ACM, August 2009, Vol. 52 No. 8, Pages 76-82

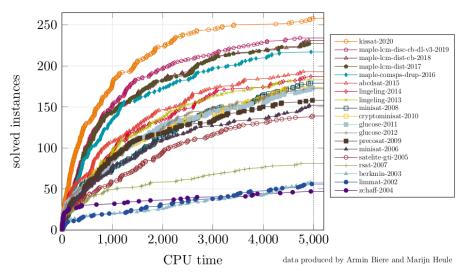
25/68

SAT Competition Winners on the SC2020 Benchmark Suite



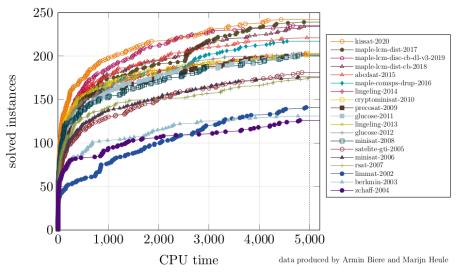
Source and more details: http://fmv.jku.at/kissat

SAT Competition Winners on the SC2019 Benchmark Suite



Source and more details: http://fmv.jku.at/kissat

SAT Competition Winners on the SC2011 Benchmark Suite



Source and more details: http://fmv.jku.at/kissat

SAT encodings

Converting Formula to an Equivalent CNF

Lemma

To every formula we can construct an equivalent CNF.

- Convert to NNF
 - a) Rewrite connectives using only \land , \lor , and \neg
 - Use De Morgan's laws to propagate negations to variables
 - Bemove double negation $(\neg \neg x = x)$
- 2 Use distributivity to propagate disjunction over conjunction

Converting Formula to an Equivalent CNF

Lemma

To every formula we can construct an equivalent CNF.

- Convert to NNF
 - a) Rewrite connectives using only \land , \lor , and \neg
 - Use De Morgan's laws to propagate negations to variables
 - Bemove double negation $(\neg \neg x = x)$
- 2 Use distributivity to propagate disjunction over conjunction

The result can be exponentially larger!

• Any CNF equivalent to $\bigvee_{i=1}^{n} (x_i \wedge y_i)$ has at least 2^n clauses

Lemma (Tseitin)

Every formula φ can be converted to an equisatisfiable formula ψ in CNF which is larger only by a constant factor.

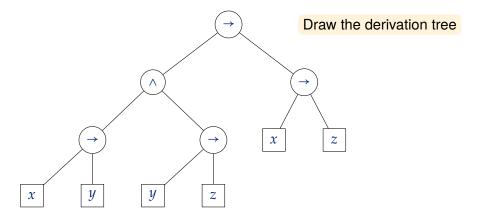
Equisatisfiable ψ is satisfiable if and only if φ is satisfiable ldea:

- Oraw a derivation tree of the formula
- 2 Assign a fresh variable to each connective
- 3 Add clauses to define the function of each connective
- 4 Add the root variable as a unit clause

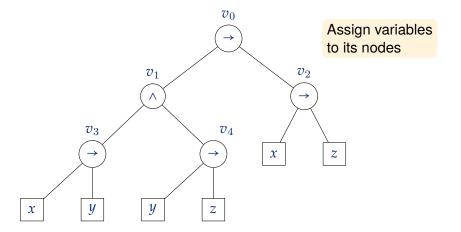
Can be used to convert a logical circuit into a CNF as well.

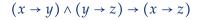
Tseitin's Encoding (example)

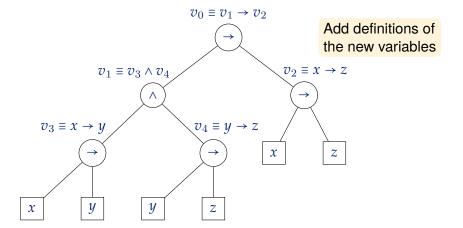
$$(x \to y) \land (y \to z) \to (x \to z)$$



$$(x \to y) \land (y \to z) \to (x \to z)$$







$$(x \to y) \land (y \to z) \to (x \to z)$$

Rewrite as a conjunction of definitions of new variables

 $v_{0} = v_{1} \rightarrow v_{2}$ $v_{1} \equiv v_{3} \wedge v_{4}$ $v_{2} \equiv x \rightarrow z$ $v_{3} \equiv x \rightarrow y$ $v_{4} \equiv y \rightarrow z$

$$(x \to y) \land (y \to z) \to (x \to z)$$

Rewrite as a conjunction of definitions of new variables
 rewrite definitions only using ¬, ∧, and ∨

 v_{0} $v_{0} \equiv v_{1} \rightarrow v_{2} \equiv \neg v_{1} \lor v_{2}$ $v_{1} \equiv v_{3} \land v_{4}$ $v_{2} \equiv x \rightarrow z \equiv \neg x \lor z$ $v_{3} \equiv x \rightarrow y \equiv \neg x \lor y$ $v_{4} \equiv y \rightarrow z \equiv \neg y \lor z$

720

$$(x \to y) \land (y \to z) \to (x \to z)$$

Rewrite as a conjunction of definitions of new variables
 rewrite definitions only using ¬, ∧, and ∨

0	
$v_0 \equiv \neg v_1 \lor v_2$	$(v_0 \to \neg v_1 \lor v_2) \land (\neg v_1 \lor v_2 \to v_0)$
$v_1 \equiv v_3 \wedge v_4$	$(v_1 \rightarrow v_3 \wedge v_4) \wedge (v_3 \wedge v_4 \rightarrow v_1)$
$v_2\equiv\neg x\vee z$	$(v_2 \to \neg x \lor z) \land (\neg x \lor z \to v_2)$
$v_3 \equiv \neg x \vee y$	$(v_3 \to \neg x \lor y) \land (\neg x \lor y \to v_3)$
$v_4 \equiv \neg y \vee z$	$(v_4 \rightarrow \neg y \lor z) \land (\neg y \lor z \rightarrow v_4)$

 $(x \to y) \land (y \to z) \to (x \to z)$

- 1 Rewrite as a conjunction of definitions of new variables
- 2 rewrite definitions only using ¬, \land , and \lor
- 8 rewrite as a conjunction of clauses

v_0	v_0
$v_0 \equiv \neg v_1 \lor v_2$	$(v_0 \to \neg v_1 \lor v_2) \land (\neg v_1 \to v_0) \land (v_2 \to v_0)$
$v_1 \equiv v_3 \wedge v_4$	$(v_1 \rightarrow v_3) \land (v_1 \rightarrow v_4) \land (v_3 \land v_4 \rightarrow v_1)$
$v_2\equiv\neg x\vee z$	$(v_2 \rightarrow \neg x \lor z) \land (\neg x \rightarrow v_2) \land (z \rightarrow v_2)$
$v_3 \equiv \neg x \vee y$	$(v_3 \to \neg x \lor y) \land (\neg x \to v_3) \land (y \to v_3)$
$v_4 \equiv \neg y \vee z$	$(v_4 \rightarrow \neg y \lor z) \land (\neg y \rightarrow v_4) \land (z \rightarrow v_4)$

33/68

 $(x \to y) \land (y \to z) \to (x \to z)$

- Rewrite as a conjunction of definitions of new variables
- 2 rewrite definitions only using \neg , \land , and \lor
- 8 rewrite as a conjunction of clauses

v_0	v_0
$v_0 \equiv \neg v_1 \lor v_2$	$(\neg v_0 \lor \neg v_1 \lor v_2) \land (v_1 \lor v_0) \land (\neg v_2 \lor v_0)$
$v_1 \equiv v_3 \wedge v_4$	$(\neg v_1 \lor v_3) \land (\neg v_1 \lor v_4) \land (\neg v_3 \lor \neg v_4 \lor v_1)$
$v_2\equiv\neg x\vee z$	$(\neg v_2 \lor \neg x \lor z) \land (x \lor v_2) \land (\neg z \lor v_2)$
$v_3\equiv\neg x\vee y$	$(\neg v_3 \lor \neg x \lor y) \land (x \lor v_3) \land (\neg y \lor v_3)$
$v_4 \equiv \neg y \vee z$	$(\neg v_4 \lor \neg y \lor z) \land (y \lor v_4) \land (\neg z \lor v_4)$

33/68

 $(x \to y) \land (y \to z) \to (x \to z)$

- Rewrite as a conjunction of definitions of new variables
- 2 rewrite definitions only using \neg , \land , and \lor
- 8 rewrite as a conjunction of clauses

 $\begin{array}{lll} v_0 & v_0 \\ v_0 \equiv \neg v_1 \lor v_2 & (\neg v_0 \lor \neg v_1 \lor v_2) \land (v_1 \lor v_0) \land (\neg v_2 \lor v_0) \\ v_1 \equiv v_3 \land v_4 & (\neg v_1 \lor v_3) \land (\neg v_1 \lor v_4) \land (\neg v_3 \lor \neg v_4 \lor v_1) \\ v_2 \equiv \neg x \lor z & (\neg v_2 \lor \neg x \lor z) \land (x \lor v_2) \land (\neg z \lor v_2) \\ v_3 \equiv \neg x \lor y & (\neg v_3 \lor \neg x \lor y) \land (x \lor v_3) \land (\neg y \lor v_3) \\ v_4 \equiv \neg y \lor z & (\neg v_4 \lor \neg y \lor z) \land (y \lor v_4) \land (\neg z \lor v_4) \end{array}$

Equisatisfiable, not equivalent.

Resolution

Certifying Unsatisfiability

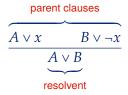
- CNF φ is satisfiable \implies SAT solver returns a model
 - easy to check its correctness
- φ is unsatisfiable \implies SAT solver returns UNSAT
 - how to check that the answer is correct?

Certifying Unsatisfiability

- CNF φ is satisfiable \implies SAT solver returns a model
 - easy to check its correctness
- φ is unsatisfiable \implies SAT solver returns UNSAT
 - how to check that the answer is correct?
- SAT solvers can return the proof of unsatisfiability
 - resolution refutation of φ

Resolution

Given clauses A, B, and a variable x



Definition

Resolution derivation of a clause *C* from a CNF φ is a sequence of clauses C_1, \ldots, C_k such that $C_k = C$ and for each $i = 1, \ldots, k$ either

• $C_i \in \varphi$, or

• *C_i* is a resolvent of some clauses preceding it in the list.

Resolution refutation of φ is the resolution derivation of the empty clause \perp (contradiction).

Resolution Graph

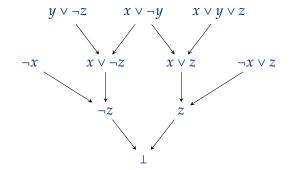
Resolution graph represents a resolution derivation

A directed acyclic graph (DAG)

 nodes clauses
 leaves clauses of φ
 inner nodes resolvents
 edges from parent clauses to resolvents
 sink node the derived clause (⊥ in case of a refutation)

Resolution Graph (example)

$$\varphi = \neg x \land (y \lor \neg z) \land (x \lor \neg y) \land (x \lor y \lor z) \land (\neg x \lor z)$$

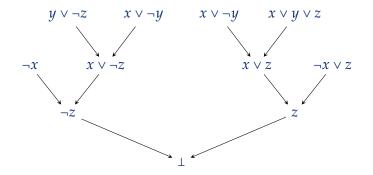


38/68

Tree Resolution

Tree resolution refutation resolution graph is a tree
clauses of φ can be in several leaves

$$\varphi = \neg x \land (y \lor \neg z) \land (x \lor \neg y) \land (x \lor y \lor z) \land (\neg x \lor z)$$



Resolution and Tree Resolution

 $\varphi \models C$ every model of φ is a model of *C* as well.

- Clause C is an implicate of φ
- Equivalent to $\varphi \land \bigwedge_{l \in C} \neg l \vDash \bot$

 $\varphi \models \bot$ if and only if φ is unsatisfiable

 $\varphi \vdash C$ clause *C* can be derived by resolution from φ .

(Tree) Resolution is sound and complete

 $\varphi \models \bot$ if and only if $\varphi \vdash \bot$ for every CNF formula φ .

- Resolution refutations can have exponential length
 - Pigeon hole principle formulas
- Tree resolution refutations may be exponentially longer than general resolution refutations

Unit Resolution

unit resolution one of the parent clauses is a unit clause (single literal) $\varphi \vdash_1 C$ clause C can be derived from φ by unit resolution

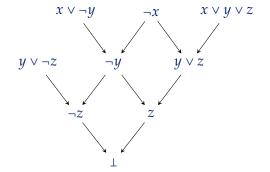
Unit resolution is sound but incomplete

$$\varphi \equiv (x \lor y) \land (\neg x \lor y) \land (x \lor \neg y) \land (\neg x \lor \neg y)$$

- Unsatisfiable
- Has no unit resolution refutation
- Unit resolution refutation can be found in linear time if it exists

Unit Resolution (Example)

$$\varphi = \neg x \land (y \lor \neg z) \land (x \lor \neg y) \land (x \lor y \lor z) \land (\neg x \lor z)$$



Partial Assignments — Notation

x set of variables

lit(x) literals over variables in x

partial assignment a non-contradictory set of literals, considered as a conjunction of literals

 $\varphi[\alpha]$ Application of a partial assignment $\alpha \subseteq lit(\mathbf{x})$:

- Removed clauses containing a literal from *α*
- Removed the negations of the literals in *α* from the remaining clauses

 $\varphi = (y \lor \neg z) \land (x \lor \neg y) \land (x \lor y \lor z) \land (\neg x \lor z)$ $\varphi[\neg x] = (y \lor \neg z) \land (\neg y) \land (y \lor z)$ $\varphi[x, \neg z] = \bot \quad \text{(The empty clause — contradiction)}$ $\varphi[x, y, z] = \top \quad \text{(The empty CNF — satisfied)}$

Unit Propagation Algorithm

```
Function UnitProp(\varphi)
```

Input: CNF formula φ on variables x Output: (α, ψ) where α is a set of literals which can be derived by unit resolution from $\varphi, \psi = \varphi[\alpha]$. if $\bot \in \varphi$ then return (α, \bot) $\alpha \leftarrow \emptyset$ while φ contains a unit clause l do $\begin{bmatrix} \alpha \leftarrow \alpha \cup \{l\} \\ \varphi \leftarrow \varphi[l] \\ \text{if } \bot \in \varphi$ then return (α, \bot)

return (α, φ)

- Efficient procedure
 - Linear time implementation
 - Efficient data structures (watched literals)
- Used very often in SAT solvers

unit clause

$$\varphi = \underbrace{\neg x}_{\text{unit clause}} \land (y \lor \neg z) \land (x \lor \neg y) \land (x \lor y \lor z) \land (\neg x \lor z), \alpha = \emptyset$$

$$\varphi = \neg x \land (y \lor \neg z) \land \underbrace{(x \lor \neg y)}_{\text{unit clause}} \land (x \lor y \lor z) \land (\neg x \lor z), \alpha = \{\neg x\}$$

$$(y \lor \neg z) \land \underbrace{(x \lor \neg y)}_{\text{unit clause}} \land (y \lor z) \land (\neg x \lor z), \alpha = \{\neg x\}$$

$$\varphi = \underbrace{\neg x}_{\text{unit clause}} \land (y \lor \neg z) \land (x \lor \neg y) \land (x \lor y \lor z) \land (\neg x \lor z), \alpha = \emptyset$$

$$\varphi = \neg x \land (y \lor \neg z) \land \underbrace{(x \lor \neg y)}_{\text{unit clause}} \land (\neg x \lor z), \alpha = \{\neg x\}$$

$$\varphi = \neg x \land (y \lor \neg z) \land (x \lor \neg y) \land \underbrace{(x \lor y \lor z)}_{\text{unit clause}} \land (\neg x \lor z), \alpha = \{\neg x\}$$

$$\alpha = \{\neg x, \neg y\}$$

$$\varphi = \underbrace{\neg x} \land (y \lor \neg z) \land (x \lor \neg y) \land (x \lor y \lor z) \land (\neg x \lor z), \alpha = \emptyset$$
unit clause

$$\varphi = \neg x \land (y \lor \neg z) \land \underbrace{(x \lor \neg y)}_{\text{unit clause}} \land (\neg x \lor z), \alpha = \{\neg x\}$$

$$\varphi = \neg x \land \underbrace{(y \lor \neg z)}_{\land} (x \lor \neg y) \land \underbrace{(x \lor y \lor z)}_{\land} (\neg x \lor z),$$
unit clause

$$\alpha = \{\neg x, \neg y\}$$

$$\varphi = \neg x \land \underbrace{(y \lor \neg z)}_{\land} (x \lor \neg y) \land \underbrace{(x \lor y \lor z)}_{\land} (\neg x \lor z),$$
empty clause

$$\alpha = \{\neg x, \neg y, z\}$$

1
$$\varphi = \underbrace{\neg x} \land (y \lor \neg z) \land (x \lor \neg y) \land (x \lor y \lor z) \land (\neg x \lor z), \alpha = \emptyset$$

unit clause
2 $\varphi = \neg x \land (y \lor \neg z) \land \underbrace{(x \lor \neg y)}_{\text{unit clause}} \land (x \lor y \lor z) \land (\neg x \lor z), \alpha = \{\neg x\}$
3 $\varphi = \neg x \land (y \lor \neg z) \land (x \lor \neg y) \land (x \lor y \lor z) \land (\neg x \lor z),$
 $\alpha = \{\neg x, \neg y\}$
4 $\varphi = \neg x \land \underbrace{(y \lor \neg z)}_{\text{unit clause}} \land (x \lor \neg y) \land (x \lor y \lor z) \land (\neg x \lor z),$
empty clause
 $\alpha = \{\neg x, \neg y, z\}$

Empty clause derived — Unit propagation returns $(\{\neg x, \neg y, z\}, \bot)$.

DPLL

DPLL

- DP algorithm existential quantification (Davis and Putnam, 1960) by DP-elimination
 - High space complexity (can soon blow up exponentially)
- Davis Putnam Logemann Loveland (Davis, Logemann, and Loveland, 1962)
- Branch and bound algorithm
 - Branch on values of a variable
 - Use unit propagation to prune the search tree
 - Polynomial space complexity

DPLL Algorithm

Function DPLL (CNF φ)

```
Output: A set of literals (partial model) or UNSAT
(\alpha, \psi) \leftarrow \text{UnitProp}(\varphi)
if \psi = \emptyset then return \alpha
if \bot \in \psi then return UNSAT
l \leftarrow a literal in \psi
\beta \leftarrow \text{DPLL}(\psi[l])
if \beta \neq UNSAT then
      return \alpha \cup \beta \cup \{l\}
\beta \leftarrow \text{DPLL}(\psi[\neg l])
if \beta \neq UNSAT then
      return \alpha \cup \beta \cup \{\neg l\}
```

return UNSAT

 $\varphi = (x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$ $() \text{ Decide } x_1$

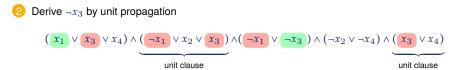
 $(x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$

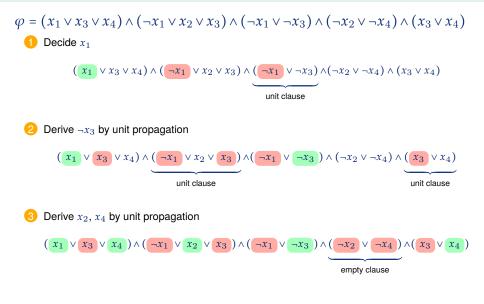
unit clause

 $\varphi = (x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$ $() \text{ Decide } x_1$

$$(\underbrace{x_1} \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$$

unit clause





 $\varphi = (x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$ $() \text{ Decide } \neg x_1$

 $(x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$

 $\varphi = (x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$ $\bigcirc \text{Decide } \neg x_1$

 $(x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$

2 Decide x_2

 $(x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$ unit clause

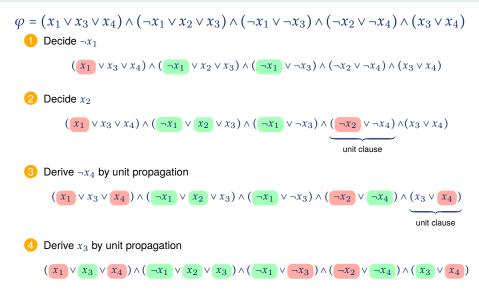
 $\varphi = (x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$ $() \text{ Decide } \neg x_1$

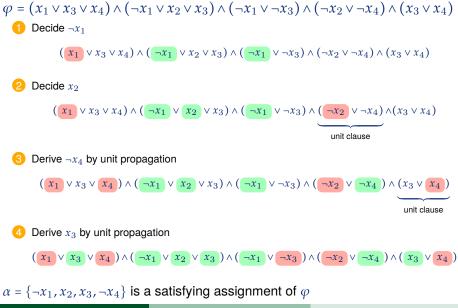
 $(x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$

2 Decide
$$x_2$$

 $(x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land \underbrace{(\neg x_2 \lor \neg x_4)}_{\text{unit clause}} \land (x_3 \lor x_4)$
3 Derive $\neg x_4$ by unit propagation

$$(x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land \underbrace{(x_3 \lor x_4)}_{\text{unit clause}}$$





Decision Procedures and SAT/SMT Solvers

DPLL Variants and Extensions

CDCL

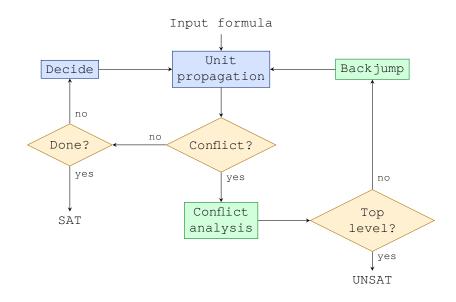
- Decide quickly
- Quickly arrive at a conflict (empty clause)
- Learn from conflicts
- Look-ahead solvers
 - Spend more time with decisions
 - Simplify formula between decision (e.g. eliminate pure literals)
- Cube and Conquer
 - Use look-ahead solver to split into subproblems
 - Solve the subproblems using a CDCL solver
- Model counters and enumerators
- DPLL(T) Satisfiability modulo theory (SMT)

Conflict Driven Clause Learning (part 1)

CDCL Extensions to DPLL

- Non-chronological backtracking (backjumping)
- GRASP, Marques-Silva and Sakallah, 1997
 - Learning new clauses from conflicts
 - Exploiting structure of conflicts during clause learning
- Chaff, Moskewicz et al., 2001
 - Using lazy data structures for the representation of formulas
 - Branching heuristics must have low computational overhead and must receive feedback from backtrack search
- Periodic restarts (Gomes, Selman, Kautz, et al., 1998)
- Deletion policies for learnt clauses (BerkMin, Goldberg and Novikov, 2007)

CDCL Solver Structure



54/68

Values

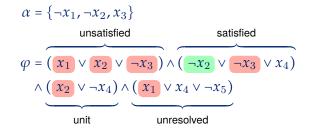
Value of a literal $l \in lit(\mathbf{x})$ relative to a partial assignment α

$$\operatorname{val}(\alpha, l) = \begin{cases} 1 & l \in \alpha \\ 0 & \neg l \in \alpha \\ * & \text{otherwise} \end{cases}$$

- 1 literal is defined and satisfied (true)
- 0 literal is defined and unsatisfied (false)
- * literal is undefined (also unassigned)

Clause State

State of a clause *C* relative to a partial assignment α Unsatisfied all literals in *C* are false in α Satisfied *C* contains a satisfied literal from α Unit *C* is not satisfied and exactly one literal in *C* is undefined in α Unresolved *C* is not satisfied and two or more literals in *C* are undefined in α



Decision variable the value is set heuristically when picking the next literal for branching

Decision literal literal specifying the value of a decision variable

Implied variable the value is derived by unit propagation following previous decisions

Undefined the value has not been fixed yet (also unassigned)

Decision Level

- Values of literals are put into a value stack
 - Removed when backtracking
- Current decision level = number of decisions in the value stack
- Each variable x_i has a decision level $\delta(x_i)$
 - x_i is undefined $\Rightarrow \delta(x_i) = -1$
 - x_i is a *d*-th decision variable in the value stack $\Rightarrow \delta(x_i) = d$
 - x_i is an implied variable $\Rightarrow \delta(x_i)$ = number of decision variables before x_i in the value stack
 - $(\delta(x_i) = 0 \Leftrightarrow x_i \text{ is implied by the input formula}$
 - (\bullet) $\delta(x_i) > 0$ and $\operatorname{ant}(x_i) = \operatorname{NIL} \Leftrightarrow x_i$ is a decision variable

l @ d — value of literal l was set at decision level d

Assertive Clause

- Assume a CNF φ, a value stack α, and current decision level d
- Clause C is assertive if
 - $\varphi \models C$

```
(C is an implicate of \varphi)
```

59/68

- C is false under α
- C has exactly one literal at the current decision level
- Assertion level of C is defined as
 - the second highest decision level of literals in C, or
 - 0 if C is unit

Assertive clause is unit after backtracking to assertion level

Assertive Clauses

 $\varphi = (\neg x_{11} \lor \neg x_{31}) \land (x_2 \lor x_3) \land (x_{31} \lor \neg x_{42} \lor \neg x_{62}) \land (x_{31} \lor \neg x_{42} \lor \neg x_{62}) \land (x_{73} \lor \neg x_{83}) \land (\neg x_{73} \lor \neg x_{83}) \land (\neg x_{73} \lor \neg x_{83})$

 $\alpha = (x_{11} @ 1, \neg x_{31} @ 1, x_{42} @ 2, x_{62} @ 2, \neg x_{73} @ 3, x_{83} @ 3)$

Clause	Assertive	
$(\neg x_{11} \lor x_{31} \lor \neg x_{83})$	é)	assertion level 1
$(\neg x_{83})$	E1	assertion level 0
$(\neg x_{11} \lor x_{31} \lor x_{73} \lor \neg x_{83})$	Ţ	$\neg x_{73} @ 3, x_{83} @ 3$
$(x_{11} \lor x_{31} \lor \neg x_{83})$	E 1	satisfied
$(x_2 \lor x_{31} \lor \neg x_{83})$	Ę	unit
$(\neg x_{42} \lor x_{73})$	Ţ	not implicate

Function <code>DPLL+(CNF arphi)</code>

Output: A set of literals (partial model) or UNSAT

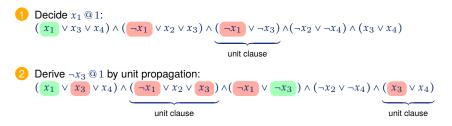
```
\alpha \leftarrow ()
                                                             // empty value stack
\Gamma \leftarrow \{\}
                                          // empty set of learned clauses
d \leftarrow 0
                                                                  // decision level
while true do
     (\beta, \psi) \leftarrow \text{UnitProp}(\varphi \land \Gamma \land \alpha)
    if \psi = \bot then
                                 // backtrack to assertion level
         if d = 0 then return UNSAT
         C \leftarrow an assertive clause
         d \leftarrow \text{assertion level of } C
         \alpha \leftarrow \alpha \setminus \{l @ m \mid l \in \alpha \land m > d\}
         \Gamma \leftarrow \Gamma \cup \{C\}
                                                                  // learn clause C
    else
                                             // contradiction not detected
         \alpha \leftarrow \alpha \cup \{l @ d \mid l \in \beta \setminus \alpha\}
         if \psi is empty then return \alpha
          l \leftarrow a literal in \psi
                                                        // new decision literal
         d \leftarrow d + 1
                                  // Increase the decision level
         \alpha \leftarrow \alpha \cup \{l @ d\} // Add decision to the value stack
```

 $\varphi = (x_1 \vee x_3 \vee x_4) \land (\neg x_1 \vee x_2 \vee x_3) \land (\neg x_1 \vee \neg x_3) \land (\neg x_2 \vee \neg x_4) \land (x_3 \vee x_4)$

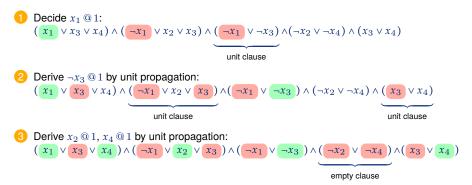
 $\varphi = (x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$

unit clause

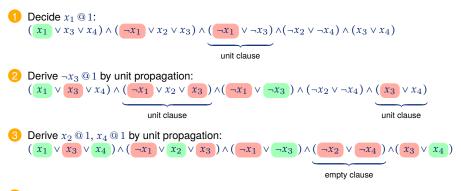
 $\varphi = (x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$



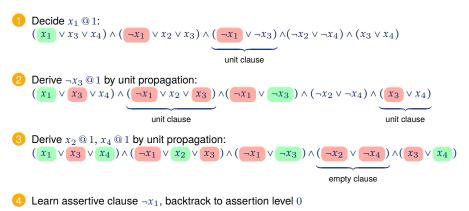
 $\varphi = (x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$



 $\varphi = (x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$



 $\varphi = (x_1 \vee x_3 \vee x_4) \land (\neg x_1 \vee x_2 \vee x_3) \land (\neg x_1 \vee \neg x_3) \land (\neg x_2 \vee \neg x_4) \land (x_3 \vee x_4)$



$$\begin{aligned} \varphi &= (x_1 \vee x_3 \vee x_4) \wedge (\neg x_1 \vee x_2 \vee x_3) \wedge (\neg x_1 \vee \neg x_3) \wedge (\neg x_2 \vee \neg x_4) \wedge (x_3 \vee x_4) \\ \Gamma &= (\neg x_1) \end{aligned}$$

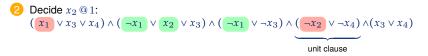
 $\varphi = (x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$ $\Gamma = (\neg x_1)$

 $\varphi = (x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$ $\Gamma = (\neg x_1)$

Derive $\neg x_1 @ 0$ by unit propagation (not decided like in DPLL!): $(x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4) \land (\neg x_1)$

 $\varphi = (x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$ $\Gamma = (\neg x_1)$

Derive $\neg x_1 @ 0$ by unit propagation (not decided like in DPLL!): $(x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4) \land (\neg x_1)$



 $\varphi = (x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$ $\Gamma = (\neg x_1)$

1 Derive $\neg x_1 @ 0$ by unit propagation (not decided like in DPLL!): ($x_1 \lor x_3 \lor x_4$) $\land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4) \land (\neg x_1)$ 2 Decide $x_2 @ 1$: ($x_1 \lor x_3 \lor x_4$) $\land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$ unit clause 3 Derive $\neg x_4 @ 1$ by unit propagation: ($x_1 \lor x_3 \lor x_4$) $\land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$

unit clause

 $\varphi = (x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$ $\Gamma = (\neg x_1)$

1 Derive $\neg x_1 @ 0$ by unit propagation (not decided like in DPLL!): $(x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4) \land (\neg x_1)$ 2 Decide $x_2 @ 1$: $(x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$ unit clause 3 Derive $\neg x_4 @ 1$ by unit propagation: $(x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$ unit clause 4 Derive $x_2 @ 1$ by unit propagation: $(x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$ unit clause

4 Derive $x_3 @ 1$ by unit propagation: $(x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$

 $\varphi = (x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$ $\Gamma = (\neg x_1)$

Derive $\neg x_1 @ 0$ by unit propagation (not decided like in DPLL!): $(x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4) \land (\neg x_1)$ Decide $x_2 @ 1$: $(x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$ unit clause 3 Derive $\neg x_4 @ 1$ by unit propagation: $(x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$ unit clause 4 Derive $x_3 @ 1$ by unit propagation: $(x_1 \lor x_3 \lor x_4) \land (\neg x_1 \lor x_2 \lor x_3) \land (\neg x_1 \lor \neg x_3) \land (\neg x_2 \lor \neg x_4) \land (x_3 \lor x_4)$

 $\alpha = \{\neg x_1, x_2, x_3, \neg x_4\}$ is a satisfying assignment of φ

What remains?

1 How to find assertive clauses?

- Conflict-driven clauses
- Resolution based on the implication graph
 - Directed graph defined based on current values of variables and their antecedents
- 2 How to backtrack quickly?
 - Lazy data structures in unit propagation
 - Watched literals
- 8 How to manage learned clauses?

References

References I

Cook, Stephen A. (1971). "The complexity of theorem-proving procedures." In: STOC '71: Proceedings of the third annual ACM symposium on Theor Shaker Heights, Ohio, United States: ACM, pp. 151–158. DOI: http://doi.acm.org/10.1145/800157.805047. Davis, Martin, George Logemann, and Donald Loveland (July 1962). "A machine program for theorem-proving." In: Commun. ACM 5.7, pp. 394–397. ISSN: 0001-0782. DOI: 10.1145/368273.368557 Davis, Martin and Hilary Putnam (July 1960). "A Computing Procedure for Quantification Theory." In: J. ACM 7.3, pp. 201–215. ISSN: 0004-5411, DOI: 10.1145/321033.321034. Goldberg, Eugene and Yakov Novikov (2007). "BerkMin: A fast and robust SAT-solver." In: Discrete Applied Mathematics 155.12,

66/68

References II

- Gomes, Carla P, Bart Selman, Henry Kautz, et al. (1998). "Boosting combinatorial search through randomization." In: <u>AAAI/IAAI</u> 98, pp. 431–437.
- Levin, L. A. (1973). "Universal'nye zadachi perebora." In: Probl. peredachi inform. 9.3, pp. 115–116.
- Marques-Silva, João P. and Karem A. Sakallah (1997). "GRASP—a New Search Algorithm for Satisfiability." In: Proceedings of the 1996 IEEE/ACM International Conference on Com ICCAD '96. San Jose, California, USA: IEEE Computer Society, pp. 220–227. ISBN: 0818675977.

67/68

References III

 Moskewicz, Matthew W. et al. (2001). "Chaff: Engineering an Efficient SAT Solver." In: Proceedings of the 38th Annual Design Automation Conference. DAC '01. Las Vegas, Nevada, USA: Association for Computing Machinery, pp. 530–535. ISBN: 1581132972. DOI: 10.1145/378239.379017.