
Padovan heaps
Vladan Majerech



Main principle – superexpensive comparisons

• We compare as late as possible (FindMin does almost all work).

• We never forget results of comparisons.

• Organization of comparisons should not take asymptotically more 
time than comparisons.



Insert

• Insert new element to the list of minimum candidates.

• O(1).

• We should accumulate O(1) more time for future work – we will see 
later.



FindMin

• Compare candidates for minimum (element for which we don’t know 
smaller one)

• We remember results of comparisons (denoted by edge directed to 
smaller element), representation of the directed forest would be 
discussed later.

• At the end we have just one candidate for minimum.

• Account Φ0 equal to the number of candidates for minimum can pay 
for comparisons and increments cost of Insert by O(1).



DeleteMin

• We suppose FindMin preceded, we can call it to be sure.

• We remove minimum, its predecessors (children in its tree) become 
current candidates for minimum.

• It could be implemented in O(1) time, but we should add number of 
predecessors to Φ0 for our amortized analysis.

• We need narrow trees to keep cost of DeleteMin small.



Invariant of c-q narrow trees

There will be rank defined for a heap element 𝑣 denoted 𝑟𝑎𝑛𝑘𝑣. (New 
element gets rank 0).

• For c>0 and 1<q≤2 holds:

Subtree of ancestors of an element of rank 𝑘 has size at least c𝑞𝑘.

Rank will not be equal to the element indegree (number of children). 
To be able to pay to Φ0 during DeleteMin, we need account for 
situations when indegree exceeds rank. We define 

Φ1 = ∑deg _𝑣 − 𝑟𝑎𝑛𝑘_𝑣

Summing just positive differences.



DeleteMin again

• Suppose c-q narrow trees invariant holds, than ranks are bounded by 
log(𝑛/𝑐)/log 𝑞 , so after removal of the minimum m, number of 
candidates become deg _𝑚 = 𝑟𝑎𝑛𝑘_𝑚 + (deg _𝑚 − 𝑟𝑎𝑛𝑘_𝑚), so 
except the transaction from Φ1to Φ0, we have to increase Φ0 by 
O(log n) only.

• Even the worst case for DeleteMin could be O(1), it has amortized 
cost O(log n) in our analysis.



Maintaining c-q narrow trees invariant

• We cannot compare minimum candidates randomly during FindMin, 
as that would generate wide trees.

1. It’s fine to compare two elements of the same rank 𝑘 as we get 
resulting tree size 2𝑐𝑞𝑘 ≥ 𝑐𝑞 𝑘+1 , so we can increase resulting 
tree root 𝑣 rank and difference deg𝑣 −𝑟𝑎𝑛𝑘𝑣 does not change.

2. Just in the case at most one candidate per rank remains, we can 
compare them arbitrary. We pair the candidates and compare the 
pairs, than we create new pairs … We want to avoid comparison of 
one candidate with all others. We don’t change ranks during 2nd

phase, we increment Φ1instead.



FindMin’s cost

• First phase is paid from Φ0.

• We didn’t accumulated enough time to be able to pay to Φ1 during 
2nd phase.

• Number of candidates for minimum at the start of 2nd phase is at 
most (1+maximal achievable rank)∈O(log n). At the same time their 
number cannot increase during the 1st phase. Let us introduce new 
account Φ2 equal to minimum of maximal achievable rank + 1 and 
the number of candidates for minimum.

• Cost of some Inserts are increased by paying O(1) to Φ2, DeleteMin
pays at most O(log n) to Φ2.



Implementation details

• We maintain candidates for minimum in bidirectional list (acyclic right 
and cyclic left). We maintain pointer to the leftmost element what 
allows us to insert to both ends and remove any member in O(1). 

• Exactly the same way we maintain predecessors of all elements 
(children in the corresponding tree).



FindMin’s implementation details

• We have synchronization place for each rank (empty).

• During the 1st phase we traverse list of candidates right and update pointers in 
synchronization places to traversed candidates of corresponding ranks. Whenever 
synchronization place points to anther candidate we compare them move higher 
of them to right end of predecessors of the smaller one. We increase rank of 
smaller one at the same time, therefore we should empty the original rank 
synchronization place and we have to reprocess the new root (paid from Φ0).

• As the list of candidates is just updated, we can traverse it once again to clean up 
synchronization places between 1st and 2nd phase (paid from Φ2).

• During 2nd phase we repeat moving left and comparing current candidate with 
candidate to the left. We move higher candidate to the start of predecessors 
(children) of the smaller one. We end when only one candidate remains (paid 
from Φ2).



Decrement (so far we have Binomial heaps)

• After an element decrement we cannot rely on edge leaving it so we 
have to remove it (all other edges remain valid).

• Would c-q narrow trees invariant still hold?

• If we decrement rank of all it’s descendants c-q narrownes would be 
restored, but the update size would equal the element depth, what 
could be up to Ω(n).

• Tarjan – Fredman shown, propagation of each second rank decrement 
suffices for maintaining the invariant. That lead to introduction of 
white and black colors.



Decrement analysis

• Elements would be created white. First rank decrement gives them black 
color. 

• FindMin during 1st phase elements whose are removed from candidates list 
are colored white. During 2nd phase elements whose are removed from 
candidates list are colored red.

• Let Φ3=number of all black successors. 

• During Decrement just one element becomes black. We could color a black 
vertex red and propagate rank update. This propagation is fully paid by 
decrement of Φ3.

• DeleteMin worst case cost grows to Φ0 increase so 𝜃 𝑛 as we need 
successor(parent) pointers updated.



Fibonacci heaps

• Let 𝑀𝑘 be minimal possible size of ancestors tree of an element of 
rank 𝑘. 

• Following recurrence holds:
𝑀𝑘 = 1 + 1 +𝑀0 +𝑀1 +⋯+𝑀𝑘−2

• So 𝑀𝑘+1 = 𝑀𝑘 +𝑀𝑘−1 and we got Fibonacci sequence and c-q 

narrowness for 𝑞 =
1+ 5

2
. 

This finishes Fibonacci heaps analysis.

P.S.: Analysis would work even when using white color instead of red.

We just should prevent decrements of ranks below 0.



Saving one pointer per element

• Decrement in Fibonacci heaps require pointer to successor (parent) to 
allow rank decrement propagation.

• We save the space by replacing nil pointers at the right ends of lists by 
pointer to successor (parent). We would not maintain pointers to 
successors (parents) on other places.

• In that case we cannot propagate rank decrements except at the right 
end of the list where we can access the successor.

• We would propagate rank recomputation only at the rightmost two 
elements (elements of highest rank among white and black).

• Worst case time for DeleteMin will be O(1) again.



𝑟𝑎𝑛𝑘_𝑣 and 𝑤𝑟𝑎𝑛𝑘_𝑣

• Let us define 𝑤𝑟𝑎𝑛𝑘 = 1 + 𝑟𝑎𝑛𝑘 for a black element, and 𝑤𝑟𝑎𝑛𝑘 = 𝑟𝑎𝑛𝑘
for a white one. Let 𝑤𝑟𝑎𝑛𝑘 = −1 for null pointers (missing vertices).

• Predecessor (children) lists have all red on left, than 𝑤𝑟𝑎𝑛𝑘 increasing 
(when defined).

• Take among black and white predecessors last two … 𝑤0, 𝑤1 from right
(they could be missing).

S. Safe: 𝑤𝑟𝑎𝑛𝑘𝑤1
+ 1 = 𝑤𝑟𝑎𝑛𝑘𝑤0

: 𝑟𝑎𝑛𝑘𝑣 = 𝑤𝑟𝑎𝑛𝑘𝑤0
+ 1.

D. Dangerous: 𝑤𝑟𝑎𝑛𝑘𝑤1
+ 1 < 𝑤𝑟𝑎𝑛𝑘𝑤0

and 𝑤0 is white: 𝑟𝑎𝑛𝑘𝑣 = 𝑤𝑟𝑎𝑛𝑘𝑤0
. (𝑣

cannot be white)
F. Forbidden: 𝑤𝑟𝑎𝑛𝑘𝑤1

+ 1 < 𝑤𝑟𝑎𝑛𝑘𝑤0
and 𝑤0 is black: color 𝑤0 yellow and 

recompute. 



Minimal size recurrence



Narrowness

• Let 𝑀𝑘 be minimal size of an ancestors tree of an element of rank 𝑘

• Following recurrence holds: 
𝑀𝑘 = 1 +𝑀𝑘−2 +𝑀𝑘−3

• This is closely related to Padovan sequence and c-q narrowness holds 

for q=
3 1

2
1 +

23

27
+

3 1

2
1 −

23

27
≈ 1.324718

• 𝑞3 = 𝑞 + 1



Decrement fully colored

• We cut an element and if it was one of last two elements of a list we call 
cascading rank consolidation on it’s successor (parent).

• During cascade consolidation we start by computation of current rank. If 
there is no change, we are done.

• If rank of a white element drops by 1, it is colored black.
• If rank of a black element drops, it is colored yellow as well as if rank of a 

white element drops by at least 2.
• If an element is among last two of the list we continue the rank 

consolidation at the successor (parent).
• During rank calculation of an element we move all yellow 

predecessors(children) among right two elements to the left end. We color 
them red during it. If there is a red element among rightmost two, we 
know there is no more white and black element to the left in the list.



Decrement

• Decrement analysis still does not guarantee O(1). 
• Rank computation can lead to drop by more than 1 and propagation 

continues even for originally white vertex. Such propagation cannot be paid 
from Φ3.

• We need another account
Φ4 = ∑𝑟𝑎𝑛𝑘𝑣 − number ot predecessors of 𝑣 colored either white

or black.
• Removal of white or black predecessor accumulates time for future 

(higher) rank drop. Join of these during FindMin does not change Φ4. 
DeleteMin could decrement Φ4 without using it. The only method 
increasing and using Φ4 is Decrement.

• Now rank update propagation is paid alternatively by either Φ3 or Φ4. 
Except that (and moves of yellow elements) we spent only constant cost.



Red, Yellow and Dangerous

• Due to delaying move of yellow elements to left end of the list we 
need account Φ5 = number of all yellow successors.

• DeleteMin does not need ∑deg𝑣 −𝑟𝑎𝑛𝑘𝑣. It suffices Φ1=number of 
all red successors. As deg _𝑣 = number of red + number of yellow + 
number of (white or black), where number of white and black ≤
𝑟𝑎𝑛𝑘, so we pay to Φ0 from Φ5, Φ1 and at most 𝑂 log 𝑛 .

• We need to prevent white dangerous vertices, therefore we make 
dangerous vertices safe at the start of the FindMin. This is why we 
introduce account Φ6 = number of all dangerous vertices.



Picture with all colors (negated keys)



Summary

• Potential used in analysis is
Φ0𝑡0 +Φ1𝑡1 +Φ2𝑡2 + 2Φ3𝑡3 +Φ4𝑡4 +Φ5𝑡5 +Φ6𝑡6,

where 𝑡0 ≤ 𝑡1 < 𝑡2, 𝑡1 < 𝑡5 < 𝑡6, 𝑡5 + 𝑡6 < 𝑡3, and 𝑡5 + 𝑡6 < 𝑡4 are 
appropriate constants
• Φ0 is number of candidates for minimum.
• Φ2 is number of candidates for minimum, bounded by highest achievable 

rank+1.
• Φ1, Φ3, resp. Φ5 is number of all red, black, resp. yellow descendants 

(children).
• Φ4 is sum of differences between rank and number of white and black 

descendants (children) of an element.
• Φ6 is number of dangerous vertices



The payment schema



Data structure’s competition

• Supporter of one structure generates sequence of method calls, both 
structures invoke the methods and ratio of total times is the gain. The 
game is repeated with roles changed.

• Heaps according superexpensive comparison principle will won 
against standard implementation by 𝜃 log 𝑛 using prefix of a 
sequence

i=0;Repeat (Insert(-i), Insert(-(i+1)), FindMin, DeleteMin, i++),

because maximal rank achieved would be 4.

• Standard heaps could gain at most 𝜃 1 in revenge.


