
Padovan heaps
Vladan Majerech



Main principle – superexpensive comparisons

• We compare as late as possible (FindMin does almost all work).

• We never forget results of comparisons.

• Organization of comparisons should not take asymptotically more 
time than comparisons.



Invariant of c-q narrow trees

There will be rank defined for a heap element 𝑣 denoted 𝑟𝑎𝑛𝑘𝑣. (New 
element gets rank 0).

• For c>0 and 1<q≤2 holds:

Subtree of ancestors of an element of rank 𝑘 has size at least c𝑞𝑘.



Saving one pointer per element

• Decrement in Fibonacci heaps require pointer to successor (parent) to 
allow rank decrement propagation.

• We save the space by replacing nil pointers at the right ends of lists by 
pointer to successor (parent). We would not maintain pointers to 
successors (parents) on other places.

• In that case we cannot propagate rank decrements except at the right 
end of the list where we can access the successor.

• We would propagate rank recomputation only at the rightmost two 
elements (elements of highest rank among white and black).

• Worst case time for DeleteMin will be O(1) again.



𝑟𝑎𝑛𝑘_𝑣 and 𝑤𝑟𝑎𝑛𝑘_𝑣

• Let us define 𝑤𝑟𝑎𝑛𝑘 = 1 + 𝑟𝑎𝑛𝑘 for a black element, and 𝑤𝑟𝑎𝑛𝑘 = 𝑟𝑎𝑛𝑘
for a white one. Let 𝑤𝑟𝑎𝑛𝑘 = −1 for null pointers (missing vertices).

• Predecessor (children) lists have all red on left, than 𝑤𝑟𝑎𝑛𝑘 increasing 
(when defined).

• Take among black and white predecessors last two … 𝑤0, 𝑤1 from right
(they could be missing).

S. Safe: 𝑤𝑟𝑎𝑛𝑘𝑤1
+ 1 = 𝑤𝑟𝑎𝑛𝑘𝑤0

: 𝑟𝑎𝑛𝑘𝑣 = 𝑤𝑟𝑎𝑛𝑘𝑤0
+ 1.

D. Dangerous: 𝑤𝑟𝑎𝑛𝑘𝑤1
+ 1 < 𝑤𝑟𝑎𝑛𝑘𝑤0

and 𝑤0 is white: 𝑟𝑎𝑛𝑘𝑣 = 𝑤𝑟𝑎𝑛𝑘𝑤0
. (𝑣

cannot be white)
F. Forbidden: 𝑤𝑟𝑎𝑛𝑘𝑤1

+ 1 < 𝑤𝑟𝑎𝑛𝑘𝑤0
and 𝑤0 is black: color 𝑤0 yellow and 

recompute. 



Minimal size recurrence



Narrowness

• Let 𝑀𝑘 be minimal size of an ancestors tree of an element of rank 𝑘

• Following recurrence holds: 
𝑀𝑘 = 1 +𝑀𝑘−2 +𝑀𝑘−3

• This is closely related to Padovan sequence and c-q narrowness holds 

for q=
3 1

2
1 +

23

27
+

3 1

2
1 −

23

27
≈ 1.324718

• 𝑞3 = 𝑞 + 1



Decrement fully colored

• We cut an element and if it was one of last two elements of a list we call 
cascading rank consolidation on it’s successor (parent).

• During cascade consolidation we start by computation of current rank. If 
there is no change, we are done.

• If rank of a white element drops by 1, it is colored black.
• If rank of a black element drops, it is colored yellow as well as if rank of a 

white element drops by at least 2.
• If an element is among last two of the list we continue the rank 

consolidation at the successor (parent).
• During rank calculation of an element we move all yellow 

predecessors(children) among right two elements to the left end. We color 
them red during it. If there is a red element among rightmost two, we 
know there is no more white and black element to the left in the list.



Picture with all colors (negated keys)



Summary

• Potential used in analysis is
Φ0𝑡0 +Φ1𝑡1 +Φ2𝑡2 + 2Φ3𝑡3 +Φ4𝑡4 +Φ5𝑡5 +Φ6𝑡6,

where 𝑡0 ≤ 𝑡1 < 𝑡2, 𝑡1 < 𝑡5 < 𝑡6, 𝑡5 + 𝑡6 < 𝑡3, and 𝑡5 + 𝑡6 < 𝑡4 are 
appropriate constants
• Φ0 is number of candidates for minimum.
• Φ2 is number of candidates for minimum, bounded by highest achievable 

rank+1.
• Φ1, Φ3, resp. Φ5 is number of all red, black, resp. yellow descendants 

(children).
• Φ4 is sum of differences between rank and number of white and black 

descendants (children) of an element.
• Φ6 is number of dangerous vertices



The payment schema



Data structure’s competition

• Supporter of one structure generates sequence of method calls, both 
structures invoke the methods and ratio of total times is the gain. The 
game is repeated with roles changed.

• Heaps according superexpensive comparison principle will won 
against standard implementation by 𝜃 log 𝑛 using prefix of a 
sequence

i=0;Repeat (Insert(-i), Insert(-(i+1)), FindMin, DeleteMin, i++),

because maximal rank achieved would be 4.

• Standard heaps could gain at most 𝜃 1 in revenge.


