[

Padovan heaps

AN

Vladan Majerech

L)

R,

9 \
>
7 TN 8
<_
& y =%
A4
6 ] ° 3

3T




Main principle — superexpensive comparisons

* \We compare as late as possible (FindMin does almost all work).
* We never forget results of comparisons.

* Organization of comparisons should not take asymptotically more
time than comparisons.



Invariant of c-g narrow trees

There will be rank defined for a heap element v denoted rank,,. (New
element gets rank 0).

* For ¢c>0 and 1<q<2 holds:

Subtree of ancestors of an element of rank k has size at least cg”.



Saving one pointer per element

* Decrement in Fibonacci heaps require pointer to successor (parent) to
allow rank decrement propagation.

* We save the space by replacing nil pointers at the right ends of lists by
pointer to successor (parent). We would not maintain pointers to
successors (parents) on other places.

* In that case we cannot propagate rank decrements except at the right
end of the list where we can access the successor.

* We would propagate rank recomputation only at the rightmost two
elements (elements of highest rank among white and black).

* Worst case time for DeleteMin will be O(1) again.



rank v and wrank v

e Let us define wrank = 1 + rank for a black element, and wrank = rank
for a white one. Let wrank = —1 for nul/pointers (missing vertices).

* Predecessor (children) lists have all red on left, than wrank increasing
(when defined).

* Take among black and white predecessors last two ... wy, wy from right
(they could be missing).

S. Safe:wrank,, + 1= wrank,, :rank, = wrank,, + 1.

D. Dangerous: wrank,, + 1 <wrank,, andw iswhite: rank, = wrank,, . (v
cannot be white)

F.  Forbidden: wrank,, + 1 < wrank,, and wy is black: color w; yellow and
recompute.



Minimal size recurrence




Narrowness

* Let M;, be minimal size of an ancestors tree of an element of rank k

* Following recurrence holds:
Mk — 1 + Mk—Z + Mk—3

* This is closely related to Padovan sequence and c-q narrowness holds

3 3
forg= [[=(1+ [Z2)]+ [[2(1- [Z2]] =~ 1.324718
V 2 27 V 2 27

*(@®°=q+1)




Decrement fully colored

* We cut an element and if it was one of last two elements of a list we call
cascading rank consolidation on it’s successor (parent).

* During cascade consolidation we start by computation of current rank. If
there is no change, we are done.

* |If rank of a white element drops by 1, it is colored black.

* If rank of a black element drops, it is colored yellow as well as if rank of a
white element drops by at least 2.

* |f an element is among last two of the list we continue the rank
consolidation at the successor (parent).

* During rank calculation of an element we move all yellow
predecessors(children) among right two elements to the left end. We color
them red during it. If there is a red element among rightmost two, we
know there is no more white and black element to the left in the list.



Picture with all colors (negated keys)

0:16

0:7

0:9

0:1

1:4 || 06 218\ 4:10
\ -~ -
0:;5 || 0:8 || 0:27 || 0:19 0:20 || 0:19 || 0:32 || 1:24 || 2:11 2:16
0:30 || 0:21 || 0:22 0:30 || 2:12 || 0:12 || 1:13 || 0:17 [ | 2:20
0:13 || 1:15 || 0:14 0:26

0:21




Ssummary

* Potential used in analysis is
Doty + Pty + Doty + 25t + Dyt + Dete + Pty

where ty < t; < ty, t; < tg < tg, ts + tg < t3,and ts + tg < t, are
appropriate constants

* @, is number of candidates for minimum.

e O, Ii(s Tumber of candidates for minimum, bounded by highest achievable
rank+1.

* @, D3, resp. Pg is number of all red, black, resp. yellow descendants
(cf11ildren).

* @, is sum of differences between rank and number of white and black
descendants (children) of an element.

* &, is number of dangerous vertices



The payment schema

0 Delayed root processing ——]

First phase of FindMin

1 Delayed root creation from placed outer children

«——

2 Delayed root processing, bounded by 1 + maximal rank — Second phase of Findmin

5 Delayed placing of outer children

\

& Delayed processing of dangerous vertices |——3 Start of MakeSafe (Zero phase of FindMin);

»| One recomputation step

rank recomputation FS rule

3 Delayed rank recomp%rtically

> Vertical rank recomputation;
rank recomputation FF#* rule (start)

Horizontal rank recomputation in MakeSafe and F* rules;

4 Delayed rank recomputation horizontally

> vertical recomputation when bigger rank decrement not due to rule F;
rank recomputation FD rule




Data structure’s competition

* Supporter of one structure generates sequence of method calls, both
structures invoke the methods and ratio of total times is the gain. The
game is repeated with roles changed.

* Heaps according superexpensive comparison principle will won
against standard implementation by 8 (log n) using prefix of a
sequence

i=0;Repeat (Insert(-i), Insert(-(i+1)), FindMin, DeleteMin, i++),
because maximal rank achieved would be 4.
 Standard heaps could gain at most 8(1) in revenge.



