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Chomsky Hierarchy - Automata, Languages, Grammars

Finite Automata
DFA, NFA, εNFA

Pushdown Automata

Linear Bounded Automata

Turing Machines
multitape, nondeterministic

Regular (right linear) Grammars

Context Free Grammars

Context Sensitive Grammars
monotone grammars

Type 0 Grammars

L3
regular

languages

L2
context
free

L1
context
sensitive

L0
recursively
enumerable
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Turing Machine
Definition (Turing Machine)
Turing Machine (TM) is the 7–tuple M = (Q,Σ, Γ, δ, q0,B,F ) with the
components:
Q The finite set of states of the finite control.
Σ The finite set of input symbols.
Γ The complete set of tape symbols. Always Γ ⊇ Σ, Q ∩ Γ = ∅.
δ The partial transition function (Q − F )× Γ→ Q × Γ× {L,R}.
δ(q,X ) = (p,Y ,D), where:

q ∈ (Q − F ) is the current state.
X ∈ Γ is the current tape symbol.
p is the next state, p ∈ Q.

Y ∈ Γ is written in the cell being scanned, replacing anything there.
D ∈ {L,R} is a direction in which the head moves (left, right).

q0 ∈ Q is the start state.
B ∈ Γ \ Σ. It appears initially in all but the finite number of initial cells that

hold input symbols.
F ⊆ Q The set of final or accepting states.

Note there are no transitions for accepting states.
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Example
A TM M = ({q0, q1, q2, q3, q4}, {0, 1}, {0, 1,X ,Y ,B}, δ, q0,B, {q4}) with δ in the table
accepts the language {0n1n; n ≥ 1}.
State 0 1 X Y B

q0 (q1,X ,R) – – (q3,Y ,R) –
q1 (q1, 0,R) (q2,Y , L) – (q1,Y ,R) –
q2 (q2, 0, L) – (q0,X ,R) (q2,Y , L) –
q3 – – – (q3,Y ,R) (q4,B,R)
q4 – – – – –

Definition (Transition diagram)
A transition diagram consists of a set of nodes
corresponding to the states of the TM. Any arc
q → p is labeled the list of items X/YD for all
δ(q,X ) = (p,Y ,D), D ∈ {←,→}.
We assume that the blank symbol is B unless we
state otherwise.

q0 q1 q2

q3 q4

0/X → 1/Y ←

Y /Y → X/X →

Y /Y →

B/B →

0/0←
Y /Y ←

0/0→
Y /Y →
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A TM for {0n1n; n ≥ 1}

q0 q1 q2

q3 q4

0/X → 1/Y ←

Y /Y → X/X →

Y /Y →

B/B →

0/0←
Y /Y ←

0/0→
Y /Y → Word 0011

q00011 ` Xq1011 ` X0q111 ` Xq20Y 1 `

` q2X0Y 1 ` Xq00Y 1 ` XXq1Y 1 ` XXYq11 `

` XXq2YY ` Xq2XYY ` XXq0YY ` XXYq3Y `

` XXYYq3B ` XXYYBq4B
Word 0010

q00010 ` Xq1010 ` X0q110 ` Xq20Y 0 ` q2X0Y 0 ` Xq00Y 0 ` XXq1Y 0 `

` XXYq10 ` XXY 0q1B ends up with a failure since there is no instruction for
q1, 0.
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A TM with ’Output’

A TM that computes monus, proper substraction m . n = max(m − n, 0).
M = ({q0, q1, q2, q3, q4, q5, q6}, {0, 1}, {0, 1,B}, δ, q0,B), accepting set
omited (TM used for output, not acceptance).
Start tape 0m10n.
M halts with the tape 0m . n surrounded by blanks.
Find leftmost 0, replace it by a blank.
Search right, looking for a 1; continue, find
0 and replace it by 1.
Return left.
End if no 0 found, either left or right;

right: replace all 1 by B.
left: m < n: replace all 1 and 0 by B,
leave the tape blank.

q0 q1

q5

q2 q3

q6 q4

0/B →
1/1→

0/0→ 1/1→

0/1← 0/0←
1/1←

B/B →

B/B →

0/B →
1/B →

0/0←
1/B ←

B/0→

1/B → B/B ←
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Compare Turing Machines and Finite Automata

Consider a Turing machine that never writes and always moves to the right.
Is it a finite automaton or is there some difference?

! Turing Machine does not allow transitions from the final (accepting) states.
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Practicals
1. Design following finite automata or Turing machines. Describe them as a

graph or a table.
a) L = {w | w ∈ {a, b}∗ & (∃k ∈ N0)|w |a = 3k}
b) L = {w | w ∈ {a, b}∗ & [(∃k ∈ N0)|w |a = 3k ∨ (∃` ∈ N0)|w |a = 2`]}
c) L = {w | w ∈ {a, b}∗ & (∃k ∈ N0)|w |a = 3k & (∃` ∈ N0)|w |a = 2`}
d) L = {w | w ∈ {a, b}∗ & [(∃k ∈ N0)|w |a = 3k ∨ (∃` ∈ N0)|w |b = 2`]}
e) L = {w | w ∈ {a, b}∗ & (∃k ∈ N0)|w |a = 3k & (∃` ∈ N0)|w |b = 2`}
f) L = {w | w ∈ {a, b}∗ & (∃k ∈ N0)|w |a = 3k & (∀` ∈ N0)|w |b 6= 2`}
g) L = {w | w ∈ {a, b}∗ & (∃k ∈ N0)|w |a = 2k}

2. Design an automaton accepting words that contain a given substring:
a) L = {w | w ∈ {a, b}∗ & (∃u ∈ {a, b}∗)w = abba.u} Starts with abba.
b) L = {w | w ∈ {a, b}∗ & (∃u ∈ {a, b}∗)w = u.abba} Ends with abba.
c) L = {w | w ∈ {a, b}∗ & (∃u, v ∈ {a, b}∗)w = u.abba.v} Has abba as a

substring.
d) L = {w | w ∈ {a, b}∗ & (∃u ∈ {a, b}∗)w = u.ab & (∃k ∈ N0)|w | = 3k +1}
e) L = {w | w ∈
{a, b}∗ & [(∃u ∈ {a, b}∗)w = u.ab ∨ (∃k ∈ N0)|w | = 3k + 1]}.

3. For a number in the binary encoding, design an automaton accepting:
a) L = {w | w ∈ {0, 1}∗ & (∃k ∈ N0)w = 3k}.
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Storage in the FA unit

Storage in the State
Consider state as a tuple
M = ({q0, q1} × {0, 1,B}, {0, 1}, {0, 1,B}, δ, [q0,B],B, {[q1,B]})
L(M) = (01∗ + 10∗),

δ 0 1 B
→ [q0,B] ([q1, 0], 0,R) ([q1, 1], 1,R)

[q1, 0] ([q1, 0], 1,R) ([q1,B],B,R)
[q1, 1] ([q1, 1], 0,R) ([q1,B],B,R)
∗[q1,B]
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Multiple Tracks
Lwcw = {wcw |w ∈ (0 + 1)+},
M = ({q0, . . . , q9} × {0, 1,B}, {[B, 0], [B, 1], [B, c]}, {B, ∗} ×
{0, 1,B, c}, δ, [q1,B], [B,B], {[q9,B]})
δ is defined as (a, b ∈ {0, 1}):

δ([q1,B], [B, a]) = ([q2, a], [∗, a],R) picks up the symbol a
δ([q2, a], [B, b]) = ([q2, a], [B, b],R) move right, look for c,
δ([q2, a], [B, c]) = ([q3, a], [B, c],R) continue right, the state changed,
δ([q3, a], [∗, b]) = ([q3, a], [∗, b],R) continue right,
δ([q3, a], [B, a]) = ([q4,B], [∗, a], L) check correct, drop memory and go left,
δ([q4,B], [∗, a]) = ([q4,B], [∗, a], L) go left,
δ([q4,B], [B, c]) = ([q5,B], [B, c], L) c found, continue left,
decide whether all inputs left and right are checked, branch adequately
δ([q5,B], [B, a]) = ([q6,B], [B, a], L) left symbol unchecked,
δ([q6,B], [B, a]) = ([q6,B], [B, a], L) proceed left,
δ([q6,B], [∗, a]) = ([q1,B], [∗, a],R) start again,
δ([q5,B], [∗, a]) = ([q7,B], [∗, a],R) symbol left from c checked, go right,
δ([q7,B], [B, c]) = ([q8,B], [B, c],R) proceed right,
δ([q8,B], [∗, a]) = ([q8,B], [∗, a],R) proceed right,
δ([q8,B], [B,B]) = ([q8,B], [B,B],R) accept.
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Practicals

11. Find a Turing machine accepting the language
a) L = {wcwR | w ∈ {0, 1}∗}
b) L = {aibic i | i = 0, 1, 2, . . .}
c) L = {aibjck | i , j , k = 0, 1, 2, . . .&i ≤ j ≤ k}
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Multi-tape Turing Machine

Definition (Multi-tape Turing Machine)
Initial position

input on the first tape, other tapes completely blank
first head on the first input letter, other heads
anywhere
initial state

One step of a multi-tape TM
new state
each tape writes its new symbol
each head independently moves left, right, or does
not move.

Multitape TM

Theorem (Multitape TM)
Any language accepted by a Multitape TM can be accepted also with some
(standard) Turing machine.
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Decidable (Recursive) Languages

Definition (Semi-Decidable, Recursively enumerable languages (RE))
The set of languages that we can accept by a Turing machine.

Definition
Turing Machine halts A TM halts if it enters a state q, scanning a tape symbol
X , and there is no move in this situation, i.e., δ(q,X ) is undefined.

We assume that a TM always halt when it is in an accepting state.
We can require that a TM halts even if it does not accept only for recursive
languages, a proper subset of recursively enumerable languages.

Definition (Decidable, Recursive languages (R))
The language L ⊆ Σ∗ is called decidable if there exists a Turing machine that
halts on any string ∈ Σ∗ and accepts the language L.
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A Language That Is Not Recursively Enumerable

We construct the language consisting of pairs (M,w) such that:
M is a TM (binary coded) with input alphabet {0, 1},
w is a string of 0’s and 1’s, and
M accepts input w .

Our plan:
Encode TM’s by binary code regardless of how many states the TM has.
Treat TM as a binary string.
If a string is not well formed, think of it as a TM with no moves. Therefore,
every binary string represents some TM.
Diagonalization language Ld ;
Ld = {w ; TM represented as w that does not accept w}.
There does not exists a TM recognizing the language Ld . Running it on its
own code leads to the paradox.
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Codes for Strings, Turing Machines

We call wi the i–th string, where ε is the first string, 0 the second, 1 the third, 00
the fourth and so on.
Strings are ordered by length, equal length are ordered lexicographically.

To represent a TM M = (Q, {0, 1}, Γ, δ, q1,B,F ) as a binary string, we must
first assign integers to the states, tape symbols, and directions L,R.
Assume:

Start state is always q1.
Always is q2 the only accepting state (we do not need more, TM halts).
First symbol is always 0, the second 1, the third B, the blank. Other tape
symbols can be assigned arbitrarily.
Direction L is 1, direction R is 2.

One transaction δ(qi ,Xj) = (qk ,Xl ,Dm) is coded: 0i10j10k10l10m. Notice all
i , j , k, l ,m ≥ 1 so no substring 11 occurs here.
The entire TM consists of all the codes for transaction in some order,
separated by pair of 1’s: C111C211 . . .Cn−111Cn.
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TM encoding example

Turing Machine
M = ({q1, q2, q3}, {0, 1}, {0, 1,B}, δ, q1,B, {q2})

δ 0 1 B
→ q1 (q3, 0,R)
∗q2
q3 (q1, 1,R) (q2, 0,R) (q3, 1, L).

The code for transitions
C1 C2 C3 C4

0100100010100 0001010100100 00010010010100 0001000100010010
The overall TM code:
01001000101001100010101001001100010010010100110001000100010010.
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The Universal Language

Definition (The Universal Language)
We define Lu, the universal language, the set of binary strings that encode a pair
(M,w), such that M is a TM and w ∈ L(M), that is
Lu = {(M,w) : TM M accepts w}.

Theorem (The Universal Turing Machine)
There is a TM U, called the universal Turing machine, such that Lu = L(U).

We describe U as a mutlitape Turing machine.
Transactions of M are stored initially on the
first tape, along with the string w , separated
by 111.
Second tape holds the simulated tape of M,
using format as code of M, i.e. symbols 0i

separated by 1’s.
Third tape holds the state of M represented
by i 0’s.
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Operations of the Universal Turing Machine
The operation of U can be summarized as follows:

Examine the input whether the code for M is legitimate;
if not, U halts without accepting.
Initialize the second tape with w in its encoded form: 10 for 0 in w , 100 for
1; blanks are left blank and replaced with 1000 only ’on demand’.
Place 0, the start state of M, on the third tape. Move the head on the
second tape to the first simulated cell.
To simulate a move of M

Search on the first tape for a proper transition 0i10j10k10l10m, 0i on tape 3,
0j on tape 2.
Change the content of tape 3 to 0k .
Replace 0j on tape 2 by 0l . Use scratch tape to manage the spacing.
Move the head on tape 2 to the position of the next 1 to the left or right,
depending on m.

If M has no transition that matches the simulated state and tape symbol,
halt.
If M enters its accepting state, then U accepts.
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Definition (The Diagonal Language)
The Diagonal Language Ld is defined as
Ld = {w ; TM represented as w that does not accept w}.

Ld = {w ; diagonal(w) = 0}

Theorem
Ld is not recursively
enumerable language. That
is, there is no TM that
accepts Ld .

Proof.
Assume Ld is RE, Ld = L(M) for some TM
M.
It has the language {0, 1}, so it is in the list
in the figure: ’Does TM Mi accept input
string wj?’
There is at least one code for it, say i ,
M = Mi .
Is wi ∈ Ld

’Yes’ imply diagonal(wi ) = 0, therefore
wi /∈ L(Mi ). Contradiction L(Mi ) = Ld .
’No’ imply diagonal(wi ) = 1, therefore
wi ∈ L(Mi ). Contradiction L(Mi ) = Ld .

Therefore, such M does not exist. Ld is not
RE.
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Recursive Languages

Definition (TM halts)
TM halts iff it enters a state q, reading X , and there is no instruction for this
situation, that is δ(q,X ) is undefined.

We assume TM halts in any accepting state q ∈ F ,
We are not sure whether it accepts until TM halts.

Definition (Recursive languages, Decidable problems)
We say that a TM M decides a language L iff L = L(M) and for any
w ∈ Σ∗ the TM with the input w halts.
For a computational problem with yes/no answer, we say it is a decidable
problem iff there exists a computer program that always halts and gives the
correct answer.
Recursive languages are such languages, for those there exists a TM M
that decides the language.
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Complements of Recursive and RE languages

Theorem
If L is a recursive language, so is L̄.

Proof.
L = L(M) for some TM M that always halts.
We construct TM M such that L = L(M).
Accepting states of M are non-accepting in M without any transaction out of
them.
M has a new accepting state r ; no transition from r .
For each non–accepting state of M and each tape symbol such that M has
no transition, add a transition to the accepting state r .
Since M is guaranteed to halt, M is also guaranteed to halt.
M accepts L.
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L&L ∈ RE ⇒ L, L is recursive

Theorem (Post Theorem)

A language L is recursive iff both L and L
(the complement) are recursively enumerable.

Proof:

We have TM L = L(M1) and L = L(M2).
for the word w we simulate both M1 and M2 (two tapes, states with
two components).
If any Mi accepts, M halts and answers.
Languages are complementary, one of Mi ’s always halts, therefore L is
recursive.

Theorem
If L is recursive, so is also L̄.
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Undecidability of the Universal Language

Theorem (Undecidability of the Universal Language)
Lu is RE but not recursive.

Proof.
We have proved that Lu is RE.
Suppose Lu were recursive.
Then, Lu would also be recursive.
If we have TM to accept Lu, then
we can costruct a TM to accept Ld
(see right).
Since we already know Ld is not RE,
Lu is not RE and Lu is not recursive.

Modification of TM for Lu to TM for Ld :

Given string w , change it to
w111w (2–tapes, convert to
1–tape).
Simulate M on the new input.
Accept iff M accepts.
Choose i s.t. wi = w . Previous
line accepts Lu, that is cases
where Mi does not accept wi , that
is the language Ld .
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Further reading

These slides: https://ktiml.mff.cuni.cz/~marta/brief.pdf
Literature: J.E. Hopcroft, R. Motwani, J.D. Ullman: Introduction to
Automata Theory, Languages, and Computations, Addison–Wesley

Let us have a 10 minutes break.
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Chomsky Hierarchy

Finite automata
DFA, NFA, εNFA

Pushdown automata

Linear bounded automata

Turing Machines
multitape, nondeterministic

Automata

Regular (right linear) grammars

Context free grammars

Context sensitive grammars
Monotone grammars

Type 0 grammars

Grammars

L3

L2

L1

L0

Theorem: L3 ( L2 ( L1 ( L0.
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Palindrome example

A string the same forward and backward,
like otto or Madam, I’m Adam.
w is a palindrome iff w = wR .
The language Lpal of palindromes is not a
regular language.

We use the pumping lemma.
If Lpal is a regular language, let n be the
asssociated constant, and consider:
w = 0n10n.
For regular L, we can break w = xyz such
that y consists of one or more 0’s from the
first group. Thus, xz would be also in Lpal
if Lpal were regular.

A context-free grammar (right) consists of
one or more variables, that represent classes
of strings, i.e., languages.

A context-free grammar for
palindromes
1. P → ε
2. P → 0
3. P → 1
4. P → 0P0
5. P → 1P1
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Definition (Grammar)
A Grammar G = (V ,T ,P,S) consists of

Finite set of terminal symbols (terminals) T , like {0, 1} in the previous
example.
Finite set of variables V (nonterminals,syntactic categories), like {P} in
the previous example.
Start symbol S is a variable that represents the language being defined. P
in the previous example.
Finite set of rules (productions) P that represent the recursive definition of
the language. Each has the form:

αAβ → ω, A ∈ V , α, β, ω ∈ (V ∪ T )∗

notice the left side (head) contains at least one variable.

The head - the left side, the production symbol →, the body - the right side.

Definition (Context free grammar CFG)
Context free grammar (CFG) je G = (V ,T ,P,S) has only productions of the
form

A→ α, A ∈ V , α ∈ (V ∪ T )∗.
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Chomsky hierarchy

Grammar types according to productions allowed.

Type 0 (recursively enumerable languages L0)
general rules α→ β, α, β ∈ (V ∪ T )∗, α contains at least one variable

Type 1 (context sensitive languages L1)
productions of the form αAβ → αωβ

A ∈ V , α, β ∈ (V ∪ T )∗, ω ∈ (V ∪ T )+

with only exception S → ε, then S does not appear at the right side of any
production

Type 2 (context free languages L2)
productions of the form A→ ω,A ∈ V , ω ∈ (V ∪ T )∗

Type 3 (regular (right linear) languages L3)
productions of the form A→ ωB,A→ ω,A,B ∈ V , ω ∈ T ∗
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Practicals

9. Find grammars that generate following languages.
a) L = {wwR | w ∈ {a, b}∗}
b) L = {aibi | i = 0, 1, 2, . . .}
c) L = {aibj | i , j = 0, 1, 2, . . .}
d) L = {aiaibj | i , j = 0, 1, 2, . . .}
e) L = {aibjai | i , j = 0, 1, 2, . . .}
f) L = {aibiaj | i , j = 0, 1, 2, . . .}
g) L = {aibjak | i , j , k ∈ N}
h) L = {a2i | i = 0, 1, 2, . . .}
i) L = {a3i | i = 0, 1, 2, . . .}

k) *L = {aibic i | i = 0, 1, 2, . . .}
l) *L = {aibjck | i , j , k ∈ N&i ≤ j ≤

k}
m) HTML syntax analyzer

<p> </p>
<a> </a>

<table> </table>
<tr> </tr>
<td> </td>

without any attributes.
n) proper parenthesis, that is the same number of the left and the right ones,

never more right ones than left. The word ’()(())’ is in the language.
o) arithmetic expression for a,+, ∗, (, ).
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Parse Tree

E

E

I

a

* E

( E

E

I

a

+ E

I

I

I

b

0

0

)

CFG for simple expressions
1. E → I
2. E → E + E
3. E → E ∗ E
4. E → (E )

5. I → a
6. I → b
7. I → Ia
8. I → Ib
9. I → I0
10. I → I1
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Normal Forms for Context-Free Grammars

Chomsky Normal Form: all production are of the form A→ BC or A→ a,
A,B,C where are variables, a is a terminal.
With an additional rule S → ε to generate the empty string with the condition
that the S is the start symbol that does not appear in the body of any rule.
Every CFL is generated by a CFG in Chomsky Normal Form.

To get there, we perform simplifications
Eliminate useless symbols
eliminate ε-productions A→ ε for some variable A
eliminate unit productions A→ B for variables A,B.
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Pumping Lemma for Context Free Languages

Theorem (Pumping Lemma for Context
Free Languages)
Let L be a CFL. Then there exists a
constant n ∈ N such that any
z ∈ L, |z | > n can be written z = uvwxy
subject to:
|vwx | ≤ n.
vx 6= ε.
∀i ≥ 0, uv iwx iy ∈ L.

A1

A2

u v w x y

T 1

T 2

v w x

Proof Idea:

take the parse tree for z
find the longest path
there must be two equal
variables
these variables define two
subtrees

the subtrees define partition of
z = uvwxy
we can move the tree T 1

(i > 1)
or replace T 1 by T 2 (i = 0)
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Proof: |z | > p : z = uvwxy , |vwx | ≤ q, vx 6= ε,∀i ≥ 0uv iwx iy ∈ L

we take the grammar in Chomsky NF (for L = {ε} and ∅ aside).
Let |V | = k. We set n = 2k .
For z ∈ L,|z | ≥ n, the parse tree has a path z of length > k

we denote the terminal of the longest path t

At least two of the last k variables on the path to t are equal
we take the couple A1,A2 closest to t (it defines subtrees T 1,T 2)
the path from A1 to t is the longest in T 1 and the length is maximally
k + 1

the yield of T 1 is no longer than 2k (so |vwx | ≤ n)
there are two paths from A1 (ChNF), one to T 2 other to the rest of
vx

ChNF not nullable, so vx 6= ε

derivation of the word (A1 ⇒∗ vA2x ,A2 ⇒∗ w)
S ⇒∗ uA1y ⇒∗ uvA2xy ⇒∗ uvwxy

if we move A2 to A1

(i = 0)
S ⇒∗ uA2y ⇒∗ uwy

if we move A1 to A2 (i = 2, 3, . . .)
S ⇒∗ uA1y ⇒∗ uvA1xy ⇒∗

uvvA2xxy ⇒∗ uvvwxxy

Automata and Grammars - A Brief Summary Grammars 3 September 26, 2024 33 / 77



Applications of the Pumping Lemma for CFL’s

"Adversary game" as for regular languages:
Pick a language L that is not CFL.
Our ’adversary’ gets to pick n, which we do not know.
We get to pick z , and we may use n as a parameter.
Our adversary gets to break z into uvwxy , subject |vwx | ≤ n and vx 6= ε.
We ’win’ the game, if by picking i and showing uv iwx iy is not in L.

Lemma (Not CFL)
Following languages are not CFL:
{0i1i2i |i ≥ 1}
{0i1j2i3j |i ≥ 1&j ≥ 1}
{ww |w is in {0, 1}∗}
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Pumping Lemma Usage

Example (non CFL)
Following language is not CFL
{0i1i2i |i ≥ 1}

assume it were CFL
we get n from the Pumping
Lemma
then |0n1n2n| > n
the middle part vwx is not longer
then n
we pump at most two different
symbols
the equality of symbols is violated
– CONTRADICTION.

Example (not a CFL)
Following language is not CFL

{0i1j2k |0 ≤ i ≤ j ≤ k}

assume it were CFL
we get n from the Pumping Lemma
then |0n1n2n| > n
the middle part vwx is not longer
then n
we pump at most two different
symbols
in the case of a (or b), pump up –
CONTRADICTION i ≤ j (or j ≤ k)
if c (or b), pump down –
CONTRADICTION j ≤ k (or i ≤ j)
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Pumping lemma example
Example (non context free language)
The following language is not context
free:
{0i1j2i3j |i , j ≥ 1}

proof by contradiction: assume it
is CFL
we take n from the Pumping
lemma
then |0n1n2n3n| > p
the middle section must not be
longer than n
it always covers one or two
different symbols
the equality of 0’s and 2’s or 1’s
and 3’s is violated –
CONTRADICTION

Example (non context free language)
The following language is not context
free:

{ww |w is in {0, 1}∗}

proof by contradiction: assume it
is CFL
we take n from the Pumping
lemma
then |0n1n0n1n| > n
the inner section must not be
longer than q
it always covers one or two
different symbols
the equality of 0’s and 1’s is
violated – CONTRADICTION
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Practicals Pumping lemma

10. Are following languages context-free?
a) L = {ww | w ∈ {a, b}∗}
b) L = {aibi | i = 0, 1, 2, . . .}
c) L = {aibjai | i , j = 0, 1, 2, . . .}
d) L = {aibjak | i , j , k = 0, 1, 2, . . .}
e) L = {wwR | w ∈ {a, b}∗}
f) L = {wwR | w ∈ {a, b}∗&|w |a = |w |b}
g) L = {ai2 | i = 0, 1, 2, . . .}
h) L = {ai2+i+1 | i = 0, 1, 2, . . .}
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L3
regular lang.
{0i1j |i , j ∈ N}

{010}

deterministic PDA
{0n1m; 0 < n ≤ m}

context free (=CFL)
{wwR |w ∈ {0, 1}}

L2

context
sensitive
L1 (=CL)
{aibic i |i ∈ N}

rekursive
(=R)

EXP-space
complete

recursively
enumerable
L0

Lu = {(M,w);
TM M accepts w}

Ld = {w ; TM coded by w does not accept w}languages
L ⊆ Σ∗



Pushdown Automata
If you want to decide: More a or b in any sequence ∈ {a, b}∗.

Pushdown automata is an extension of the ε–NFA.
The additional feature is the stack. Stack can be read, pushed, and popped
only at the top.
It can remember an infinite amount of information.
Pushdown automata define context-free languages.
Deterministic pushdown automata accept only a proper subset of the CFL’s.

A pushdown automaton.

Automata and Grammars - A Brief Summary Pushdown automata 4 September 26, 2024 39 / 77



In one transition, the pushdown automaton:
Consumes from the input zero or one symbol. (ε
transitions for zero input.)
Goes to a new state.
Replaces the symbol at the top of the stack by any
string (ε corresponds to pop, replace top symbol,
push more symbols).

Example
PDA for the language wwR : Lwwr = {wwR |w ∈ (0 + 1)∗}.

A PDA accepting Lwwr :
Start q0 represents a guess that we have not yet seen the middle.
At any time, non–deterministically guess

Stay q0 (not yet in the middle).
Spontaneously go to state q1 (we have seen the middle).

In q0, read the input symbol and push it onto the stack.
In q1, compare the input symbol with the one on top of the stack. If they
match, consume the input symbol and pop the stack.
If we empty the stack, w accept the input that was read up to this point.
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Pushdown Automata (PDA)

Definition (Pushdown Automata)
A pushdown automaton (PDA) is P = (Q,Σ, Γ, δ, q0,Z0,F ), where

Q A finite set of states.
Σ A finite set of input symbols.
Γ A finite stack alphabet.
δ The transition function. δ : Q × (Σ ∪ {ε})× Γ→ PFIN(Q × Γ∗),

(q, a,X ) = (p, γ) where p is the new state and γ a string of stack
symbols that replace X on top of the stack.

q0 The start state.
Z0 The start symbol. The only symbol on the stack at the beginning.
F The set of accepting (final) states.
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PDA for Lwwr

Example (PDA for Lwwr )
PDA for Lwwr can be described P = ({q0, q1, q2, {0, 1}, {0, 1,Z0}, δ, q0,Z0, {q2}})
where δ is defined:
δ(q0, 0,Z0) = {(q0, 0Z0)} Push the input on stack, leave the start symbol there.
δ(q0, 1,Z0) = {(q0, 1Z0)}
δ(q0, 0, 0) = {q0, 00}

Stay in q0, read the input and push it onto stack.δ(q0, 0, 1) = {q0, 01}
δ(q0, 1, 0) = {q0, 10}
δ(q0, 1, 1) = {q0, 11}
δ(q0, ε,Z0) = {q1,Z0}

Spontaneous transition to q1, no change on stack.δ(q0, ε, 0) = {q1, 0}
δ(q0, ε, 1) = {q1, 1}
δ(q1, 0, 0) = {q1, ε} State q1 matches the input and the stack symbols.
δ(q1, 1, 1) = {q1, ε}
δ(q1, ε,Z0) = {q2,Z0} We have found wwR and go to the accepting state.
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A Graphical Notation for PDA’s

Definition (Transition diagram for PDA)
A transition diagram for PDA contains:

The nodes correspond to the states
of the PDA.
The first arrow indicates the start
state, and doubly circled states are
accepting.
The arc correspond to transitions
of the PDA. An arc labeled
a,X → α from state q to p means
that δ(q, a,X ) 3 (p, α).
Conventionally, the start stack
symbol is Z0.

Labels:
input_symbol, stack_symbol → string_to_push

q0 q1 q2

0,Z0 → 0Z0
1,Z0 → 1Z0
0, 0→ 00
0, 1→ 01
1, 0→ 10
1, 1→ 11

ε,Z0 → Z0
ε, 0→ 0
ε, 1→ 1

0, 0→ ε
1, 1→ ε

ε,Z0 → Z0
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Definition (PDA configuration)
We represent the configuration of a PDA by a triple (q,w , γ), where

q is the state
w is the remaining input and
γ is the stack contents (top on the left).

Such a tripple is called an instantaneous description (ID) of the pushdown
automaton.

Definition (`,`∗ Sequences of instantaneous descriptions)
Let P = (Q,Σ, Γ, δ, q0,Z0,F ) be a PDA. Define `P or just ` as follows. Suppose
δ(q, a,X ) 3 (p, α). Then for all strings w ∈ Σ∗ and β ∈ Γ∗:

(q, aw ,Xβ) ` (p,w , αβ).

We also use the symbol `∗P or `∗ to represent zero or more moves of the PDA, i.e.

I `∗ I for any ID I
I `∗ J if there exists some ID K such that I ` K and K `∗ J .
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ID’s of the PDA on input 1111

(q0, 1111,Z0)

(q0, 111, 1Z0)

(q0, 11, 11Z0)

(q0, 1, 111Z0)

(q0, ε, 1111Z0)

(q1, ε, 1111Z0)

(q1, 1, 111Z0)

(q1, ε, 11Z0)

(q1, 11, 11Z0)

(q1, 1, 1Z0)

(q1, ε,Z0)

(q2, ε,Z0)

(q1, 111, 1Z0)

(q1, 11,Z0)

(q2, 11,Z0)

(q1, 1111,Z0)

(q2, 1111,Z0)
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The Languages of a PDA

Definition (PDA language accepted by final state)
Let P = (Q,Σ, Γ, δ, q0,Z0,F ) be a PDA. Then L(P), the language accepted by
F by final state, is {w |(q0,w ,Z0) `∗P (q, ε, α) for some q ∈ F and any stack
string α}.

Example
The PDA example for Lwwr accepts the language.

(IF) For any x = wwR , we have a accepting computation

(q0,wwR ,Z0) `∗ (q0,wR ,wRZ0) ` (q1,wR ,wRZ0) `∗ (q1, ε,Z0) ` (q2, ε,Z0).

(Only If)
The only way to enter q2 is from q1 and Z0 at the top of the stack.
Any accepting computation strats in q0, changes to q1 and never returns to q0.
We prove (q0, x ,Z0) `∗ (q1, ε,Z0) exactly for the strings of the form x = wwR .
Proof by induction on |x | in the book p.235.
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Practicals Pushdown automata

8. Desing pushdown automata for the following languages:
a) L1 = {w2wR | w ∈ {0, 1}∗}
b) L2 = {wwR | w ∈ {0, 1}∗}
c) L3 = {w | w ∈ {0, 1}∗&|w |0 = |w |1}
d) L4 = {u2v | u, v ∈ {0, 1}∗&|u| 6= |v |}
e) Li = {u2v | u, v ∈ {0, 1}∗&u [i ] 6= v [i ]}
f) L5 = {u2v | u, v ∈ {0, 1}∗&uR 6= v}
g) L6 = {aibjc i+j | i , j = 0, 1, 2, . . .}
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Further reading

These slides: https://ktiml.mff.cuni.cz/~marta/brief.pdf
Literature: J.E. Hopcroft, R. Motwani, J.D. Ullman: Introduction to
Automata Theory, Languages, and Computations, Addison–Wesley

Thank you for attention.
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Finite Automata

Software for designing and checking the behavior of digital circuits.

A Finite automaton modeling an on/off switch.

off on
Push

Push

Lexical analyzer, web page analyzer.

A finite automaton modeling recognition of then.

ε t th the then
t h e n
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Definition (Deterministic Finite Automata)
A deterministic finite automation (DFA) A = (Q,Σ, δ, q0,F ) consists of:

A finite set of states, often denoted Q.
A finite set of input symbols, denoted Σ.
A transition function Q × Σ→ Q, denoted δ, represented by arcs.
A start state q0 ∈ Q.
A set accepting states (final states) F ⊆ Q.

Convention: If some transitions are missing, we add a new state fail and make
the transition δ total by adding edges to fail for any ’undefined’ pair q, s.

If the set F is empty, we add to F and Q a new state final , with no
transitions from other states, just ’staying in final’ for any s ∈ Σ:
δ(final , s) = final .

ε t th the then

fail
final

t h e n

hen t
e

n
thn

t
h

e
t
hen

t
h

e n t
h

e n
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Deterministic Finite Automata Description

Example
An automaton A that accepts L = {x01y : x , y ∈ {0, 1}∗}.

State diagram (graph) Automaton A = ({q0, q1, q2}, {0, 1}, δ, q0, {q1}).

q0 q2 q1

1

0

0

1

0,1

table
rows: states + transitions
columns: letters from the
input alphabet Σ

δ 0 1
→ q0 q2 q0
∗q1 q1 q1
q2 q2 q1

State tree
nodes = states
edges = transitions
only reachable states
we need it only for nondeterministic FA.

q0 q0 q0 q0 q0 q0

q1 (stuck) q1 q1q2 (stuck) q2

0 0 1 0 1

0 0 0

1 1
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Finite Automata, Regular Languages

Definition (Word, language,Σ∗)
Σ∗ = {ε} ∪ Σ ∪ Σ.Σ ∪ . . .Σn ∪ . . .
a word is an element w ∈ Σ∗, a language is a subset L ⊆ Σ∗.

Deterministic Finite Automaton (DFA)
A = (Q,Σ, δ, q0,F ).
Language accepted (recognized) by a DFA
A = (Q,Σ, δ, q0,F ) is the language
L(A) = {w |w ∈ Σ∗ & δ∗(q0,w) ∈ F}.
Language L is recognizable by a DFA, if there
exists DFA A such that L = L(A).
The class of languages recognizable by a DFA F
is called regular languages.

0

1

1 0

1

0

0 1

0

1
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Regular Languages Examples

Example (Regular Language)
L = {w | w = ubaba,
w ∈ {a, b}∗, u ∈ {a, b}∗}.

a

b

b

aa b

b

a

b

a

Example (Regular Language)
L = {w |w ∈ {0, 1}∗&w binary
encoding of a number dividible by
5}.

Example (A language that is not
regular)

L = {0n1n|w ∈ {0, 1}∗, n ≥ 1} is
not regular.

0

1

2

3

4

0
1
0

1

1

0

0

1

1

0
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Moore Machine Example

Example (Tennis Game Score)
A machine calculates the tenis score.

Input alphabet: ID of the player
who scored a point
Output alphabet & states: the score
( Q = Y and µ(q) = q)

The language accepted by this
automaton is the set of correct
sequences A’s and B’s.

State/output A B
00:00 15:00 00:15
15:00 30:00 15:15
15:15 30:15 15:30
00:15 15:15 00:30
30:00 40:00 30:15
30:15 40:15 30:30
30:30 40:30 30:40
15:30 30:30 15:40
00:30 15:30 00:40
40:00 A 40:15
40:15 A 40:30
40:30 A deuce
30:40 deuce B
15:40 30:40 B
00:40 15:00 B
deuce A:40 40:B
A:40 A deuce
40:B deuce B
A 15:00 00:15
B 15:00 00:15
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Nondeterministic Finite Automata

Definition (Nondeterministic Finite Automata)
A nondeterministic finite automation (NFA) A = (Q,Σ, δ, q0,F ) consists of:

A finite set of states, often denoted Q.
A finite set of input symbols, denoted Σ.
A transition function δ : Q × Σ→ P(Q) returns a subset of Q.
A start state q0 ∈ Q.
A set accepting states (final states) F ⊆ Q.

Example
The NFA from previous slide is A = ({q0, q1, q2}, {0, 1}, δ, q0, {q2}).

δ 0 1
→ q0 {q0, q1} {q0}

q1 ∅ {q2}
∗q2 ∅ ∅
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Nondeterministic Finite Automata (NFA)
A NFA can be in serveral states at once. It has an ability to ’guess’ something
about input.

A NFA accepting all strings that end in 01.

q0 q1 q2

0,1

0 1

NFA processes input 00101.

q0 q0 q0 q0 q0 q0

q1 (stuck) q1 q1q2 (stuck) q2

0 0 1 0 1

0 0 0

1 1
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Definition (Extended Transition Function to Strings)
If δ is our transition function, then the extended transition function δ∗,
δ∗ : Q × Σ∗ → P(Q) takes a state q and a string w and returns a set of states
⊆ Q and is defined by induction:

δ∗(q, ε) = {q}.
Let w = ax , a ∈ Σ, x ∈ Σ∗, suppose δ∗(q, x) = {p1, . . . , pk}. Let⋃k

i=1 δ(pi , a) = {r1, r2, . . . , rm}. Then δ∗(q, ax) = {r1, r2, . . . , rm}.
First compute δ∗(q, x) and then follow any transition from any of these
states that is labeled a.

q0 q1 q2

0,1

0 1

δ∗(q0, ε) = ={q0}
δ∗(q0, 0) = δ(q0, 0) ={q0, q1}
δ∗(q0, 00) =δ(q0, 0) ∪ δ(q1, 0)={q0, q1}
δ∗(q0, 001) =δ(q0, 1) ∪ δ(q1, 1)={q0, q2}
δ∗(q0, 0010) =δ(q0, 0) ∪ δ(q2, 0)={q0, q1}
δ∗(q0, 00101)=δ(q0, 1) ∪ δ(q1, 1)={q0, q2}
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The Language of an NFA

Definition (Language of an NFA)
If A = (Q,Σ, δ, q0,F ) is an NFA, then

L(A) = {w |δ∗(q0,w) ∩ F 6= ∅}

is the language accepted by NFA A.
That is, L(A) is the set of strings w ∈ Σ∗ such that δ∗(q0,w) contains at least
one accepting state.

Example
The NFA from previous slide accepts the
language L = {w |w ends in 01}. The proof is a
mutual induction:

δ∗(q0,w) contains q0 for every w .
δ∗(q0,w) contains q1 iff w ends in 0.
δ∗(q0,w) contains q2 iff w ends in 01.

q0 q1 q2

0,1

0 1
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Equivalence of Deterministic and Nondeterministic Finite
Automata

Definition (Subset Construction)
The subset construction starts from an NFA N = (QN ,Σ, δN , q0,FN). Its goal is
the description of an DFA D = (QD ,Σ, δD , {q0},FD) such that L(N) = L(D).

QD is the set of subsets of QN , QD = P(QN) (the power set).
Inaccesible states can be thrown away so the number of states may be smaller.

FD = {S : S ∈ P(QN) & S ∩ FN 6= ∅}, i.e. S include at least one accepting
state of N.
For each S ⊆ QN and for each input symbol a ∈ Σ,

δD(S, a) =
⋃
p∈S

δN(p, a).
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Example of Subset Construction for language (0 + 1)∗01

q0 q1 q2

0,1

0 1

0 1
∅ ∅ ∅

→ {q0} {q0, q1} {q0}
{q1} ∅ {q2}
∗{q2} ∅ ∅
{q0, q1} {q0, q1} {q0, q2}
∗{q0, q2} ∅ {q2}

∗{q0, q1, q2} {q0, q1} {q0, q2}

{q0} {q0, q1} {q0, q2}

1

0

0

1

0

1
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Theorem (DFA for any NFA)
If D = (QD ,Σ, δD , {q0},FD) is the DFA constructed from NFA
N = (QN ,Σ, δN , q0,FN) by subset construction, then L(N) = L(D).

Proof.
By induction we prove: δ∗D({q0},w) = δ∗N(q0,w).

Example (A Bad Case for the Subset Construction)
A bad case for the subset construction is a language L(N) of all strings of 0’s and
1’s such that the nth symbol from the end is 1. Intuitively, a DFA must remember
the last n symbols it has read.

{q0} q1 q2 q3 . . . qn

0,1

1 0,1 0,1 0,1 0,1

Text search applications.
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Finite Automata With ε–Transitions

The new feature is that we allow a transition on ε, the empty string, that is
without reading any input symbol.

Example (ε transition NFA)
(1) Any optional + or - sign,
(2) a string of digits,
(3) A decimal point, and
(4) another string of digits. At least one of strings (2) and (4) must be nonempty.

q0 q1

q2

q3

q4

q5
ε,+,−

0,1,. . . ,9

0,1,. . . ,9

. 0,1,. . . ,9

.

ε

0,1,. . . ,9
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ε-NFA

Definition (ε-NFA)
ε-NFA is E = (Q,Σ, δ, q0,F ), where all components have their same interpretation
as for NFA, except that δ is now a function that takes arguments Q × (Σ ∪ {ε}).
We require ε /∈ Σ, so no confusion results.

Example
Previous ε-NFA is: E = ({q0, q1, . . . , q5}, {.,+,−, 0, 1, . . . , 9}, δ, q0, {q5}), where

δ is:

ε +,- . 0,1,. . . ,9
q0 {q1} {q1} ∅ ∅
q1 ∅ ∅ {q2} {q1, q4}
q2 ∅ ∅ ∅ {q3}
q3 {q5} ∅ ∅ {q3}
q4 ∅ ∅ {q3} ∅
q5 ∅ ∅ ∅ ∅
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Extended Transitions and Languages for ε-NFA’s

Definition
Suppose that E = (Q,Σ, δ, q0,F ) is an ε-NFA. We define δ∗ as follows:

δ∗(q, ε) = εCLOSE (q).
Suppose w = va where a ∈ Σ, v ∈ Σ∗.

Let δ∗(q, v) = {p1, . . . , pk}.
Let

⋃k
i=1 δ(pi , a) = {r1, . . . , rm}.

Then δ∗(q,w) = εCLOSE({r1, . . . , rm}).

Example
δ∗(q0, ε) = εCLOSE (q0) = {q0, q1}
δ∗(q0, 5) =εCLOSE (

⋃
q∈δ∗(q,ε) δ(q, 5)) = εCLOSE (δ(q0, 5) ∪ δ(q1, 5))= {q1, q4}

δ∗(q0, 5.) = εCLOSE (δ(q1, .) ∪ δ(q4, .)) ={q2, q3, q5}
δ∗(q0, 5.6)= εCLOSE (δ(q2, 6) ∪ δ(q3, 6) ∪ δ(q5, 6)) = {q3, q5}
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Definition (Eliminating ε-Transition)
Given any ε-NFA E = (QE ,Σ, δE , q0,FE ), we define a DFA
D = (QD ,Σ, δD , qD ,FD) that accepts the same language as E.

QD ⊆ P(QE ), ∀S ⊆ QE : εCLOSE (S) ∈ QD . Note that ∅ may be in QD .
qD = εCLOSE (q0).
FD = {S|S is in QD and S ∩ FE 6= ∅}.
For S ⊆ QD , a ∈ Σ define δD(S, a) = εCLOSE (

⋃
p∈S δ(p, a)).

Theorem (Eliminating ε-Transition)
A language L is accepted by some ε-NFA if and only if L is regular.
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Regular Expressions (RegE)

Definition (Regular Expression (RegE), value of a RegE L(α))
Regular expressions α, β ∈ RegE (Σ) over a finite non–empty alphabet
Σ = {x1, x2, . . . , xn} and their value L(α) is defined by induction:

Basis:

expression α for value L(α) ≡ [α]
ε empty string L(ε) = {ε}
∅ empty expression L(∅) = {} ≡ ∅
a a ∈ Σ L(a) = {a}.

Induction:
expression value remark
α + β L(α + β) = L(α) ∪ L(β)
αβ L(αβ) = L(α)L(β) . may be used
α∗ L(α∗) = L(α)∗
(α) L((α)) = L(α) brackets do not change the value.

The class of regular expressions over Σ: RegE (Σ) is the smallest class closed
under operations above.

Automata and Grammars - A Brief Summary Appendix 6 September 26, 2024 66 / 77



Examples, Precedence

Example (Regular Expressions)
The language of alternating 0’s and 1’s may be written:

either (01)∗ + (10)∗ + 1(01)∗ + 0(10)∗

or (ε+ 1)(01)∗(ε+ 0).
The language L((0∗10∗10∗1)∗0∗) = {w |w ∈ {0, 1}∗, |w |1 = 3k, k ≥ 0}.

Definition (Precedence)
The star ∗is the operator with highest precedence, then concatenation ., the
lowest precedence has the union +.

Theorem (Kleene Theorem (variant))
Any language recognizable by a DFA can be expressed by a regular expression.
Any language of a regular expression can be recognized by a ε-NFA (therefore
also a DFA).
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Practicals

4. Find regular expressions representing languages over Σ = {a, b}:
a) words with a substring abba
b) words with prefix abb and sufix bbaa
c) words w where |w |a = 3 ∗ k
d) words starting and ending with the same pair of symbols
e) words not having aa as a substring.

5. Construct finite automata accepting languages described by the following
regular expressions.
a) ab + ba
b) a2 + b2 + ab
c) a + b∗
d) (ab + c)∗
e) ((ab + c)+a(bc)∗ + b)∗
f) ((ab + c)∗a(bc)∗ + b)∗
g) (01∗ + 101)∗0∗1
h) (01)∗11(01)∗(0 + 1)∗00

Automata and Grammars - A Brief Summary Appendix 6 September 26, 2024 68 / 77



6. Construct regular expressions for languages accepted by the following
automata.
a)

1 2 3 4 5 6

7

a a a a a

aa

b)

1

2

3

ba
a

b

a

b 1 2 3a

b

b

a

a,b
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1 2

b
a

a

b

1

2

3

a

a,b

b

a,b

1

2

3

a

a,b

ab

b

Automata and Grammars - A Brief Summary Appendix 6 September 26, 2024 70 / 77



Pumping Lemma For Regular Languages
Is a given language regular?
YES Construct an automaton.
NO Find the contradiction with the Pumping Lemma.

Theorem (Pumping Lemma For Regular Languages)
Let L be a regular language. Then there exists a constant n ∈ N (which depends
on L) such that for every string w ∈ L such that |w | ≥ n, we can break w into
three strings, w = xyz, such that:

y 6= ε.
|xy | ≤ n.
For all k ≥ 0, the string xykz is also in L.

Example
abbbba = a(b)bbba;
∀i ≥ 1; a(b)ibbba ∈ L(A).
aaaaba = (aaa)aba;
∀i ≥ 1; (aaa)iaba ∈ L(A).

0 1 2a a

a

b b b
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Proof of the Pumping Lemma For Regular Languages

Proof.
Suppose L is regular, then L = L(A) for some DFA A with n states.
Take any string w = a1a2 . . . am ∈ L of length m ≥ n, ai ∈ Σ.
Define ∀i pi = δ∗(q0, a1a2 . . . ai ). Note p0 = q0.
We have n + 1 pi ’s and n states, therefore there are i , j such that
0 ≤ i < j ≤ n : pi = pj .
Define: x = a1a2 . . . ai , y = ai+1ai+2 . . . aj , z = aj+1aj+2 . . . am. Note
w = xyz .

p0 pi
x = a1a2 . . . ai z = aj+1aj+2 . . . am

y = ai+1ai+2 . . . aj

The loop above pi can be repeated any number of times and the input is also
accepted.
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Applications of the Pumping Lemma

Example (The Pumping Lemma as an Adversarial Game)
The language Leq = {w ; |w |0 = |w |1} of all strings with an equal number of 0’s
and 1’s is not regular language.

Proof.
Suppose it is regular. Take n from the pumping lemma.
Pick w = 0n1n ∈ Leq.
Break w = xyz as in the pumping lemma, y 6= ε, |xy | ≤ n.
Since |xy | ≤ n and it comes at front of w , it consists only of 0’s. The
pumping lemma says: xy ∈ Leq (for k = 0). However, it has less 0’s and the
same amount of 1’s as w , so one of them must not be in Leq.

Example
The language L = {0i1i ; i ≥ 0} is not regular.
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Applications of the Pumping Lemma 2

Example
The language Lpr of all strings of 1’s whose length is a prime is not a regular
language.

Proof.
Suppose it were. Take a constant n from the pumping lemma. Consider some
prime p ≥ n + 2, let w = 1p.
Break w = xyz by the pumping lemma, let |y | = m. Then |xz | = p −m.
xyp−mz ∈ Lpr by pumping lemma, but
|xyp−mz | = |xz |+ (p −m)|y | = p −m + (p −m)m = (m + 1)(p −m) that is
not a prime (none of two factors are 1).

Example (Non–regular language that can be ’pumped’)
The language L = {u|u = a+bic i ∨ u = bic j} is not regular (Myhill–Nerode
theorem), but the first symbol can be always pumped.
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Practicals Pumping Lemma For Regular Languages

7. Are following languages regular?
a) L = {ww | w ∈ {a, b}∗}
b) L = {ww | w ∈ {a}∗}
c) L = {aibj | i , j = 0, 1, 2, . . .}
d) L = {aiaibj | i , j = 0, 1, 2, . . .}
e) L = {aibjai | i , j = 0, 1, 2, . . .}
f) L = {aibiaj | i , j = 0, 1, 2, . . .}
g) L = {aibjck | i , j , k = 0, 1, 2, . . .}
h) L = {wwR | w ∈ {a, b}∗}
i) L = {wwR | w ∈ {a, b}∗ & |w |a = |w |b}
j) L = {a2i | i = 0, 1, 2, . . .}
k) L = {ai2 | i = 0, 1, 2, . . .}
l) L = {a3i | i = 0, 1, 2, . . .}
m) L = {ai3 | i = 0, 1, 2, . . .}
n) L = {a3i | i = 0, 1, 2, . . .}
o) L = {ap | p is a prime number}
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Lexical Analysis
Lexical analyzer scans the source program and recognizes all tokens
(keywords, identifiers, and many others).
We specify RE and code as below.
RE are converted to ε-NFA, accepting states distinguish which token was
recognized.
If more than one token is recognized at once, by convention the top-listed RE
wins (e.g. else may be reserved or identifier, first list reserved words).

Example (A sample of lex input)

regular expression action when found

else {return(ELSE);}

[A-Za-z][A-Za-z0-9]* {code to enter the found
identifier in the symbol table;
return(ID);
}

>= {return(GE);}

= {return(ASGN);}
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Finding Patterns in Text

Static text is usually indexed, other methods used.
RE are useful for the search in dynamic (new) text as daily news.

Example (Search for streets in addresses on the web)

Street identification Streen|St\.|Avenue|Ave\.|Road|Rd\
the name before ’[A-Z][a-z]*( [A-Z][a-z]*)*’
house number [0-9]+[A-Z]?

all together ’[0-9]+[A-Z]? [A-Z][a-z]*( [A-Z][a-z]*)*
Streen|St\.|Avenue|Ave\.|Road|Rd\. ’

We are missing:
Bouleward, Place, Way
Streets without any identifier (almost all Czech streets)
Street names with numbers.
. . .
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